ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwm1geoserap1 GIF version

Theorem pwm1geoserap1 10956
Description: The n-th power of a number decreased by 1 expressed by the finite geometric series 1 + 𝐴↑1 + 𝐴↑2 +... + 𝐴↑(𝑁 − 1). (Contributed by AV, 14-Aug-2021.) (Revised by Jim Kingdon, 24-Oct-2022.)
Hypotheses
Ref Expression
pwm1geoser.1 (𝜑𝐴 ∈ ℂ)
pwm1geoser.3 (𝜑𝑁 ∈ ℕ0)
pwm1geoserap1.ap (𝜑𝐴 # 1)
Assertion
Ref Expression
pwm1geoserap1 (𝜑 → ((𝐴𝑁) − 1) = ((𝐴 − 1) · Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴𝑘)))
Distinct variable groups:   𝐴,𝑘   𝑘,𝑁   𝜑,𝑘

Proof of Theorem pwm1geoserap1
StepHypRef Expression
1 pwm1geoser.1 . . 3 (𝜑𝐴 ∈ ℂ)
2 pwm1geoserap1.ap . . 3 (𝜑𝐴 # 1)
3 pwm1geoser.3 . . 3 (𝜑𝑁 ∈ ℕ0)
41, 2, 3geoserap 10955 . 2 (𝜑 → Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴𝑘) = ((1 − (𝐴𝑁)) / (1 − 𝐴)))
5 eqcom 2091 . . 3 𝑘 ∈ (0...(𝑁 − 1))(𝐴𝑘) = ((1 − (𝐴𝑁)) / (1 − 𝐴)) ↔ ((1 − (𝐴𝑁)) / (1 − 𝐴)) = Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴𝑘))
6 1cnd 7558 . . . . . 6 (𝜑 → 1 ∈ ℂ)
71, 3expcld 10140 . . . . . 6 (𝜑 → (𝐴𝑁) ∈ ℂ)
8 apsym 8137 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 # 1 ↔ 1 # 𝐴))
91, 6, 8syl2anc 404 . . . . . . 7 (𝜑 → (𝐴 # 1 ↔ 1 # 𝐴))
102, 9mpbid 146 . . . . . 6 (𝜑 → 1 # 𝐴)
116, 7, 6, 1, 10div2subapd 8357 . . . . 5 (𝜑 → ((1 − (𝐴𝑁)) / (1 − 𝐴)) = (((𝐴𝑁) − 1) / (𝐴 − 1)))
1211eqeq1d 2097 . . . 4 (𝜑 → (((1 − (𝐴𝑁)) / (1 − 𝐴)) = Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴𝑘) ↔ (((𝐴𝑁) − 1) / (𝐴 − 1)) = Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴𝑘)))
13 peano2cnm 7802 . . . . . 6 ((𝐴𝑁) ∈ ℂ → ((𝐴𝑁) − 1) ∈ ℂ)
147, 13syl 14 . . . . 5 (𝜑 → ((𝐴𝑁) − 1) ∈ ℂ)
15 0zd 8816 . . . . . . 7 (𝜑 → 0 ∈ ℤ)
163nn0zd 8920 . . . . . . . 8 (𝜑𝑁 ∈ ℤ)
17 peano2zm 8842 . . . . . . . 8 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
1816, 17syl 14 . . . . . . 7 (𝜑 → (𝑁 − 1) ∈ ℤ)
1915, 18fzfigd 9892 . . . . . 6 (𝜑 → (0...(𝑁 − 1)) ∈ Fin)
201adantr 271 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁 − 1))) → 𝐴 ∈ ℂ)
21 elfznn0 9582 . . . . . . . 8 (𝑘 ∈ (0...(𝑁 − 1)) → 𝑘 ∈ ℕ0)
2221adantl 272 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁 − 1))) → 𝑘 ∈ ℕ0)
2320, 22expcld 10140 . . . . . 6 ((𝜑𝑘 ∈ (0...(𝑁 − 1))) → (𝐴𝑘) ∈ ℂ)
2419, 23fsumcl 10848 . . . . 5 (𝜑 → Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴𝑘) ∈ ℂ)
25 peano2cnm 7802 . . . . . 6 (𝐴 ∈ ℂ → (𝐴 − 1) ∈ ℂ)
261, 25syl 14 . . . . 5 (𝜑 → (𝐴 − 1) ∈ ℂ)
271, 6, 2subap0d 8173 . . . . 5 (𝜑 → (𝐴 − 1) # 0)
2814, 24, 26, 27divmulap2d 8345 . . . 4 (𝜑 → ((((𝐴𝑁) − 1) / (𝐴 − 1)) = Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴𝑘) ↔ ((𝐴𝑁) − 1) = ((𝐴 − 1) · Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴𝑘))))
