Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2arymaptf Structured version   Visualization version   GIF version

Theorem 2arymaptf 48578
Description: The mapping of binary (endo)functions is a function into the set of binary operations. (Contributed by AV, 21-May-2024.)
Hypothesis
Ref Expression
2arymaptf.h 𝐻 = ( ∈ (2-aryF 𝑋) ↦ (𝑥𝑋, 𝑦𝑋 ↦ (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})))
Assertion
Ref Expression
2arymaptf (𝑋𝑉𝐻:(2-aryF 𝑋)⟶(𝑋m (𝑋 × 𝑋)))
Distinct variable groups:   𝑥,,𝑦,𝑋   ,𝑉,𝑥
Allowed substitution hints:   𝐻(𝑥,𝑦,)   𝑉(𝑦)

Proof of Theorem 2arymaptf
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simplr 768 . . . . 5 (((𝑋𝑉 ∈ (2-aryF 𝑋)) ∧ 𝑧 ∈ (𝑋 × 𝑋)) → ∈ (2-aryF 𝑋))
2 xp1st 8047 . . . . . 6 (𝑧 ∈ (𝑋 × 𝑋) → (1st𝑧) ∈ 𝑋)
32adantl 481 . . . . 5 (((𝑋𝑉 ∈ (2-aryF 𝑋)) ∧ 𝑧 ∈ (𝑋 × 𝑋)) → (1st𝑧) ∈ 𝑋)
4 xp2nd 8048 . . . . . 6 (𝑧 ∈ (𝑋 × 𝑋) → (2nd𝑧) ∈ 𝑋)
54adantl 481 . . . . 5 (((𝑋𝑉 ∈ (2-aryF 𝑋)) ∧ 𝑧 ∈ (𝑋 × 𝑋)) → (2nd𝑧) ∈ 𝑋)
6 fv2arycl 48574 . . . . 5 (( ∈ (2-aryF 𝑋) ∧ (1st𝑧) ∈ 𝑋 ∧ (2nd𝑧) ∈ 𝑋) → (‘{⟨0, (1st𝑧)⟩, ⟨1, (2nd𝑧)⟩}) ∈ 𝑋)
71, 3, 5, 6syl3anc 1372 . . . 4 (((𝑋𝑉 ∈ (2-aryF 𝑋)) ∧ 𝑧 ∈ (𝑋 × 𝑋)) → (‘{⟨0, (1st𝑧)⟩, ⟨1, (2nd𝑧)⟩}) ∈ 𝑋)
8 vex 3483 . . . . . . . . . 10 𝑥 ∈ V
9 vex 3483 . . . . . . . . . 10 𝑦 ∈ V
108, 9op1std 8025 . . . . . . . . 9 (𝑧 = ⟨𝑥, 𝑦⟩ → (1st𝑧) = 𝑥)
1110opeq2d 4879 . . . . . . . 8 (𝑧 = ⟨𝑥, 𝑦⟩ → ⟨0, (1st𝑧)⟩ = ⟨0, 𝑥⟩)
128, 9op2ndd 8026 . . . . . . . . 9 (𝑧 = ⟨𝑥, 𝑦⟩ → (2nd𝑧) = 𝑦)
1312opeq2d 4879 . . . . . . . 8 (𝑧 = ⟨𝑥, 𝑦⟩ → ⟨1, (2nd𝑧)⟩ = ⟨1, 𝑦⟩)
1411, 13preq12d 4740 . . . . . . 7 (𝑧 = ⟨𝑥, 𝑦⟩ → {⟨0, (1st𝑧)⟩, ⟨1, (2nd𝑧)⟩} = {⟨0, 𝑥⟩, ⟨1, 𝑦⟩})
1514fveq2d 6909 . . . . . 6 (𝑧 = ⟨𝑥, 𝑦⟩ → (‘{⟨0, (1st𝑧)⟩, ⟨1, (2nd𝑧)⟩}) = (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}))
1615mpompt 7548 . . . . 5 (𝑧 ∈ (𝑋 × 𝑋) ↦ (‘{⟨0, (1st𝑧)⟩, ⟨1, (2nd𝑧)⟩})) = (𝑥𝑋, 𝑦𝑋 ↦ (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}))
1716eqcomi 2745 . . . 4 (𝑥𝑋, 𝑦𝑋 ↦ (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) = (𝑧 ∈ (𝑋 × 𝑋) ↦ (‘{⟨0, (1st𝑧)⟩, ⟨1, (2nd𝑧)⟩}))
187, 17fmptd 7133 . . 3 ((𝑋𝑉 ∈ (2-aryF 𝑋)) → (𝑥𝑋, 𝑦𝑋 ↦ (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})):(𝑋 × 𝑋)⟶𝑋)
19 sqxpexg 7776 . . . . 5 (𝑋𝑉 → (𝑋 × 𝑋) ∈ V)
20 elmapg 8880 . . . . 5 ((𝑋𝑉 ∧ (𝑋 × 𝑋) ∈ V) → ((𝑥𝑋, 𝑦𝑋 ↦ (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) ∈ (𝑋m (𝑋 × 𝑋)) ↔ (𝑥𝑋, 𝑦𝑋 ↦ (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})):(𝑋 × 𝑋)⟶𝑋))
2119, 20mpdan 687 . . . 4 (𝑋𝑉 → ((𝑥𝑋, 𝑦𝑋 ↦ (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) ∈ (𝑋m (𝑋 × 𝑋)) ↔ (𝑥𝑋, 𝑦𝑋 ↦ (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})):(𝑋 × 𝑋)⟶𝑋))
2221adantr 480 . . 3 ((𝑋𝑉 ∈ (2-aryF 𝑋)) → ((𝑥𝑋, 𝑦𝑋 ↦ (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) ∈ (𝑋m (𝑋 × 𝑋)) ↔ (𝑥𝑋, 𝑦𝑋 ↦ (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})):(𝑋 × 𝑋)⟶𝑋))
2318, 22mpbird 257 . 2 ((𝑋𝑉 ∈ (2-aryF 𝑋)) → (𝑥𝑋, 𝑦𝑋 ↦ (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) ∈ (𝑋m (𝑋 × 𝑋)))
24 2arymaptf.h . 2 𝐻 = ( ∈ (2-aryF 𝑋) ↦ (𝑥𝑋, 𝑦𝑋 ↦ (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})))
2523, 24fmptd 7133 1 (𝑋𝑉𝐻:(2-aryF 𝑋)⟶(𝑋m (𝑋 × 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  Vcvv 3479  {cpr 4627  cop 4631  cmpt 5224   × cxp 5682  wf 6556  cfv 6560  (class class class)co 7432  cmpo 7434  1st c1st 8013  2nd c2nd 8014  m cmap 8867  0cc0 11156  1c1 11157  2c2 12322  -aryF cnaryf 48552
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-er 8746  df-map 8869  df-en 8987  df-dom 8988  df-sdom 8989  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-n0 12529  df-z 12616  df-uz 12880  df-fz 13549  df-fzo 13696  df-naryf 48553
This theorem is referenced by:  2arymaptf1  48579  2arymaptfo  48580
  Copyright terms: Public domain W3C validator