| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 2arymaptf | Structured version Visualization version GIF version | ||
| Description: The mapping of binary (endo)functions is a function into the set of binary operations. (Contributed by AV, 21-May-2024.) |
| Ref | Expression |
|---|---|
| 2arymaptf.h | ⊢ 𝐻 = (ℎ ∈ (2-aryF 𝑋) ↦ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (ℎ‘{〈0, 𝑥〉, 〈1, 𝑦〉}))) |
| Ref | Expression |
|---|---|
| 2arymaptf | ⊢ (𝑋 ∈ 𝑉 → 𝐻:(2-aryF 𝑋)⟶(𝑋 ↑m (𝑋 × 𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplr 768 | . . . . 5 ⊢ (((𝑋 ∈ 𝑉 ∧ ℎ ∈ (2-aryF 𝑋)) ∧ 𝑧 ∈ (𝑋 × 𝑋)) → ℎ ∈ (2-aryF 𝑋)) | |
| 2 | xp1st 7959 | . . . . . 6 ⊢ (𝑧 ∈ (𝑋 × 𝑋) → (1st ‘𝑧) ∈ 𝑋) | |
| 3 | 2 | adantl 481 | . . . . 5 ⊢ (((𝑋 ∈ 𝑉 ∧ ℎ ∈ (2-aryF 𝑋)) ∧ 𝑧 ∈ (𝑋 × 𝑋)) → (1st ‘𝑧) ∈ 𝑋) |
| 4 | xp2nd 7960 | . . . . . 6 ⊢ (𝑧 ∈ (𝑋 × 𝑋) → (2nd ‘𝑧) ∈ 𝑋) | |
| 5 | 4 | adantl 481 | . . . . 5 ⊢ (((𝑋 ∈ 𝑉 ∧ ℎ ∈ (2-aryF 𝑋)) ∧ 𝑧 ∈ (𝑋 × 𝑋)) → (2nd ‘𝑧) ∈ 𝑋) |
| 6 | fv2arycl 48774 | . . . . 5 ⊢ ((ℎ ∈ (2-aryF 𝑋) ∧ (1st ‘𝑧) ∈ 𝑋 ∧ (2nd ‘𝑧) ∈ 𝑋) → (ℎ‘{〈0, (1st ‘𝑧)〉, 〈1, (2nd ‘𝑧)〉}) ∈ 𝑋) | |
| 7 | 1, 3, 5, 6 | syl3anc 1373 | . . . 4 ⊢ (((𝑋 ∈ 𝑉 ∧ ℎ ∈ (2-aryF 𝑋)) ∧ 𝑧 ∈ (𝑋 × 𝑋)) → (ℎ‘{〈0, (1st ‘𝑧)〉, 〈1, (2nd ‘𝑧)〉}) ∈ 𝑋) |
| 8 | vex 3441 | . . . . . . . . . 10 ⊢ 𝑥 ∈ V | |
| 9 | vex 3441 | . . . . . . . . . 10 ⊢ 𝑦 ∈ V | |
| 10 | 8, 9 | op1std 7937 | . . . . . . . . 9 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (1st ‘𝑧) = 𝑥) |
| 11 | 10 | opeq2d 4831 | . . . . . . . 8 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → 〈0, (1st ‘𝑧)〉 = 〈0, 𝑥〉) |
| 12 | 8, 9 | op2ndd 7938 | . . . . . . . . 9 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (2nd ‘𝑧) = 𝑦) |
| 13 | 12 | opeq2d 4831 | . . . . . . . 8 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → 〈1, (2nd ‘𝑧)〉 = 〈1, 𝑦〉) |
| 14 | 11, 13 | preq12d 4693 | . . . . . . 7 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → {〈0, (1st ‘𝑧)〉, 〈1, (2nd ‘𝑧)〉} = {〈0, 𝑥〉, 〈1, 𝑦〉}) |
| 15 | 14 | fveq2d 6832 | . . . . . 6 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (ℎ‘{〈0, (1st ‘𝑧)〉, 〈1, (2nd ‘𝑧)〉}) = (ℎ‘{〈0, 𝑥〉, 〈1, 𝑦〉})) |
| 16 | 15 | mpompt 7466 | . . . . 5 ⊢ (𝑧 ∈ (𝑋 × 𝑋) ↦ (ℎ‘{〈0, (1st ‘𝑧)〉, 〈1, (2nd ‘𝑧)〉})) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (ℎ‘{〈0, 𝑥〉, 〈1, 𝑦〉})) |
| 17 | 16 | eqcomi 2742 | . . . 4 ⊢ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (ℎ‘{〈0, 𝑥〉, 〈1, 𝑦〉})) = (𝑧 ∈ (𝑋 × 𝑋) ↦ (ℎ‘{〈0, (1st ‘𝑧)〉, 〈1, (2nd ‘𝑧)〉})) |
| 18 | 7, 17 | fmptd 7053 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ ℎ ∈ (2-aryF 𝑋)) → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (ℎ‘{〈0, 𝑥〉, 〈1, 𝑦〉})):(𝑋 × 𝑋)⟶𝑋) |
| 19 | sqxpexg 7694 | . . . . 5 ⊢ (𝑋 ∈ 𝑉 → (𝑋 × 𝑋) ∈ V) | |
| 20 | elmapg 8769 | . . . . 5 ⊢ ((𝑋 ∈ 𝑉 ∧ (𝑋 × 𝑋) ∈ V) → ((𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (ℎ‘{〈0, 𝑥〉, 〈1, 𝑦〉})) ∈ (𝑋 ↑m (𝑋 × 𝑋)) ↔ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (ℎ‘{〈0, 𝑥〉, 〈1, 𝑦〉})):(𝑋 × 𝑋)⟶𝑋)) | |
| 21 | 19, 20 | mpdan 687 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → ((𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (ℎ‘{〈0, 𝑥〉, 〈1, 𝑦〉})) ∈ (𝑋 ↑m (𝑋 × 𝑋)) ↔ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (ℎ‘{〈0, 𝑥〉, 〈1, 𝑦〉})):(𝑋 × 𝑋)⟶𝑋)) |
| 22 | 21 | adantr 480 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ ℎ ∈ (2-aryF 𝑋)) → ((𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (ℎ‘{〈0, 𝑥〉, 〈1, 𝑦〉})) ∈ (𝑋 ↑m (𝑋 × 𝑋)) ↔ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (ℎ‘{〈0, 𝑥〉, 〈1, 𝑦〉})):(𝑋 × 𝑋)⟶𝑋)) |
| 23 | 18, 22 | mpbird 257 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ ℎ ∈ (2-aryF 𝑋)) → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (ℎ‘{〈0, 𝑥〉, 〈1, 𝑦〉})) ∈ (𝑋 ↑m (𝑋 × 𝑋))) |
| 24 | 2arymaptf.h | . 2 ⊢ 𝐻 = (ℎ ∈ (2-aryF 𝑋) ↦ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (ℎ‘{〈0, 𝑥〉, 〈1, 𝑦〉}))) | |
| 25 | 23, 24 | fmptd 7053 | 1 ⊢ (𝑋 ∈ 𝑉 → 𝐻:(2-aryF 𝑋)⟶(𝑋 ↑m (𝑋 × 𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 Vcvv 3437 {cpr 4577 〈cop 4581 ↦ cmpt 5174 × cxp 5617 ⟶wf 6482 ‘cfv 6486 (class class class)co 7352 ∈ cmpo 7354 1st c1st 7925 2nd c2nd 7926 ↑m cmap 8756 0cc0 11013 1c1 11014 2c2 12187 -aryF cnaryf 48752 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-map 8758 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-2 12195 df-n0 12389 df-z 12476 df-uz 12739 df-fz 13410 df-fzo 13557 df-naryf 48753 |
| This theorem is referenced by: 2arymaptf1 48779 2arymaptfo 48780 |
| Copyright terms: Public domain | W3C validator |