2912, 28bitrd 187 . . 3 (𝜑 → (((1 − (𝐴𝑁)) / (1 − 𝐴)) = Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴𝑘) ↔ ((𝐴𝑁) − 1) = ((𝐴 − 1) · Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴𝑘))))
305, 29syl5bb 191 . 2 (𝜑 → (Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴𝑘) = ((1 − (𝐴𝑁)) / (1 − 𝐴)) ↔ ((𝐴𝑁) − 1) = ((𝐴 − 1) · Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴𝑘))))
314, 30mpbid 146 1 (𝜑 → ((𝐴𝑁) − 1) = ((𝐴 − 1) · Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴𝑘)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1290  wcel 1439   class class class wbr 3851  (class class class)co 5666  cc 7402  0cc0 7404  1c1 7405   · cmul 7409  cmin 7707   # cap 8112   / cdiv 8193  0cn0 8727  cz 8804  ...cfz 9478  cexp 10008  Σcsu 10796
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-coll 3960  ax-sep 3963  ax-nul 3971  ax-pow 4015  ax-pr 4045  ax-un 4269  ax-setind 4366  ax-iinf 4416  ax-cnex 7490  ax-resscn 7491  ax-1cn 7492  ax-1re 7493  ax-icn 7494  ax-addcl 7495  ax-addrcl 7496  ax-mulcl 7497  ax-mulrcl 7498  ax-addcom 7499  ax-mulcom 7500  ax-addass 7501  ax-mulass 7502  ax-distr 7503  ax-i2m1 7504  ax-0lt1 7505  ax-1rid 7506  ax-0id 7507  ax-rnegex 7508  ax-precex 7509  ax-cnre 7510  ax-pre-ltirr 7511  ax-pre-ltwlin 7512  ax-pre-lttrn 7513  ax-pre-apti 7514  ax-pre-ltadd 7515  ax-pre-mulgt0 7516  ax-pre-mulext 7517  ax-arch 7518  ax-caucvg 7519
This theorem depends on definitions:  df-bi 116  df-dc 782  df-3or 926  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-nel 2352  df-ral 2365  df-rex 2366  df-reu 2367  df-rmo 2368  df-rab 2369  df-v 2622  df-sbc 2842  df-csb 2935  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-nul 3288  df-if 3398  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-int 3695  df-iun 3738  df-br 3852  df-opab 3906  df-mpt 3907  df-tr 3943  df-id 4129  df-po 4132  df-iso 4133  df-iord 4202  df-on 4204  df-ilim 4205  df-suc 4207  df-iom 4419  df-xp 4457  df-rel 4458  df-cnv 4459  df-co 4460  df-dm 4461  df-rn 4462  df-res 4463  df-ima 4464  df-iota 4993  df-fun 5030  df-fn 5031  df-f 5032  df-f1 5033  df-fo 5034  df-f1o 5035  df-fv 5036  df-isom 5037  df-riota 5622  df-ov 5669  df-oprab 5670  df-mpt2 5671  df-1st 5925  df-2nd 5926  df-recs 6084  df-irdg 6149  df-frec 6170  df-1o 6195  df-oadd 6199  df-er 6306  df-en 6512  df-dom 6513  df-fin 6514  df-pnf 7578  df-mnf 7579  df-xr 7580  df-ltxr 7581  df-le 7582  df-sub 7709  df-neg 7710  df-reap 8106  df-ap 8113  df-div 8194  df-inn 8477  df-2 8535  df-3 8536  df-4 8537  df-n0 8728  df-z 8805  df-uz 9074  df-q 9159  df-rp 9189  df-fz 9479  df-fzo 9608  df-iseq 9907  df-seq3 9908  df-exp 10009  df-ihash 10238  df-cj 10330  df-re 10331  df-im 10332  df-rsqrt 10485  df-abs 10486  df-clim 10721  df-isum 10797
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator