![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > submul2 | GIF version |
Description: Convert a subtraction to addition using multiplication by a negative. (Contributed by NM, 2-Feb-2007.) |
Ref | Expression |
---|---|
submul2 | โข ((๐ด โ โ โง ๐ต โ โ โง ๐ถ โ โ) โ (๐ด โ (๐ต ยท ๐ถ)) = (๐ด + (๐ต ยท -๐ถ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulneg2 8355 | . . . . 5 โข ((๐ต โ โ โง ๐ถ โ โ) โ (๐ต ยท -๐ถ) = -(๐ต ยท ๐ถ)) | |
2 | 1 | adantl 277 | . . . 4 โข ((๐ด โ โ โง (๐ต โ โ โง ๐ถ โ โ)) โ (๐ต ยท -๐ถ) = -(๐ต ยท ๐ถ)) |
3 | 2 | oveq2d 5893 | . . 3 โข ((๐ด โ โ โง (๐ต โ โ โง ๐ถ โ โ)) โ (๐ด + (๐ต ยท -๐ถ)) = (๐ด + -(๐ต ยท ๐ถ))) |
4 | mulcl 7940 | . . . 4 โข ((๐ต โ โ โง ๐ถ โ โ) โ (๐ต ยท ๐ถ) โ โ) | |
5 | negsub 8207 | . . . 4 โข ((๐ด โ โ โง (๐ต ยท ๐ถ) โ โ) โ (๐ด + -(๐ต ยท ๐ถ)) = (๐ด โ (๐ต ยท ๐ถ))) | |
6 | 4, 5 | sylan2 286 | . . 3 โข ((๐ด โ โ โง (๐ต โ โ โง ๐ถ โ โ)) โ (๐ด + -(๐ต ยท ๐ถ)) = (๐ด โ (๐ต ยท ๐ถ))) |
7 | 3, 6 | eqtr2d 2211 | . 2 โข ((๐ด โ โ โง (๐ต โ โ โง ๐ถ โ โ)) โ (๐ด โ (๐ต ยท ๐ถ)) = (๐ด + (๐ต ยท -๐ถ))) |
8 | 7 | 3impb 1199 | 1 โข ((๐ด โ โ โง ๐ต โ โ โง ๐ถ โ โ) โ (๐ด โ (๐ต ยท ๐ถ)) = (๐ด + (๐ต ยท -๐ถ))) |
Colors of variables: wff set class |
Syntax hints: โ wi 4 โง wa 104 โง w3a 978 = wceq 1353 โ wcel 2148 (class class class)co 5877 โcc 7811 + caddc 7816 ยท cmul 7818 โ cmin 8130 -cneg 8131 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-setind 4538 ax-resscn 7905 ax-1cn 7906 ax-icn 7908 ax-addcl 7909 ax-addrcl 7910 ax-mulcl 7911 ax-addcom 7913 ax-mulcom 7914 ax-addass 7915 ax-distr 7917 ax-i2m1 7918 ax-0id 7921 ax-rnegex 7922 ax-cnre 7924 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-iota 5180 df-fun 5220 df-fv 5226 df-riota 5833 df-ov 5880 df-oprab 5881 df-mpo 5882 df-sub 8132 df-neg 8133 |
This theorem is referenced by: cjap 10917 |
Copyright terms: Public domain | W3C validator |