| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pwm1geoserap1 | GIF version | ||
| Description: The n-th power of a number decreased by 1 expressed by the finite geometric series 1 + 𝐴↑1 + 𝐴↑2 +... + 𝐴↑(𝑁 − 1). (Contributed by AV, 14-Aug-2021.) (Revised by Jim Kingdon, 24-Oct-2022.) |
| Ref | Expression |
|---|---|
| pwm1geoser.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| pwm1geoser.3 | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| pwm1geoserap1.ap | ⊢ (𝜑 → 𝐴 # 1) |
| Ref | Expression |
|---|---|
| pwm1geoserap1 | ⊢ (𝜑 → ((𝐴↑𝑁) − 1) = ((𝐴 − 1) · Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴↑𝑘))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwm1geoser.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | pwm1geoserap1.ap | . . 3 ⊢ (𝜑 → 𝐴 # 1) | |
| 3 | pwm1geoser.3 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 4 | 1, 2, 3 | geoserap 12026 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴↑𝑘) = ((1 − (𝐴↑𝑁)) / (1 − 𝐴))) |
| 5 | eqcom 2231 | . . 3 ⊢ (Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴↑𝑘) = ((1 − (𝐴↑𝑁)) / (1 − 𝐴)) ↔ ((1 − (𝐴↑𝑁)) / (1 − 𝐴)) = Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴↑𝑘)) | |
| 6 | 1cnd 8170 | . . . . . 6 ⊢ (𝜑 → 1 ∈ ℂ) | |
| 7 | 1, 3 | expcld 10903 | . . . . . 6 ⊢ (𝜑 → (𝐴↑𝑁) ∈ ℂ) |
| 8 | apsym 8761 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 # 1 ↔ 1 # 𝐴)) | |
| 9 | 1, 6, 8 | syl2anc 411 | . . . . . . 7 ⊢ (𝜑 → (𝐴 # 1 ↔ 1 # 𝐴)) |
| 10 | 2, 9 | mpbid 147 | . . . . . 6 ⊢ (𝜑 → 1 # 𝐴) |
| 11 | 6, 7, 6, 1, 10 | div2subapd 8993 | . . . . 5 ⊢ (𝜑 → ((1 − (𝐴↑𝑁)) / (1 − 𝐴)) = (((𝐴↑𝑁) − 1) / (𝐴 − 1))) |
| 12 | 11 | eqeq1d 2238 | . . . 4 ⊢ (𝜑 → (((1 − (𝐴↑𝑁)) / (1 − 𝐴)) = Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴↑𝑘) ↔ (((𝐴↑𝑁) − 1) / (𝐴 − 1)) = Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴↑𝑘))) |
| 13 | peano2cnm 8420 | . . . . . 6 ⊢ ((𝐴↑𝑁) ∈ ℂ → ((𝐴↑𝑁) − 1) ∈ ℂ) | |
| 14 | 7, 13 | syl 14 | . . . . 5 ⊢ (𝜑 → ((𝐴↑𝑁) − 1) ∈ ℂ) |
| 15 | 0zd 9466 | . . . . . . 7 ⊢ (𝜑 → 0 ∈ ℤ) | |
| 16 | 3 | nn0zd 9575 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 17 | peano2zm 9492 | . . . . . . . 8 ⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ) | |
| 18 | 16, 17 | syl 14 | . . . . . . 7 ⊢ (𝜑 → (𝑁 − 1) ∈ ℤ) |
| 19 | 15, 18 | fzfigd 10661 | . . . . . 6 ⊢ (𝜑 → (0...(𝑁 − 1)) ∈ Fin) |
| 20 | 1 | adantr 276 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 1))) → 𝐴 ∈ ℂ) |
| 21 | elfznn0 10318 | . . . . . . . 8 ⊢ (𝑘 ∈ (0...(𝑁 − 1)) → 𝑘 ∈ ℕ0) | |
| 22 | 21 | adantl 277 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 1))) → 𝑘 ∈ ℕ0) |
| 23 | 20, 22 | expcld 10903 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (𝐴↑𝑘) ∈ ℂ) |
| 24 | 19, 23 | fsumcl 11919 | . . . . 5 ⊢ (𝜑 → Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴↑𝑘) ∈ ℂ) |
| 25 | peano2cnm 8420 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (𝐴 − 1) ∈ ℂ) | |
| 26 | 1, 25 | syl 14 | . . . . 5 ⊢ (𝜑 → (𝐴 − 1) ∈ ℂ) |
| 27 | 1, 6, 2 | subap0d 8799 | . . . . 5 ⊢ (𝜑 → (𝐴 − 1) # 0) |
| 28 | 14, 24, 26, 27 | divmulap2d 8979 | . . . 4 ⊢ (𝜑 → ((((𝐴↑𝑁) − 1) / (𝐴 − 1)) = Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴↑𝑘) ↔ ((𝐴↑𝑁) − 1) = ((𝐴 − 1) · Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴↑𝑘)))) |
| 29 | 12, 28 | bitrd 188 | . . 3 ⊢ (𝜑 → (((1 − (𝐴↑𝑁)) / (1 − 𝐴)) = Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴↑𝑘) ↔ ((𝐴↑𝑁) − 1) = ((𝐴 − 1) · Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴↑𝑘)))) |
| 30 | 5, 29 | bitrid 192 | . 2 ⊢ (𝜑 → (Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴↑𝑘) = ((1 − (𝐴↑𝑁)) / (1 − 𝐴)) ↔ ((𝐴↑𝑁) − 1) = ((𝐴 − 1) · Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴↑𝑘)))) |
| 31 | 4, 30 | mpbid 147 | 1 ⊢ (𝜑 → ((𝐴↑𝑁) − 1) = ((𝐴 − 1) · Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴↑𝑘))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 ∈ wcel 2200 class class class wbr 4083 (class class class)co 6007 ℂcc 8005 0cc0 8007 1c1 8008 · cmul 8012 − cmin 8325 # cap 8736 / cdiv 8827 ℕ0cn0 9377 ℤcz 9454 ...cfz 10212 ↑cexp 10768 Σcsu 11872 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-mulrcl 8106 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-precex 8117 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-apti 8122 ax-pre-ltadd 8123 ax-pre-mulgt0 8124 ax-pre-mulext 8125 ax-arch 8126 ax-caucvg 8127 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-po 4387 df-iso 4388 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-isom 5327 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-recs 6457 df-irdg 6522 df-frec 6543 df-1o 6568 df-oadd 6572 df-er 6688 df-en 6896 df-dom 6897 df-fin 6898 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-reap 8730 df-ap 8737 df-div 8828 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-n0 9378 df-z 9455 df-uz 9731 df-q 9823 df-rp 9858 df-fz 10213 df-fzo 10347 df-seqfrec 10678 df-exp 10769 df-ihash 11006 df-cj 11361 df-re 11362 df-im 11363 df-rsqrt 11517 df-abs 11518 df-clim 11798 df-sumdc 11873 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |