Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2arymaptf Structured version   Visualization version   GIF version

Theorem 2arymaptf 48645
Description: The mapping of binary (endo)functions is a function into the set of binary operations. (Contributed by AV, 21-May-2024.)
Hypothesis
Ref Expression
2arymaptf.h 𝐻 = ( ∈ (2-aryF 𝑋) ↦ (𝑥𝑋, 𝑦𝑋 ↦ (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})))
Assertion
Ref Expression
2arymaptf (𝑋𝑉𝐻:(2-aryF 𝑋)⟶(𝑋m (𝑋 × 𝑋)))
Distinct variable groups:   𝑥,,𝑦,𝑋   ,𝑉,𝑥
Allowed substitution hints:   𝐻(𝑥,𝑦,)   𝑉(𝑦)

Proof of Theorem 2arymaptf
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simplr 768 . . . . 5 (((𝑋𝑉 ∈ (2-aryF 𝑋)) ∧ 𝑧 ∈ (𝑋 × 𝑋)) → ∈ (2-aryF 𝑋))
2 xp1st 8003 . . . . . 6 (𝑧 ∈ (𝑋 × 𝑋) → (1st𝑧) ∈ 𝑋)
32adantl 481 . . . . 5 (((𝑋𝑉 ∈ (2-aryF 𝑋)) ∧ 𝑧 ∈ (𝑋 × 𝑋)) → (1st𝑧) ∈ 𝑋)
4 xp2nd 8004 . . . . . 6 (𝑧 ∈ (𝑋 × 𝑋) → (2nd𝑧) ∈ 𝑋)
54adantl 481 . . . . 5 (((𝑋𝑉 ∈ (2-aryF 𝑋)) ∧ 𝑧 ∈ (𝑋 × 𝑋)) → (2nd𝑧) ∈ 𝑋)
6 fv2arycl 48641 . . . . 5 (( ∈ (2-aryF 𝑋) ∧ (1st𝑧) ∈ 𝑋 ∧ (2nd𝑧) ∈ 𝑋) → (‘{⟨0, (1st𝑧)⟩, ⟨1, (2nd𝑧)⟩}) ∈ 𝑋)
71, 3, 5, 6syl3anc 1373 . . . 4 (((𝑋𝑉 ∈ (2-aryF 𝑋)) ∧ 𝑧 ∈ (𝑋 × 𝑋)) → (‘{⟨0, (1st𝑧)⟩, ⟨1, (2nd𝑧)⟩}) ∈ 𝑋)
8 vex 3454 . . . . . . . . . 10 𝑥 ∈ V
9 vex 3454 . . . . . . . . . 10 𝑦 ∈ V
108, 9op1std 7981 . . . . . . . . 9 (𝑧 = ⟨𝑥, 𝑦⟩ → (1st𝑧) = 𝑥)
1110opeq2d 4847 . . . . . . . 8 (𝑧 = ⟨𝑥, 𝑦⟩ → ⟨0, (1st𝑧)⟩ = ⟨0, 𝑥⟩)
128, 9op2ndd 7982 . . . . . . . . 9 (𝑧 = ⟨𝑥, 𝑦⟩ → (2nd𝑧) = 𝑦)
1312opeq2d 4847 . . . . . . . 8 (𝑧 = ⟨𝑥, 𝑦⟩ → ⟨1, (2nd𝑧)⟩ = ⟨1, 𝑦⟩)
1411, 13preq12d 4708 . . . . . . 7 (𝑧 = ⟨𝑥, 𝑦⟩ → {⟨0, (1st𝑧)⟩, ⟨1, (2nd𝑧)⟩} = {⟨0, 𝑥⟩, ⟨1, 𝑦⟩})
1514fveq2d 6865 . . . . . 6 (𝑧 = ⟨𝑥, 𝑦⟩ → (‘{⟨0, (1st𝑧)⟩, ⟨1, (2nd𝑧)⟩}) = (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}))
1615mpompt 7506 . . . . 5 (𝑧 ∈ (𝑋 × 𝑋) ↦ (‘{⟨0, (1st𝑧)⟩, ⟨1, (2nd𝑧)⟩})) = (𝑥𝑋, 𝑦𝑋 ↦ (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}))
1716eqcomi 2739 . . . 4 (𝑥𝑋, 𝑦𝑋 ↦ (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) = (𝑧 ∈ (𝑋 × 𝑋) ↦ (‘{⟨0, (1st𝑧)⟩, ⟨1, (2nd𝑧)⟩}))
187, 17fmptd 7089 . . 3 ((𝑋𝑉 ∈ (2-aryF 𝑋)) → (𝑥𝑋, 𝑦𝑋 ↦ (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})):(𝑋 × 𝑋)⟶𝑋)
19 sqxpexg 7734 . . . . 5 (𝑋𝑉 → (𝑋 × 𝑋) ∈ V)
20 elmapg 8815 . . . . 5 ((𝑋𝑉 ∧ (𝑋 × 𝑋) ∈ V) → ((𝑥𝑋, 𝑦𝑋 ↦ (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) ∈ (𝑋m (𝑋 × 𝑋)) ↔ (𝑥𝑋, 𝑦𝑋 ↦ (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})):(𝑋 × 𝑋)⟶𝑋))
2119, 20mpdan 687 . . . 4 (𝑋𝑉 → ((𝑥𝑋, 𝑦𝑋 ↦ (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) ∈ (𝑋m (𝑋 × 𝑋)) ↔ (𝑥𝑋, 𝑦𝑋 ↦ (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})):(𝑋 × 𝑋)⟶𝑋))
2221adantr 480 . . 3 ((𝑋𝑉 ∈ (2-aryF 𝑋)) → ((𝑥𝑋, 𝑦𝑋 ↦ (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) ∈ (𝑋m (𝑋 × 𝑋)) ↔ (𝑥𝑋, 𝑦𝑋 ↦ (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})):(𝑋 × 𝑋)⟶𝑋))
2318, 22mpbird 257 . 2 ((𝑋𝑉 ∈ (2-aryF 𝑋)) → (𝑥𝑋, 𝑦𝑋 ↦ (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) ∈ (𝑋m (𝑋 × 𝑋)))
24 2arymaptf.h . 2 𝐻 = ( ∈ (2-aryF 𝑋) ↦ (𝑥𝑋, 𝑦𝑋 ↦ (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})))
2523, 24fmptd 7089 1 (𝑋𝑉𝐻:(2-aryF 𝑋)⟶(𝑋m (𝑋 × 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  {cpr 4594  cop 4598  cmpt 5191   × cxp 5639  wf 6510  cfv 6514  (class class class)co 7390  cmpo 7392  1st c1st 7969  2nd c2nd 7970  m cmap 8802  0cc0 11075  1c1 11076  2c2 12248  -aryF cnaryf 48619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623  df-naryf 48620
This theorem is referenced by:  2arymaptf1  48646  2arymaptfo  48647
  Copyright terms: Public domain W3C validator