ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwm1geoserap1 GIF version

Theorem pwm1geoserap1 12005
Description: The n-th power of a number decreased by 1 expressed by the finite geometric series 1 + 𝐴↑1 + 𝐴↑2 +... + 𝐴↑(𝑁 − 1). (Contributed by AV, 14-Aug-2021.) (Revised by Jim Kingdon, 24-Oct-2022.)
Hypotheses
Ref Expression
pwm1geoser.1 (𝜑𝐴 ∈ ℂ)
pwm1geoser.3 (𝜑𝑁 ∈ ℕ0)
pwm1geoserap1.ap (𝜑𝐴 # 1)
Assertion
Ref Expression
pwm1geoserap1 (𝜑 → ((𝐴𝑁) − 1) = ((𝐴 − 1) · Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴𝑘)))
Distinct variable groups:   𝐴,𝑘   𝑘,𝑁   𝜑,𝑘

Proof of Theorem pwm1geoserap1
StepHypRef Expression
1 pwm1geoser.1 . . 3 (𝜑𝐴 ∈ ℂ)
2 pwm1geoserap1.ap . . 3 (𝜑𝐴 # 1)
3 pwm1geoser.3 . . 3 (𝜑𝑁 ∈ ℕ0)
41, 2, 3geoserap 12004 . 2 (𝜑 → Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴𝑘) = ((1 − (𝐴𝑁)) / (1 − 𝐴)))
5 eqcom 2231 . . 3 𝑘 ∈ (0...(𝑁 − 1))(𝐴𝑘) = ((1 − (𝐴𝑁)) / (1 − 𝐴)) ↔ ((1 − (𝐴𝑁)) / (1 − 𝐴)) = Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴𝑘))
6 1cnd 8150 . . . . . 6 (𝜑 → 1 ∈ ℂ)
71, 3expcld 10882 . . . . . 6 (𝜑 → (𝐴𝑁) ∈ ℂ)
8 apsym 8741 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 # 1 ↔ 1 # 𝐴))
91, 6, 8syl2anc 411 . . . . . . 7 (𝜑 → (𝐴 # 1 ↔ 1 # 𝐴))
102, 9mpbid 147 . . . . . 6 (𝜑 → 1 # 𝐴)
116, 7, 6, 1, 10div2subapd 8973 . . . . 5 (𝜑 → ((1 − (𝐴𝑁)) / (1 − 𝐴)) = (((𝐴𝑁) − 1) / (𝐴 − 1)))
1211eqeq1d 2238 . . . 4 (𝜑 → (((1 − (𝐴𝑁)) / (1 − 𝐴)) = Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴𝑘) ↔ (((𝐴𝑁) − 1) / (𝐴 − 1)) = Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴𝑘)))
13 peano2cnm 8400 . . . . . 6 ((𝐴𝑁) ∈ ℂ → ((𝐴𝑁) − 1) ∈ ℂ)
147, 13syl 14 . . . . 5 (𝜑 → ((𝐴𝑁) − 1) ∈ ℂ)
15 0zd 9446 . . . . . . 7 (𝜑 → 0 ∈ ℤ)
163nn0zd 9555 . . . . . . . 8 (𝜑𝑁 ∈ ℤ)
17 peano2zm 9472 . . . . . . . 8 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
1816, 17syl 14 . . . . . . 7 (𝜑 → (𝑁 − 1) ∈ ℤ)
1915, 18fzfigd 10640 . . . . . 6 (𝜑 → (0...(𝑁 − 1)) ∈ Fin)
201adantr 276 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁 − 1))) → 𝐴 ∈ ℂ)
21 elfznn0 10298 . . . . . . . 8 (𝑘 ∈ (0...(𝑁 − 1)) → 𝑘 ∈ ℕ0)
2221adantl 277 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁 − 1))) → 𝑘 ∈ ℕ0)
2320, 22expcld 10882 . . . . . 6 ((𝜑𝑘 ∈ (0...(𝑁 − 1))) → (𝐴𝑘) ∈ ℂ)
2419, 23fsumcl 11897 . . . . 5 (𝜑 → Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴𝑘) ∈ ℂ)
25 peano2cnm 8400 . . . . . 6 (𝐴 ∈ ℂ → (𝐴 − 1) ∈ ℂ)
261, 25syl 14 . . . . 5 (𝜑 → (𝐴 − 1) ∈ ℂ)
271, 6, 2subap0d 8779 . . . . 5 (𝜑 → (𝐴 − 1) # 0)
2814, 24, 26, 27divmulap2d 8959 . . . 4 (𝜑 → ((((𝐴𝑁) − 1) / (𝐴 − 1)) = Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴𝑘) ↔ ((𝐴𝑁) − 1) = ((𝐴 − 1) · Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴𝑘))))
2912, 28bitrd 188 . . 3 (𝜑 → (((1 − (𝐴𝑁)) / (1 − 𝐴)) = Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴𝑘) ↔ ((𝐴𝑁) − 1) = ((𝐴 − 1) · Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴𝑘))))
305, 29bitrid 192 . 2 (𝜑 → (Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴𝑘) = ((1 − (𝐴𝑁)) / (1 − 𝐴)) ↔ ((𝐴𝑁) − 1) = ((𝐴 − 1) · Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴𝑘))))
314, 30mpbid 147 1 (𝜑 → ((𝐴𝑁) − 1) = ((𝐴 − 1) · Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴𝑘)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200   class class class wbr 4082  (class class class)co 5994  cc 7985  0cc0 7987  1c1 7988   · cmul 7992  cmin 8305   # cap 8716   / cdiv 8807  0cn0 9357  cz 9434  ...cfz 10192  cexp 10747  Σcsu 11850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-mulrcl 8086  ax-addcom 8087  ax-mulcom 8088  ax-addass 8089  ax-mulass 8090  ax-distr 8091  ax-i2m1 8092  ax-0lt1 8093  ax-1rid 8094  ax-0id 8095  ax-rnegex 8096  ax-precex 8097  ax-cnre 8098  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-pre-apti 8102  ax-pre-ltadd 8103  ax-pre-mulgt0 8104  ax-pre-mulext 8105  ax-arch 8106  ax-caucvg 8107
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4381  df-po 4384  df-iso 4385  df-iord 4454  df-on 4456  df-ilim 4457  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-isom 5323  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-recs 6441  df-irdg 6506  df-frec 6527  df-1o 6552  df-oadd 6556  df-er 6670  df-en 6878  df-dom 6879  df-fin 6880  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-sub 8307  df-neg 8308  df-reap 8710  df-ap 8717  df-div 8808  df-inn 9099  df-2 9157  df-3 9158  df-4 9159  df-n0 9358  df-z 9435  df-uz 9711  df-q 9803  df-rp 9838  df-fz 10193  df-fzo 10327  df-seqfrec 10657  df-exp 10748  df-ihash 10985  df-cj 11339  df-re 11340  df-im 11341  df-rsqrt 11495  df-abs 11496  df-clim 11776  df-sumdc 11851
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator