| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 2arymaptf | Structured version Visualization version GIF version | ||
| Description: The mapping of binary (endo)functions is a function into the set of binary operations. (Contributed by AV, 21-May-2024.) |
| Ref | Expression |
|---|---|
| 2arymaptf.h | ⊢ 𝐻 = (ℎ ∈ (2-aryF 𝑋) ↦ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (ℎ‘{〈0, 𝑥〉, 〈1, 𝑦〉}))) |
| Ref | Expression |
|---|---|
| 2arymaptf | ⊢ (𝑋 ∈ 𝑉 → 𝐻:(2-aryF 𝑋)⟶(𝑋 ↑m (𝑋 × 𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplr 768 | . . . . 5 ⊢ (((𝑋 ∈ 𝑉 ∧ ℎ ∈ (2-aryF 𝑋)) ∧ 𝑧 ∈ (𝑋 × 𝑋)) → ℎ ∈ (2-aryF 𝑋)) | |
| 2 | xp1st 8025 | . . . . . 6 ⊢ (𝑧 ∈ (𝑋 × 𝑋) → (1st ‘𝑧) ∈ 𝑋) | |
| 3 | 2 | adantl 481 | . . . . 5 ⊢ (((𝑋 ∈ 𝑉 ∧ ℎ ∈ (2-aryF 𝑋)) ∧ 𝑧 ∈ (𝑋 × 𝑋)) → (1st ‘𝑧) ∈ 𝑋) |
| 4 | xp2nd 8026 | . . . . . 6 ⊢ (𝑧 ∈ (𝑋 × 𝑋) → (2nd ‘𝑧) ∈ 𝑋) | |
| 5 | 4 | adantl 481 | . . . . 5 ⊢ (((𝑋 ∈ 𝑉 ∧ ℎ ∈ (2-aryF 𝑋)) ∧ 𝑧 ∈ (𝑋 × 𝑋)) → (2nd ‘𝑧) ∈ 𝑋) |
| 6 | fv2arycl 48595 | . . . . 5 ⊢ ((ℎ ∈ (2-aryF 𝑋) ∧ (1st ‘𝑧) ∈ 𝑋 ∧ (2nd ‘𝑧) ∈ 𝑋) → (ℎ‘{〈0, (1st ‘𝑧)〉, 〈1, (2nd ‘𝑧)〉}) ∈ 𝑋) | |
| 7 | 1, 3, 5, 6 | syl3anc 1373 | . . . 4 ⊢ (((𝑋 ∈ 𝑉 ∧ ℎ ∈ (2-aryF 𝑋)) ∧ 𝑧 ∈ (𝑋 × 𝑋)) → (ℎ‘{〈0, (1st ‘𝑧)〉, 〈1, (2nd ‘𝑧)〉}) ∈ 𝑋) |
| 8 | vex 3468 | . . . . . . . . . 10 ⊢ 𝑥 ∈ V | |
| 9 | vex 3468 | . . . . . . . . . 10 ⊢ 𝑦 ∈ V | |
| 10 | 8, 9 | op1std 8003 | . . . . . . . . 9 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (1st ‘𝑧) = 𝑥) |
| 11 | 10 | opeq2d 4861 | . . . . . . . 8 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → 〈0, (1st ‘𝑧)〉 = 〈0, 𝑥〉) |
| 12 | 8, 9 | op2ndd 8004 | . . . . . . . . 9 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (2nd ‘𝑧) = 𝑦) |
| 13 | 12 | opeq2d 4861 | . . . . . . . 8 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → 〈1, (2nd ‘𝑧)〉 = 〈1, 𝑦〉) |
| 14 | 11, 13 | preq12d 4722 | . . . . . . 7 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → {〈0, (1st ‘𝑧)〉, 〈1, (2nd ‘𝑧)〉} = {〈0, 𝑥〉, 〈1, 𝑦〉}) |
| 15 | 14 | fveq2d 6885 | . . . . . 6 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (ℎ‘{〈0, (1st ‘𝑧)〉, 〈1, (2nd ‘𝑧)〉}) = (ℎ‘{〈0, 𝑥〉, 〈1, 𝑦〉})) |
| 16 | 15 | mpompt 7526 | . . . . 5 ⊢ (𝑧 ∈ (𝑋 × 𝑋) ↦ (ℎ‘{〈0, (1st ‘𝑧)〉, 〈1, (2nd ‘𝑧)〉})) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (ℎ‘{〈0, 𝑥〉, 〈1, 𝑦〉})) |
| 17 | 16 | eqcomi 2745 | . . . 4 ⊢ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (ℎ‘{〈0, 𝑥〉, 〈1, 𝑦〉})) = (𝑧 ∈ (𝑋 × 𝑋) ↦ (ℎ‘{〈0, (1st ‘𝑧)〉, 〈1, (2nd ‘𝑧)〉})) |
| 18 | 7, 17 | fmptd 7109 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ ℎ ∈ (2-aryF 𝑋)) → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (ℎ‘{〈0, 𝑥〉, 〈1, 𝑦〉})):(𝑋 × 𝑋)⟶𝑋) |
| 19 | sqxpexg 7754 | . . . . 5 ⊢ (𝑋 ∈ 𝑉 → (𝑋 × 𝑋) ∈ V) | |
| 20 | elmapg 8858 | . . . . 5 ⊢ ((𝑋 ∈ 𝑉 ∧ (𝑋 × 𝑋) ∈ V) → ((𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (ℎ‘{〈0, 𝑥〉, 〈1, 𝑦〉})) ∈ (𝑋 ↑m (𝑋 × 𝑋)) ↔ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (ℎ‘{〈0, 𝑥〉, 〈1, 𝑦〉})):(𝑋 × 𝑋)⟶𝑋)) | |
| 21 | 19, 20 | mpdan 687 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → ((𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (ℎ‘{〈0, 𝑥〉, 〈1, 𝑦〉})) ∈ (𝑋 ↑m (𝑋 × 𝑋)) ↔ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (ℎ‘{〈0, 𝑥〉, 〈1, 𝑦〉})):(𝑋 × 𝑋)⟶𝑋)) |
| 22 | 21 | adantr 480 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ ℎ ∈ (2-aryF 𝑋)) → ((𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (ℎ‘{〈0, 𝑥〉, 〈1, 𝑦〉})) ∈ (𝑋 ↑m (𝑋 × 𝑋)) ↔ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (ℎ‘{〈0, 𝑥〉, 〈1, 𝑦〉})):(𝑋 × 𝑋)⟶𝑋)) |
| 23 | 18, 22 | mpbird 257 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ ℎ ∈ (2-aryF 𝑋)) → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (ℎ‘{〈0, 𝑥〉, 〈1, 𝑦〉})) ∈ (𝑋 ↑m (𝑋 × 𝑋))) |
| 24 | 2arymaptf.h | . 2 ⊢ 𝐻 = (ℎ ∈ (2-aryF 𝑋) ↦ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (ℎ‘{〈0, 𝑥〉, 〈1, 𝑦〉}))) | |
| 25 | 23, 24 | fmptd 7109 | 1 ⊢ (𝑋 ∈ 𝑉 → 𝐻:(2-aryF 𝑋)⟶(𝑋 ↑m (𝑋 × 𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3464 {cpr 4608 〈cop 4612 ↦ cmpt 5206 × cxp 5657 ⟶wf 6532 ‘cfv 6536 (class class class)co 7410 ∈ cmpo 7412 1st c1st 7991 2nd c2nd 7992 ↑m cmap 8845 0cc0 11134 1c1 11135 2c2 12300 -aryF cnaryf 48573 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-n0 12507 df-z 12594 df-uz 12858 df-fz 13530 df-fzo 13677 df-naryf 48574 |
| This theorem is referenced by: 2arymaptf1 48600 2arymaptfo 48601 |
| Copyright terms: Public domain | W3C validator |