![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pwm1geoserap1 | GIF version |
Description: The n-th power of a number decreased by 1 expressed by the finite geometric series 1 + 𝐴↑1 + 𝐴↑2 +... + 𝐴↑(𝑁 − 1). (Contributed by AV, 14-Aug-2021.) (Revised by Jim Kingdon, 24-Oct-2022.) |
Ref | Expression |
---|---|
pwm1geoser.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
pwm1geoser.3 | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
pwm1geoserap1.ap | ⊢ (𝜑 → 𝐴 # 1) |
Ref | Expression |
---|---|
pwm1geoserap1 | ⊢ (𝜑 → ((𝐴↑𝑁) − 1) = ((𝐴 − 1) · Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴↑𝑘))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwm1geoser.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | pwm1geoserap1.ap | . . 3 ⊢ (𝜑 → 𝐴 # 1) | |
3 | pwm1geoser.3 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
4 | 1, 2, 3 | geoserap 11653 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴↑𝑘) = ((1 − (𝐴↑𝑁)) / (1 − 𝐴))) |
5 | eqcom 2195 | . . 3 ⊢ (Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴↑𝑘) = ((1 − (𝐴↑𝑁)) / (1 − 𝐴)) ↔ ((1 − (𝐴↑𝑁)) / (1 − 𝐴)) = Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴↑𝑘)) | |
6 | 1cnd 8037 | . . . . . 6 ⊢ (𝜑 → 1 ∈ ℂ) | |
7 | 1, 3 | expcld 10747 | . . . . . 6 ⊢ (𝜑 → (𝐴↑𝑁) ∈ ℂ) |
8 | apsym 8627 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 # 1 ↔ 1 # 𝐴)) | |
9 | 1, 6, 8 | syl2anc 411 | . . . . . . 7 ⊢ (𝜑 → (𝐴 # 1 ↔ 1 # 𝐴)) |
10 | 2, 9 | mpbid 147 | . . . . . 6 ⊢ (𝜑 → 1 # 𝐴) |
11 | 6, 7, 6, 1, 10 | div2subapd 8859 | . . . . 5 ⊢ (𝜑 → ((1 − (𝐴↑𝑁)) / (1 − 𝐴)) = (((𝐴↑𝑁) − 1) / (𝐴 − 1))) |
12 | 11 | eqeq1d 2202 | . . . 4 ⊢ (𝜑 → (((1 − (𝐴↑𝑁)) / (1 − 𝐴)) = Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴↑𝑘) ↔ (((𝐴↑𝑁) − 1) / (𝐴 − 1)) = Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴↑𝑘))) |
13 | peano2cnm 8287 | . . . . . 6 ⊢ ((𝐴↑𝑁) ∈ ℂ → ((𝐴↑𝑁) − 1) ∈ ℂ) | |
14 | 7, 13 | syl 14 | . . . . 5 ⊢ (𝜑 → ((𝐴↑𝑁) − 1) ∈ ℂ) |
15 | 0zd 9332 | . . . . . . 7 ⊢ (𝜑 → 0 ∈ ℤ) | |
16 | 3 | nn0zd 9440 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
17 | peano2zm 9358 | . . . . . . . 8 ⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ) | |
18 | 16, 17 | syl 14 | . . . . . . 7 ⊢ (𝜑 → (𝑁 − 1) ∈ ℤ) |
19 | 15, 18 | fzfigd 10505 | . . . . . 6 ⊢ (𝜑 → (0...(𝑁 − 1)) ∈ Fin) |
20 | 1 | adantr 276 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 1))) → 𝐴 ∈ ℂ) |
21 | elfznn0 10183 | . . . . . . . 8 ⊢ (𝑘 ∈ (0...(𝑁 − 1)) → 𝑘 ∈ ℕ0) | |
22 | 21 | adantl 277 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 1))) → 𝑘 ∈ ℕ0) |
23 | 20, 22 | expcld 10747 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (𝐴↑𝑘) ∈ ℂ) |
24 | 19, 23 | fsumcl 11546 | . . . . 5 ⊢ (𝜑 → Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴↑𝑘) ∈ ℂ) |
25 | peano2cnm 8287 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (𝐴 − 1) ∈ ℂ) | |
26 | 1, 25 | syl 14 | . . . . 5 ⊢ (𝜑 → (𝐴 − 1) ∈ ℂ) |
27 | 1, 6, 2 | subap0d 8665 | . . . . 5 ⊢ (𝜑 → (𝐴 − 1) # 0) |
28 | 14, 24, 26, 27 | divmulap2d 8845 | . . . 4 ⊢ (𝜑 → ((((𝐴↑𝑁) − 1) / (𝐴 − 1)) = Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴↑𝑘) ↔ ((𝐴↑𝑁) − 1) = ((𝐴 − 1) · Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴↑𝑘)))) |
29 | 12, 28 | bitrd 188 | . . 3 ⊢ (𝜑 → (((1 − (𝐴↑𝑁)) / (1 − 𝐴)) = Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴↑𝑘) ↔ ((𝐴↑𝑁) − 1) = ((𝐴 − 1) · Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴↑𝑘)))) |
30 | 5, 29 | bitrid 192 | . 2 ⊢ (𝜑 → (Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴↑𝑘) = ((1 − (𝐴↑𝑁)) / (1 − 𝐴)) ↔ ((𝐴↑𝑁) − 1) = ((𝐴 − 1) · Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴↑𝑘)))) |
31 | 4, 30 | mpbid 147 | 1 ⊢ (𝜑 → ((𝐴↑𝑁) − 1) = ((𝐴 − 1) · Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴↑𝑘))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2164 class class class wbr 4030 (class class class)co 5919 ℂcc 7872 0cc0 7874 1c1 7875 · cmul 7879 − cmin 8192 # cap 8602 / cdiv 8693 ℕ0cn0 9243 ℤcz 9320 ...cfz 10077 ↑cexp 10612 Σcsu 11499 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-mulrcl 7973 ax-addcom 7974 ax-mulcom 7975 ax-addass 7976 ax-mulass 7977 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-1rid 7981 ax-0id 7982 ax-rnegex 7983 ax-precex 7984 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-apti 7989 ax-pre-ltadd 7990 ax-pre-mulgt0 7991 ax-pre-mulext 7992 ax-arch 7993 ax-caucvg 7994 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-if 3559 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-id 4325 df-po 4328 df-iso 4329 df-iord 4398 df-on 4400 df-ilim 4401 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-isom 5264 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-recs 6360 df-irdg 6425 df-frec 6446 df-1o 6471 df-oadd 6475 df-er 6589 df-en 6797 df-dom 6798 df-fin 6799 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-reap 8596 df-ap 8603 df-div 8694 df-inn 8985 df-2 9043 df-3 9044 df-4 9045 df-n0 9244 df-z 9321 df-uz 9596 df-q 9688 df-rp 9723 df-fz 10078 df-fzo 10212 df-seqfrec 10522 df-exp 10613 df-ihash 10850 df-cj 10989 df-re 10990 df-im 10991 df-rsqrt 11145 df-abs 11146 df-clim 11425 df-sumdc 11500 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |