![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl6ibr | GIF version |
Description: A mixed syllogism inference from a nested implication and a biconditional. Useful for substituting an embedded consequent with a definition. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
syl6ibr.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
syl6ibr.2 | ⊢ (𝜃 ↔ 𝜒) |
Ref | Expression |
---|---|
syl6ibr | ⊢ (𝜑 → (𝜓 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl6ibr.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | syl6ibr.2 | . . 3 ⊢ (𝜃 ↔ 𝜒) | |
3 | 2 | biimpri 132 | . 2 ⊢ (𝜒 → 𝜃) |
4 | 1, 3 | syl6 33 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: 3imtr4g 204 imp4a 342 dcbi 883 oplem1 922 3impexpbicom 1373 hband 1424 hb3and 1425 nfand 1506 nfimd 1523 equsexd 1665 euim 2017 mopick2 2032 2moswapdc 2039 necon3bd 2299 necon3d 2300 necon2ad 2313 necon1abiddc 2318 ralrimd 2452 rspcimedv 2725 2reuswapdc 2820 ra5 2928 difin 3237 r19.2m 3373 tpid3g 3561 sssnm 3604 ssiun 3778 ssiun2 3779 disjnim 3842 sotricim 4159 sotritrieq 4161 tron 4218 ordsucss 4334 ordunisuc2r 4344 ordpwsucss 4396 dmcosseq 4717 relssres 4763 trin2 4836 ssrnres 4886 fnun 5133 f1oun 5286 ssimaex 5378 chfnrn 5424 dffo4 5461 dffo5 5462 isoselem 5613 fnoprabg 5760 poxp 6011 issmo2 6068 smores 6071 tfr0dm 6101 tfrlemibxssdm 6106 tfr1onlembxssdm 6122 tfrcllembxssdm 6135 swoer 6334 qsss 6365 findcard 6658 findcard2 6659 findcard2s 6660 supmoti 6742 ctmlemr 6844 ctm 6845 pm54.43 6879 indpi 6962 recexprlemm 7244 recexprlemloc 7251 recexprlem1ssl 7253 recexprlem1ssu 7254 recexprlemss1l 7255 recexprlemss1u 7256 zmulcl 8864 indstr 9142 eluzdc 9158 icoshft 9468 fzouzsplit 9651 hashunlem 10273 modfsummod 10913 dvds2lem 11147 oddnn02np1 11219 dfgcd2 11342 sqrt2irr 11480 distop 11846 epttop 11851 decidr 11969 bj-omssind 12103 bj-om 12105 bj-inf2vnlem3 12140 bj-inf2vnlem4 12141 |
Copyright terms: Public domain | W3C validator |