![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ressbasid | GIF version |
Description: The trivial structure restriction leaves the base set unchanged. (Contributed by Jim Kingdon, 29-Apr-2025.) |
Ref | Expression |
---|---|
ressbasid.b | ⊢ 𝐵 = (Base‘𝑊) |
Ref | Expression |
---|---|
ressbasid | ⊢ (𝑊 ∈ 𝑉 → (Base‘(𝑊 ↾s 𝐵)) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2190 | . . 3 ⊢ (𝑊 ∈ 𝑉 → (𝑊 ↾s 𝐵) = (𝑊 ↾s 𝐵)) | |
2 | ressbasid.b | . . . 4 ⊢ 𝐵 = (Base‘𝑊) | |
3 | 2 | a1i 9 | . . 3 ⊢ (𝑊 ∈ 𝑉 → 𝐵 = (Base‘𝑊)) |
4 | id 19 | . . 3 ⊢ (𝑊 ∈ 𝑉 → 𝑊 ∈ 𝑉) | |
5 | basfn 12569 | . . . . 5 ⊢ Base Fn V | |
6 | elex 2763 | . . . . 5 ⊢ (𝑊 ∈ 𝑉 → 𝑊 ∈ V) | |
7 | funfvex 5551 | . . . . . 6 ⊢ ((Fun Base ∧ 𝑊 ∈ dom Base) → (Base‘𝑊) ∈ V) | |
8 | 7 | funfni 5335 | . . . . 5 ⊢ ((Base Fn V ∧ 𝑊 ∈ V) → (Base‘𝑊) ∈ V) |
9 | 5, 6, 8 | sylancr 414 | . . . 4 ⊢ (𝑊 ∈ 𝑉 → (Base‘𝑊) ∈ V) |
10 | 2, 9 | eqeltrid 2276 | . . 3 ⊢ (𝑊 ∈ 𝑉 → 𝐵 ∈ V) |
11 | 1, 3, 4, 10 | ressbasd 12576 | . 2 ⊢ (𝑊 ∈ 𝑉 → (𝐵 ∩ 𝐵) = (Base‘(𝑊 ↾s 𝐵))) |
12 | inidm 3359 | . 2 ⊢ (𝐵 ∩ 𝐵) = 𝐵 | |
13 | 11, 12 | eqtr3di 2237 | 1 ⊢ (𝑊 ∈ 𝑉 → (Base‘(𝑊 ↾s 𝐵)) = 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2160 Vcvv 2752 ∩ cin 3143 Fn wfn 5230 ‘cfv 5235 (class class class)co 5895 Basecbs 12511 ↾s cress 12512 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-setind 4554 ax-cnex 7931 ax-resscn 7932 ax-1re 7934 ax-addrcl 7937 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-ral 2473 df-rex 2474 df-rab 2477 df-v 2754 df-sbc 2978 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4311 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-iota 5196 df-fun 5237 df-fn 5238 df-fv 5243 df-ov 5898 df-oprab 5899 df-mpo 5900 df-inn 8949 df-ndx 12514 df-slot 12515 df-base 12517 df-sets 12518 df-iress 12519 |
This theorem is referenced by: rlmscabas 13773 |
Copyright terms: Public domain | W3C validator |