| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ressbasid | GIF version | ||
| Description: The trivial structure restriction leaves the base set unchanged. (Contributed by Jim Kingdon, 29-Apr-2025.) | 
| Ref | Expression | 
|---|---|
| ressbasid.b | ⊢ 𝐵 = (Base‘𝑊) | 
| Ref | Expression | 
|---|---|
| ressbasid | ⊢ (𝑊 ∈ 𝑉 → (Base‘(𝑊 ↾s 𝐵)) = 𝐵) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqidd 2197 | . . 3 ⊢ (𝑊 ∈ 𝑉 → (𝑊 ↾s 𝐵) = (𝑊 ↾s 𝐵)) | |
| 2 | ressbasid.b | . . . 4 ⊢ 𝐵 = (Base‘𝑊) | |
| 3 | 2 | a1i 9 | . . 3 ⊢ (𝑊 ∈ 𝑉 → 𝐵 = (Base‘𝑊)) | 
| 4 | id 19 | . . 3 ⊢ (𝑊 ∈ 𝑉 → 𝑊 ∈ 𝑉) | |
| 5 | basfn 12736 | . . . . 5 ⊢ Base Fn V | |
| 6 | elex 2774 | . . . . 5 ⊢ (𝑊 ∈ 𝑉 → 𝑊 ∈ V) | |
| 7 | funfvex 5575 | . . . . . 6 ⊢ ((Fun Base ∧ 𝑊 ∈ dom Base) → (Base‘𝑊) ∈ V) | |
| 8 | 7 | funfni 5358 | . . . . 5 ⊢ ((Base Fn V ∧ 𝑊 ∈ V) → (Base‘𝑊) ∈ V) | 
| 9 | 5, 6, 8 | sylancr 414 | . . . 4 ⊢ (𝑊 ∈ 𝑉 → (Base‘𝑊) ∈ V) | 
| 10 | 2, 9 | eqeltrid 2283 | . . 3 ⊢ (𝑊 ∈ 𝑉 → 𝐵 ∈ V) | 
| 11 | 1, 3, 4, 10 | ressbasd 12745 | . 2 ⊢ (𝑊 ∈ 𝑉 → (𝐵 ∩ 𝐵) = (Base‘(𝑊 ↾s 𝐵))) | 
| 12 | inidm 3372 | . 2 ⊢ (𝐵 ∩ 𝐵) = 𝐵 | |
| 13 | 11, 12 | eqtr3di 2244 | 1 ⊢ (𝑊 ∈ 𝑉 → (Base‘(𝑊 ↾s 𝐵)) = 𝐵) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 Vcvv 2763 ∩ cin 3156 Fn wfn 5253 ‘cfv 5258 (class class class)co 5922 Basecbs 12678 ↾s cress 12679 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-iota 5219 df-fun 5260 df-fn 5261 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-inn 8991 df-ndx 12681 df-slot 12682 df-base 12684 df-sets 12685 df-iress 12686 | 
| This theorem is referenced by: rlmscabas 14016 | 
| Copyright terms: Public domain | W3C validator |