Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2arymaptf Structured version   Visualization version   GIF version

Theorem 2arymaptf 48683
Description: The mapping of binary (endo)functions is a function into the set of binary operations. (Contributed by AV, 21-May-2024.)
Hypothesis
Ref Expression
2arymaptf.h 𝐻 = ( ∈ (2-aryF 𝑋) ↦ (𝑥𝑋, 𝑦𝑋 ↦ (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})))
Assertion
Ref Expression
2arymaptf (𝑋𝑉𝐻:(2-aryF 𝑋)⟶(𝑋m (𝑋 × 𝑋)))
Distinct variable groups:   𝑥,,𝑦,𝑋   ,𝑉,𝑥
Allowed substitution hints:   𝐻(𝑥,𝑦,)   𝑉(𝑦)

Proof of Theorem 2arymaptf
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simplr 768 . . . . 5 (((𝑋𝑉 ∈ (2-aryF 𝑋)) ∧ 𝑧 ∈ (𝑋 × 𝑋)) → ∈ (2-aryF 𝑋))
2 xp1st 7953 . . . . . 6 (𝑧 ∈ (𝑋 × 𝑋) → (1st𝑧) ∈ 𝑋)
32adantl 481 . . . . 5 (((𝑋𝑉 ∈ (2-aryF 𝑋)) ∧ 𝑧 ∈ (𝑋 × 𝑋)) → (1st𝑧) ∈ 𝑋)
4 xp2nd 7954 . . . . . 6 (𝑧 ∈ (𝑋 × 𝑋) → (2nd𝑧) ∈ 𝑋)
54adantl 481 . . . . 5 (((𝑋𝑉 ∈ (2-aryF 𝑋)) ∧ 𝑧 ∈ (𝑋 × 𝑋)) → (2nd𝑧) ∈ 𝑋)
6 fv2arycl 48679 . . . . 5 (( ∈ (2-aryF 𝑋) ∧ (1st𝑧) ∈ 𝑋 ∧ (2nd𝑧) ∈ 𝑋) → (‘{⟨0, (1st𝑧)⟩, ⟨1, (2nd𝑧)⟩}) ∈ 𝑋)
71, 3, 5, 6syl3anc 1373 . . . 4 (((𝑋𝑉 ∈ (2-aryF 𝑋)) ∧ 𝑧 ∈ (𝑋 × 𝑋)) → (‘{⟨0, (1st𝑧)⟩, ⟨1, (2nd𝑧)⟩}) ∈ 𝑋)
8 vex 3440 . . . . . . . . . 10 𝑥 ∈ V
9 vex 3440 . . . . . . . . . 10 𝑦 ∈ V
108, 9op1std 7931 . . . . . . . . 9 (𝑧 = ⟨𝑥, 𝑦⟩ → (1st𝑧) = 𝑥)
1110opeq2d 4832 . . . . . . . 8 (𝑧 = ⟨𝑥, 𝑦⟩ → ⟨0, (1st𝑧)⟩ = ⟨0, 𝑥⟩)
128, 9op2ndd 7932 . . . . . . . . 9 (𝑧 = ⟨𝑥, 𝑦⟩ → (2nd𝑧) = 𝑦)
1312opeq2d 4832 . . . . . . . 8 (𝑧 = ⟨𝑥, 𝑦⟩ → ⟨1, (2nd𝑧)⟩ = ⟨1, 𝑦⟩)
1411, 13preq12d 4694 . . . . . . 7 (𝑧 = ⟨𝑥, 𝑦⟩ → {⟨0, (1st𝑧)⟩, ⟨1, (2nd𝑧)⟩} = {⟨0, 𝑥⟩, ⟨1, 𝑦⟩})
1514fveq2d 6826 . . . . . 6 (𝑧 = ⟨𝑥, 𝑦⟩ → (‘{⟨0, (1st𝑧)⟩, ⟨1, (2nd𝑧)⟩}) = (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}))
1615mpompt 7460 . . . . 5 (𝑧 ∈ (𝑋 × 𝑋) ↦ (‘{⟨0, (1st𝑧)⟩, ⟨1, (2nd𝑧)⟩})) = (𝑥𝑋, 𝑦𝑋 ↦ (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩}))
1716eqcomi 2740 . . . 4 (𝑥𝑋, 𝑦𝑋 ↦ (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) = (𝑧 ∈ (𝑋 × 𝑋) ↦ (‘{⟨0, (1st𝑧)⟩, ⟨1, (2nd𝑧)⟩}))
187, 17fmptd 7047 . . 3 ((𝑋𝑉 ∈ (2-aryF 𝑋)) → (𝑥𝑋, 𝑦𝑋 ↦ (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})):(𝑋 × 𝑋)⟶𝑋)
19 sqxpexg 7688 . . . . 5 (𝑋𝑉 → (𝑋 × 𝑋) ∈ V)
20 elmapg 8763 . . . . 5 ((𝑋𝑉 ∧ (𝑋 × 𝑋) ∈ V) → ((𝑥𝑋, 𝑦𝑋 ↦ (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) ∈ (𝑋m (𝑋 × 𝑋)) ↔ (𝑥𝑋, 𝑦𝑋 ↦ (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})):(𝑋 × 𝑋)⟶𝑋))
2119, 20mpdan 687 . . . 4 (𝑋𝑉 → ((𝑥𝑋, 𝑦𝑋 ↦ (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) ∈ (𝑋m (𝑋 × 𝑋)) ↔ (𝑥𝑋, 𝑦𝑋 ↦ (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})):(𝑋 × 𝑋)⟶𝑋))
2221adantr 480 . . 3 ((𝑋𝑉 ∈ (2-aryF 𝑋)) → ((𝑥𝑋, 𝑦𝑋 ↦ (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) ∈ (𝑋m (𝑋 × 𝑋)) ↔ (𝑥𝑋, 𝑦𝑋 ↦ (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})):(𝑋 × 𝑋)⟶𝑋))
2318, 22mpbird 257 . 2 ((𝑋𝑉 ∈ (2-aryF 𝑋)) → (𝑥𝑋, 𝑦𝑋 ↦ (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})) ∈ (𝑋m (𝑋 × 𝑋)))
24 2arymaptf.h . 2 𝐻 = ( ∈ (2-aryF 𝑋) ↦ (𝑥𝑋, 𝑦𝑋 ↦ (‘{⟨0, 𝑥⟩, ⟨1, 𝑦⟩})))
2523, 24fmptd 7047 1 (𝑋𝑉𝐻:(2-aryF 𝑋)⟶(𝑋m (𝑋 × 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  {cpr 4578  cop 4582  cmpt 5172   × cxp 5614  wf 6477  cfv 6481  (class class class)co 7346  cmpo 7348  1st c1st 7919  2nd c2nd 7920  m cmap 8750  0cc0 11003  1c1 11004  2c2 12177  -aryF cnaryf 48657
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-2 12185  df-n0 12379  df-z 12466  df-uz 12730  df-fz 13405  df-fzo 13552  df-naryf 48658
This theorem is referenced by:  2arymaptf1  48684  2arymaptfo  48685
  Copyright terms: Public domain W3C validator