Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2arymaptf Structured version   Visualization version   GIF version

Theorem 2arymaptf 48386
Description: The mapping of binary (endo)functions is a function into the set of binary operations. (Contributed by AV, 21-May-2024.)
Hypothesis
Ref Expression
2arymaptf.h 𝐻 = ( ∈ (2-aryF 𝑋) ↦ (𝑥𝑋, 𝑦𝑋 ↦ (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})))
Assertion
Ref Expression
2arymaptf (𝑋𝑉𝐻:(2-aryF 𝑋)⟶(𝑋m (𝑋 × 𝑋)))
Distinct variable groups:   𝑥,,𝑦,𝑋   ,𝑉,𝑥
Allowed substitution hints:   𝐻(𝑥,𝑦,)   𝑉(𝑦)

Proof of Theorem 2arymaptf
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simplr 768 . . . . 5 (((𝑋𝑉 ∈ (2-aryF 𝑋)) ∧ 𝑧 ∈ (𝑋 × 𝑋)) → ∈ (2-aryF 𝑋))
2 xp1st 8062 . . . . . 6 (𝑧 ∈ (𝑋 × 𝑋) → (1st𝑧) ∈ 𝑋)
32adantl 481 . . . . 5 (((𝑋𝑉 ∈ (2-aryF 𝑋)) ∧ 𝑧 ∈ (𝑋 × 𝑋)) → (1st𝑧) ∈ 𝑋)
4 xp2nd 8063 . . . . . 6 (𝑧 ∈ (𝑋 × 𝑋) → (2nd𝑧) ∈ 𝑋)
54adantl 481 . . . . 5 (((𝑋𝑉 ∈ (2-aryF 𝑋)) ∧ 𝑧 ∈ (𝑋 × 𝑋)) → (2nd𝑧) ∈ 𝑋)
6 fv2arycl 48382 . . . . 5 (( ∈ (2-aryF 𝑋) ∧ (1st𝑧) ∈ 𝑋 ∧ (2nd𝑧) ∈ 𝑋) → (‘{⟨0, (1st𝑧)⟩, ⟨1, (2nd𝑧)⟩}) ∈ 𝑋)
71, 3, 5, 6syl3anc 1371 . . . 4 (((𝑋𝑉 ∈ (2-aryF 𝑋)) ∧ 𝑧 ∈ (𝑋 × 𝑋)) → (‘{⟨0, (1st𝑧)⟩, ⟨1, (2nd𝑧)⟩}) ∈ 𝑋)
8 vex 3492 . . . . . . . . . 10 𝑥 ∈ V
9 vex 3492 . . . . . . . . . 10 𝑦 ∈ V
108, 9op1std 8040 . . . . . . . . 9 (𝑧 = ⟨𝑥, 𝑦⟩ → (1st𝑧) = 𝑥)
1110opeq2d 4904 . . . . . . . 8 (𝑧 = ⟨𝑥, 𝑦⟩ → ⟨0, (1st𝑧)⟩ = ⟨0, 𝑥⟩)
128, 9op2ndd 8041 . . . . . . . . 9 (𝑧 = ⟨𝑥, 𝑦⟩ → (2nd𝑧) = 𝑦)
1312opeq2d 4904 . . . . . . . 8 (𝑧 = ⟨𝑥, 𝑦⟩ → ⟨1, (2nd𝑧)⟩ = ⟨1, 𝑦⟩)
1411, 13preq12d 4766 . . . . . . 7 (𝑧 = ⟨𝑥, 𝑦⟩ → {⟨0, (1st𝑧)⟩, ⟨1, (2nd𝑧)⟩} = {⟨0, 𝑥⟩, ⟨1, 𝑦⟩})
1514fveq2d 6924 . . . . . 6 (𝑧 = ⟨𝑥, 𝑦⟩ → (‘{⟨0, (1st𝑧)⟩, ⟨1, (2nd𝑧)⟩}) = (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}))
1615mpompt 7564 . . . . 5 (𝑧 ∈ (𝑋 × 𝑋) ↦ (‘{⟨0, (1st𝑧)⟩, ⟨1, (2nd𝑧)⟩})) = (𝑥𝑋, 𝑦𝑋 ↦ (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}))
1716eqcomi 2749 . . . 4 (𝑥𝑋, 𝑦𝑋 ↦ (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) = (𝑧 ∈ (𝑋 × 𝑋) ↦ (‘{⟨0, (1st𝑧)⟩, ⟨1, (2nd𝑧)⟩}))
187, 17fmptd 7148 . . 3 ((𝑋𝑉 ∈ (2-aryF 𝑋)) → (𝑥𝑋, 𝑦𝑋 ↦ (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})):(𝑋 × 𝑋)⟶𝑋)
19 sqxpexg 7790 . . . . 5 (𝑋𝑉 → (𝑋 × 𝑋) ∈ V)
20 elmapg 8897 . . . . 5 ((𝑋𝑉 ∧ (𝑋 × 𝑋) ∈ V) → ((𝑥𝑋, 𝑦𝑋 ↦ (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) ∈ (𝑋m (𝑋 × 𝑋)) ↔ (𝑥𝑋, 𝑦𝑋 ↦ (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})):(𝑋 × 𝑋)⟶𝑋))
2119, 20mpdan 686 . . . 4 (𝑋𝑉 → ((𝑥𝑋, 𝑦𝑋 ↦ (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) ∈ (𝑋m (𝑋 × 𝑋)) ↔ (𝑥𝑋, 𝑦𝑋 ↦ (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})):(𝑋 × 𝑋)⟶𝑋))
2221adantr 480 . . 3 ((𝑋𝑉 ∈ (2-aryF 𝑋)) → ((𝑥𝑋, 𝑦𝑋 ↦ (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) ∈ (𝑋m (𝑋 × 𝑋)) ↔ (𝑥𝑋, 𝑦𝑋 ↦ (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})):(𝑋 × 𝑋)⟶𝑋))
2318, 22mpbird 257 . 2 ((𝑋𝑉 ∈ (2-aryF 𝑋)) → (𝑥𝑋, 𝑦𝑋 ↦ (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) ∈ (𝑋m (𝑋 × 𝑋)))
24 2arymaptf.h . 2 𝐻 = ( ∈ (2-aryF 𝑋) ↦ (𝑥𝑋, 𝑦𝑋 ↦ (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})))
2523, 24fmptd 7148 1 (𝑋𝑉𝐻:(2-aryF 𝑋)⟶(𝑋m (𝑋 × 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  {cpr 4650  cop 4654  cmpt 5249   × cxp 5698  wf 6569  cfv 6573  (class class class)co 7448  cmpo 7450  1st c1st 8028  2nd c2nd 8029  m cmap 8884  0cc0 11184  1c1 11185  2c2 12348  -aryF cnaryf 48360
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712  df-naryf 48361
This theorem is referenced by:  2arymaptf1  48387  2arymaptfo  48388
  Copyright terms: Public domain W3C validator