![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 2arymaptf | Structured version Visualization version GIF version |
Description: The mapping of binary (endo)functions is a function into the set of binary operations. (Contributed by AV, 21-May-2024.) |
Ref | Expression |
---|---|
2arymaptf.h | ⊢ 𝐻 = (ℎ ∈ (2-aryF 𝑋) ↦ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (ℎ‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}))) |
Ref | Expression |
---|---|
2arymaptf | ⊢ (𝑋 ∈ 𝑉 → 𝐻:(2-aryF 𝑋)⟶(𝑋 ↑m (𝑋 × 𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplr 765 | . . . . 5 ⊢ (((𝑋 ∈ 𝑉 ∧ ℎ ∈ (2-aryF 𝑋)) ∧ 𝑧 ∈ (𝑋 × 𝑋)) → ℎ ∈ (2-aryF 𝑋)) | |
2 | xp1st 8009 | . . . . . 6 ⊢ (𝑧 ∈ (𝑋 × 𝑋) → (1st ‘𝑧) ∈ 𝑋) | |
3 | 2 | adantl 480 | . . . . 5 ⊢ (((𝑋 ∈ 𝑉 ∧ ℎ ∈ (2-aryF 𝑋)) ∧ 𝑧 ∈ (𝑋 × 𝑋)) → (1st ‘𝑧) ∈ 𝑋) |
4 | xp2nd 8010 | . . . . . 6 ⊢ (𝑧 ∈ (𝑋 × 𝑋) → (2nd ‘𝑧) ∈ 𝑋) | |
5 | 4 | adantl 480 | . . . . 5 ⊢ (((𝑋 ∈ 𝑉 ∧ ℎ ∈ (2-aryF 𝑋)) ∧ 𝑧 ∈ (𝑋 × 𝑋)) → (2nd ‘𝑧) ∈ 𝑋) |
6 | fv2arycl 47421 | . . . . 5 ⊢ ((ℎ ∈ (2-aryF 𝑋) ∧ (1st ‘𝑧) ∈ 𝑋 ∧ (2nd ‘𝑧) ∈ 𝑋) → (ℎ‘{⟨0, (1st ‘𝑧)⟩, ⟨1, (2nd ‘𝑧)⟩}) ∈ 𝑋) | |
7 | 1, 3, 5, 6 | syl3anc 1369 | . . . 4 ⊢ (((𝑋 ∈ 𝑉 ∧ ℎ ∈ (2-aryF 𝑋)) ∧ 𝑧 ∈ (𝑋 × 𝑋)) → (ℎ‘{⟨0, (1st ‘𝑧)⟩, ⟨1, (2nd ‘𝑧)⟩}) ∈ 𝑋) |
8 | vex 3476 | . . . . . . . . . 10 ⊢ 𝑥 ∈ V | |
9 | vex 3476 | . . . . . . . . . 10 ⊢ 𝑦 ∈ V | |
10 | 8, 9 | op1std 7987 | . . . . . . . . 9 ⊢ (𝑧 = ⟨𝑥, 𝑦⟩ → (1st ‘𝑧) = 𝑥) |
11 | 10 | opeq2d 4879 | . . . . . . . 8 ⊢ (𝑧 = ⟨𝑥, 𝑦⟩ → ⟨0, (1st ‘𝑧)⟩ = ⟨0, 𝑥⟩) |
12 | 8, 9 | op2ndd 7988 | . . . . . . . . 9 ⊢ (𝑧 = ⟨𝑥, 𝑦⟩ → (2nd ‘𝑧) = 𝑦) |
13 | 12 | opeq2d 4879 | . . . . . . . 8 ⊢ (𝑧 = ⟨𝑥, 𝑦⟩ → ⟨1, (2nd ‘𝑧)⟩ = ⟨1, 𝑦⟩) |
14 | 11, 13 | preq12d 4744 | . . . . . . 7 ⊢ (𝑧 = ⟨𝑥, 𝑦⟩ → {⟨0, (1st ‘𝑧)⟩, ⟨1, (2nd ‘𝑧)⟩} = {⟨0, 𝑥⟩, ⟨1, 𝑦⟩}) |
15 | 14 | fveq2d 6894 | . . . . . 6 ⊢ (𝑧 = ⟨𝑥, 𝑦⟩ → (ℎ‘{⟨0, (1st ‘𝑧)⟩, ⟨1, (2nd ‘𝑧)⟩}) = (ℎ‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) |
16 | 15 | mpompt 7524 | . . . . 5 ⊢ (𝑧 ∈ (𝑋 × 𝑋) ↦ (ℎ‘{⟨0, (1st ‘𝑧)⟩, ⟨1, (2nd ‘𝑧)⟩})) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (ℎ‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) |
17 | 16 | eqcomi 2739 | . . . 4 ⊢ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (ℎ‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) = (𝑧 ∈ (𝑋 × 𝑋) ↦ (ℎ‘{⟨0, (1st ‘𝑧)⟩, ⟨1, (2nd ‘𝑧)⟩})) |
18 | 7, 17 | fmptd 7114 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ ℎ ∈ (2-aryF 𝑋)) → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (ℎ‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})):(𝑋 × 𝑋)⟶𝑋) |
19 | sqxpexg 7744 | . . . . 5 ⊢ (𝑋 ∈ 𝑉 → (𝑋 × 𝑋) ∈ V) | |
20 | elmapg 8835 | . . . . 5 ⊢ ((𝑋 ∈ 𝑉 ∧ (𝑋 × 𝑋) ∈ V) → ((𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (ℎ‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) ∈ (𝑋 ↑m (𝑋 × 𝑋)) ↔ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (ℎ‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})):(𝑋 × 𝑋)⟶𝑋)) | |
21 | 19, 20 | mpdan 683 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → ((𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (ℎ‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) ∈ (𝑋 ↑m (𝑋 × 𝑋)) ↔ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (ℎ‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})):(𝑋 × 𝑋)⟶𝑋)) |
22 | 21 | adantr 479 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ ℎ ∈ (2-aryF 𝑋)) → ((𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (ℎ‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) ∈ (𝑋 ↑m (𝑋 × 𝑋)) ↔ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (ℎ‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})):(𝑋 × 𝑋)⟶𝑋)) |
23 | 18, 22 | mpbird 256 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ ℎ ∈ (2-aryF 𝑋)) → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (ℎ‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) ∈ (𝑋 ↑m (𝑋 × 𝑋))) |
24 | 2arymaptf.h | . 2 ⊢ 𝐻 = (ℎ ∈ (2-aryF 𝑋) ↦ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (ℎ‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}))) | |
25 | 23, 24 | fmptd 7114 | 1 ⊢ (𝑋 ∈ 𝑉 → 𝐻:(2-aryF 𝑋)⟶(𝑋 ↑m (𝑋 × 𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1539 ∈ wcel 2104 Vcvv 3472 {cpr 4629 ⟨cop 4633 ↦ cmpt 5230 × cxp 5673 ⟶wf 6538 ‘cfv 6542 (class class class)co 7411 ∈ cmpo 7413 1st c1st 7975 2nd c2nd 7976 ↑m cmap 8822 0cc0 11112 1c1 11113 2c2 12271 -aryF cnaryf 47399 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-er 8705 df-map 8824 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-n0 12477 df-z 12563 df-uz 12827 df-fz 13489 df-fzo 13632 df-naryf 47400 |
This theorem is referenced by: 2arymaptf1 47426 2arymaptfo 47427 |
Copyright terms: Public domain | W3C validator |