ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mul2neg GIF version

Theorem mul2neg 8184
Description: Product of two negatives. Theorem I.12 of [Apostol] p. 18. (Contributed by NM, 30-Jul-2004.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
Assertion
Ref Expression
mul2neg ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 · -𝐵) = (𝐴 · 𝐵))

Proof of Theorem mul2neg
StepHypRef Expression
1 negcl 7986 . . 3 (𝐵 ∈ ℂ → -𝐵 ∈ ℂ)
2 mulneg12 8183 . . 3 ((𝐴 ∈ ℂ ∧ -𝐵 ∈ ℂ) → (-𝐴 · -𝐵) = (𝐴 · --𝐵))
31, 2sylan2 284 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 · -𝐵) = (𝐴 · --𝐵))
4 negneg 8036 . . . 4 (𝐵 ∈ ℂ → --𝐵 = 𝐵)
54adantl 275 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → --𝐵 = 𝐵)
65oveq2d 5798 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · --𝐵) = (𝐴 · 𝐵))
73, 6eqtrd 2173 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 · -𝐵) = (𝐴 · 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1332  wcel 1481  (class class class)co 5782  cc 7642   · cmul 7649  -cneg 7958
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-setind 4460  ax-resscn 7736  ax-1cn 7737  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-distr 7748  ax-i2m1 7749  ax-0id 7752  ax-rnegex 7753  ax-cnre 7755
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-iota 5096  df-fun 5133  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-sub 7959  df-neg 7960
This theorem is referenced by:  mulsub  8187  mulsub2  8188  mul2negi  8192  mul2negd  8199  mullt0  8266  recexre  8364  zmulcl  9131  sqneg  10383  absneg  10854  sinneg  11469  cosneg  11470  negdvdsb  11545
  Copyright terms: Public domain W3C validator