![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mul2neg | GIF version |
Description: Product of two negatives. Theorem I.12 of [Apostol] p. 18. (Contributed by NM, 30-Jul-2004.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
Ref | Expression |
---|---|
mul2neg | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 · -𝐵) = (𝐴 · 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negcl 7603 | . . 3 ⊢ (𝐵 ∈ ℂ → -𝐵 ∈ ℂ) | |
2 | mulneg12 7796 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ -𝐵 ∈ ℂ) → (-𝐴 · -𝐵) = (𝐴 · --𝐵)) | |
3 | 1, 2 | sylan2 280 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 · -𝐵) = (𝐴 · --𝐵)) |
4 | negneg 7653 | . . . 4 ⊢ (𝐵 ∈ ℂ → --𝐵 = 𝐵) | |
5 | 4 | adantl 271 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → --𝐵 = 𝐵) |
6 | 5 | oveq2d 5610 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · --𝐵) = (𝐴 · 𝐵)) |
7 | 3, 6 | eqtrd 2117 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 · -𝐵) = (𝐴 · 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 = wceq 1287 ∈ wcel 1436 (class class class)co 5594 ℂcc 7269 · cmul 7276 -cneg 7575 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1379 ax-7 1380 ax-gen 1381 ax-ie1 1425 ax-ie2 1426 ax-8 1438 ax-10 1439 ax-11 1440 ax-i12 1441 ax-bndl 1442 ax-4 1443 ax-14 1448 ax-17 1462 ax-i9 1466 ax-ial 1470 ax-i5r 1471 ax-ext 2067 ax-sep 3925 ax-pow 3977 ax-pr 4003 ax-setind 4319 ax-resscn 7358 ax-1cn 7359 ax-icn 7361 ax-addcl 7362 ax-addrcl 7363 ax-mulcl 7364 ax-addcom 7366 ax-mulcom 7367 ax-addass 7368 ax-distr 7370 ax-i2m1 7371 ax-0id 7374 ax-rnegex 7375 ax-cnre 7377 |
This theorem depends on definitions: df-bi 115 df-3an 924 df-tru 1290 df-fal 1293 df-nf 1393 df-sb 1690 df-eu 1948 df-mo 1949 df-clab 2072 df-cleq 2078 df-clel 2081 df-nfc 2214 df-ne 2252 df-ral 2360 df-rex 2361 df-reu 2362 df-rab 2364 df-v 2616 df-sbc 2829 df-dif 2988 df-un 2990 df-in 2992 df-ss 2999 df-pw 3411 df-sn 3431 df-pr 3432 df-op 3434 df-uni 3631 df-br 3815 df-opab 3869 df-id 4087 df-xp 4410 df-rel 4411 df-cnv 4412 df-co 4413 df-dm 4414 df-iota 4937 df-fun 4974 df-fv 4980 df-riota 5550 df-ov 5597 df-oprab 5598 df-mpt2 5599 df-sub 7576 df-neg 7577 |
This theorem is referenced by: mulsub 7800 mulsub2 7801 mul2negi 7805 mul2negd 7812 mullt0 7879 recexre 7973 zmulcl 8713 sqneg 9865 absneg 10324 negdvdsb 10606 |
Copyright terms: Public domain | W3C validator |