Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2arymaptf Structured version   Visualization version   GIF version

Theorem 2arymaptf 48638
Description: The mapping of binary (endo)functions is a function into the set of binary operations. (Contributed by AV, 21-May-2024.)
Hypothesis
Ref Expression
2arymaptf.h 𝐻 = ( ∈ (2-aryF 𝑋) ↦ (𝑥𝑋, 𝑦𝑋 ↦ (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})))
Assertion
Ref Expression
2arymaptf (𝑋𝑉𝐻:(2-aryF 𝑋)⟶(𝑋m (𝑋 × 𝑋)))
Distinct variable groups:   𝑥,,𝑦,𝑋   ,𝑉,𝑥
Allowed substitution hints:   𝐻(𝑥,𝑦,)   𝑉(𝑦)

Proof of Theorem 2arymaptf
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simplr 768 . . . . 5 (((𝑋𝑉 ∈ (2-aryF 𝑋)) ∧ 𝑧 ∈ (𝑋 × 𝑋)) → ∈ (2-aryF 𝑋))
2 xp1st 7963 . . . . . 6 (𝑧 ∈ (𝑋 × 𝑋) → (1st𝑧) ∈ 𝑋)
32adantl 481 . . . . 5 (((𝑋𝑉 ∈ (2-aryF 𝑋)) ∧ 𝑧 ∈ (𝑋 × 𝑋)) → (1st𝑧) ∈ 𝑋)
4 xp2nd 7964 . . . . . 6 (𝑧 ∈ (𝑋 × 𝑋) → (2nd𝑧) ∈ 𝑋)
54adantl 481 . . . . 5 (((𝑋𝑉 ∈ (2-aryF 𝑋)) ∧ 𝑧 ∈ (𝑋 × 𝑋)) → (2nd𝑧) ∈ 𝑋)
6 fv2arycl 48634 . . . . 5 (( ∈ (2-aryF 𝑋) ∧ (1st𝑧) ∈ 𝑋 ∧ (2nd𝑧) ∈ 𝑋) → (‘{⟨0, (1st𝑧)⟩, ⟨1, (2nd𝑧)⟩}) ∈ 𝑋)
71, 3, 5, 6syl3anc 1373 . . . 4 (((𝑋𝑉 ∈ (2-aryF 𝑋)) ∧ 𝑧 ∈ (𝑋 × 𝑋)) → (‘{⟨0, (1st𝑧)⟩, ⟨1, (2nd𝑧)⟩}) ∈ 𝑋)
8 vex 3442 . . . . . . . . . 10 𝑥 ∈ V
9 vex 3442 . . . . . . . . . 10 𝑦 ∈ V
108, 9op1std 7941 . . . . . . . . 9 (𝑧 = ⟨𝑥, 𝑦⟩ → (1st𝑧) = 𝑥)
1110opeq2d 4834 . . . . . . . 8 (𝑧 = ⟨𝑥, 𝑦⟩ → ⟨0, (1st𝑧)⟩ = ⟨0, 𝑥⟩)
128, 9op2ndd 7942 . . . . . . . . 9 (𝑧 = ⟨𝑥, 𝑦⟩ → (2nd𝑧) = 𝑦)
1312opeq2d 4834 . . . . . . . 8 (𝑧 = ⟨𝑥, 𝑦⟩ → ⟨1, (2nd𝑧)⟩ = ⟨1, 𝑦⟩)
1411, 13preq12d 4695 . . . . . . 7 (𝑧 = ⟨𝑥, 𝑦⟩ → {⟨0, (1st𝑧)⟩, ⟨1, (2nd𝑧)⟩} = {⟨0, 𝑥⟩, ⟨1, 𝑦⟩})
1514fveq2d 6830 . . . . . 6 (𝑧 = ⟨𝑥, 𝑦⟩ → (‘{⟨0, (1st𝑧)⟩, ⟨1, (2nd𝑧)⟩}) = (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}))
1615mpompt 7467 . . . . 5 (𝑧 ∈ (𝑋 × 𝑋) ↦ (‘{⟨0, (1st𝑧)⟩, ⟨1, (2nd𝑧)⟩})) = (𝑥𝑋, 𝑦𝑋 ↦ (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}))
1716eqcomi 2738 . . . 4 (𝑥𝑋, 𝑦𝑋 ↦ (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) = (𝑧 ∈ (𝑋 × 𝑋) ↦ (‘{⟨0, (1st𝑧)⟩, ⟨1, (2nd𝑧)⟩}))
187, 17fmptd 7052 . . 3 ((𝑋𝑉 ∈ (2-aryF 𝑋)) → (𝑥𝑋, 𝑦𝑋 ↦ (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})):(𝑋 × 𝑋)⟶𝑋)
19 sqxpexg 7695 . . . . 5 (𝑋𝑉 → (𝑋 × 𝑋) ∈ V)
20 elmapg 8773 . . . . 5 ((𝑋𝑉 ∧ (𝑋 × 𝑋) ∈ V) → ((𝑥𝑋, 𝑦𝑋 ↦ (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) ∈ (𝑋m (𝑋 × 𝑋)) ↔ (𝑥𝑋, 𝑦𝑋 ↦ (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})):(𝑋 × 𝑋)⟶𝑋))
2119, 20mpdan 687 . . . 4 (𝑋𝑉 → ((𝑥𝑋, 𝑦𝑋 ↦ (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) ∈ (𝑋m (𝑋 × 𝑋)) ↔ (𝑥𝑋, 𝑦𝑋 ↦ (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})):(𝑋 × 𝑋)⟶𝑋))
2221adantr 480 . . 3 ((𝑋𝑉 ∈ (2-aryF 𝑋)) → ((𝑥𝑋, 𝑦𝑋 ↦ (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) ∈ (𝑋m (𝑋 × 𝑋)) ↔ (𝑥𝑋, 𝑦𝑋 ↦ (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})):(𝑋 × 𝑋)⟶𝑋))
2318, 22mpbird 257 . 2 ((𝑋𝑉 ∈ (2-aryF 𝑋)) → (𝑥𝑋, 𝑦𝑋 ↦ (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) ∈ (𝑋m (𝑋 × 𝑋)))
24 2arymaptf.h . 2 𝐻 = ( ∈ (2-aryF 𝑋) ↦ (𝑥𝑋, 𝑦𝑋 ↦ (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})))
2523, 24fmptd 7052 1 (𝑋𝑉𝐻:(2-aryF 𝑋)⟶(𝑋m (𝑋 × 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3438  {cpr 4581  cop 4585  cmpt 5176   × cxp 5621  wf 6482  cfv 6486  (class class class)co 7353  cmpo 7355  1st c1st 7929  2nd c2nd 7930  m cmap 8760  0cc0 11028  1c1 11029  2c2 12201  -aryF cnaryf 48612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-n0 12403  df-z 12490  df-uz 12754  df-fz 13429  df-fzo 13576  df-naryf 48613
This theorem is referenced by:  2arymaptf1  48639  2arymaptfo  48640
  Copyright terms: Public domain W3C validator