Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 2arymaptf | Structured version Visualization version GIF version |
Description: The mapping of binary (endo)functions is a function into the set of binary operations. (Contributed by AV, 21-May-2024.) |
Ref | Expression |
---|---|
2arymaptf.h | ⊢ 𝐻 = (ℎ ∈ (2-aryF 𝑋) ↦ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (ℎ‘{〈0, 𝑥〉, 〈1, 𝑦〉}))) |
Ref | Expression |
---|---|
2arymaptf | ⊢ (𝑋 ∈ 𝑉 → 𝐻:(2-aryF 𝑋)⟶(𝑋 ↑m (𝑋 × 𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplr 768 | . . . . 5 ⊢ (((𝑋 ∈ 𝑉 ∧ ℎ ∈ (2-aryF 𝑋)) ∧ 𝑧 ∈ (𝑋 × 𝑋)) → ℎ ∈ (2-aryF 𝑋)) | |
2 | xp1st 7730 | . . . . . 6 ⊢ (𝑧 ∈ (𝑋 × 𝑋) → (1st ‘𝑧) ∈ 𝑋) | |
3 | 2 | adantl 485 | . . . . 5 ⊢ (((𝑋 ∈ 𝑉 ∧ ℎ ∈ (2-aryF 𝑋)) ∧ 𝑧 ∈ (𝑋 × 𝑋)) → (1st ‘𝑧) ∈ 𝑋) |
4 | xp2nd 7731 | . . . . . 6 ⊢ (𝑧 ∈ (𝑋 × 𝑋) → (2nd ‘𝑧) ∈ 𝑋) | |
5 | 4 | adantl 485 | . . . . 5 ⊢ (((𝑋 ∈ 𝑉 ∧ ℎ ∈ (2-aryF 𝑋)) ∧ 𝑧 ∈ (𝑋 × 𝑋)) → (2nd ‘𝑧) ∈ 𝑋) |
6 | fv2arycl 45455 | . . . . 5 ⊢ ((ℎ ∈ (2-aryF 𝑋) ∧ (1st ‘𝑧) ∈ 𝑋 ∧ (2nd ‘𝑧) ∈ 𝑋) → (ℎ‘{〈0, (1st ‘𝑧)〉, 〈1, (2nd ‘𝑧)〉}) ∈ 𝑋) | |
7 | 1, 3, 5, 6 | syl3anc 1368 | . . . 4 ⊢ (((𝑋 ∈ 𝑉 ∧ ℎ ∈ (2-aryF 𝑋)) ∧ 𝑧 ∈ (𝑋 × 𝑋)) → (ℎ‘{〈0, (1st ‘𝑧)〉, 〈1, (2nd ‘𝑧)〉}) ∈ 𝑋) |
8 | vex 3413 | . . . . . . . . . 10 ⊢ 𝑥 ∈ V | |
9 | vex 3413 | . . . . . . . . . 10 ⊢ 𝑦 ∈ V | |
10 | 8, 9 | op1std 7708 | . . . . . . . . 9 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (1st ‘𝑧) = 𝑥) |
11 | 10 | opeq2d 4773 | . . . . . . . 8 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → 〈0, (1st ‘𝑧)〉 = 〈0, 𝑥〉) |
12 | 8, 9 | op2ndd 7709 | . . . . . . . . 9 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (2nd ‘𝑧) = 𝑦) |
13 | 12 | opeq2d 4773 | . . . . . . . 8 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → 〈1, (2nd ‘𝑧)〉 = 〈1, 𝑦〉) |
14 | 11, 13 | preq12d 4637 | . . . . . . 7 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → {〈0, (1st ‘𝑧)〉, 〈1, (2nd ‘𝑧)〉} = {〈0, 𝑥〉, 〈1, 𝑦〉}) |
15 | 14 | fveq2d 6666 | . . . . . 6 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (ℎ‘{〈0, (1st ‘𝑧)〉, 〈1, (2nd ‘𝑧)〉}) = (ℎ‘{〈0, 𝑥〉, 〈1, 𝑦〉})) |
16 | 15 | mpompt 7265 | . . . . 5 ⊢ (𝑧 ∈ (𝑋 × 𝑋) ↦ (ℎ‘{〈0, (1st ‘𝑧)〉, 〈1, (2nd ‘𝑧)〉})) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (ℎ‘{〈0, 𝑥〉, 〈1, 𝑦〉})) |
17 | 16 | eqcomi 2767 | . . . 4 ⊢ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (ℎ‘{〈0, 𝑥〉, 〈1, 𝑦〉})) = (𝑧 ∈ (𝑋 × 𝑋) ↦ (ℎ‘{〈0, (1st ‘𝑧)〉, 〈1, (2nd ‘𝑧)〉})) |
18 | 7, 17 | fmptd 6874 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ ℎ ∈ (2-aryF 𝑋)) → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (ℎ‘{〈0, 𝑥〉, 〈1, 𝑦〉})):(𝑋 × 𝑋)⟶𝑋) |
19 | sqxpexg 7481 | . . . . 5 ⊢ (𝑋 ∈ 𝑉 → (𝑋 × 𝑋) ∈ V) | |
20 | elmapg 8434 | . . . . 5 ⊢ ((𝑋 ∈ 𝑉 ∧ (𝑋 × 𝑋) ∈ V) → ((𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (ℎ‘{〈0, 𝑥〉, 〈1, 𝑦〉})) ∈ (𝑋 ↑m (𝑋 × 𝑋)) ↔ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (ℎ‘{〈0, 𝑥〉, 〈1, 𝑦〉})):(𝑋 × 𝑋)⟶𝑋)) | |
21 | 19, 20 | mpdan 686 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → ((𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (ℎ‘{〈0, 𝑥〉, 〈1, 𝑦〉})) ∈ (𝑋 ↑m (𝑋 × 𝑋)) ↔ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (ℎ‘{〈0, 𝑥〉, 〈1, 𝑦〉})):(𝑋 × 𝑋)⟶𝑋)) |
22 | 21 | adantr 484 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ ℎ ∈ (2-aryF 𝑋)) → ((𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (ℎ‘{〈0, 𝑥〉, 〈1, 𝑦〉})) ∈ (𝑋 ↑m (𝑋 × 𝑋)) ↔ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (ℎ‘{〈0, 𝑥〉, 〈1, 𝑦〉})):(𝑋 × 𝑋)⟶𝑋)) |
23 | 18, 22 | mpbird 260 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ ℎ ∈ (2-aryF 𝑋)) → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (ℎ‘{〈0, 𝑥〉, 〈1, 𝑦〉})) ∈ (𝑋 ↑m (𝑋 × 𝑋))) |
24 | 2arymaptf.h | . 2 ⊢ 𝐻 = (ℎ ∈ (2-aryF 𝑋) ↦ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (ℎ‘{〈0, 𝑥〉, 〈1, 𝑦〉}))) | |
25 | 23, 24 | fmptd 6874 | 1 ⊢ (𝑋 ∈ 𝑉 → 𝐻:(2-aryF 𝑋)⟶(𝑋 ↑m (𝑋 × 𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1538 ∈ wcel 2111 Vcvv 3409 {cpr 4527 〈cop 4531 ↦ cmpt 5115 × cxp 5525 ⟶wf 6335 ‘cfv 6339 (class class class)co 7155 ∈ cmpo 7157 1st c1st 7696 2nd c2nd 7697 ↑m cmap 8421 0cc0 10580 1c1 10581 2c2 11734 -aryF cnaryf 45433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5172 ax-nul 5179 ax-pow 5237 ax-pr 5301 ax-un 7464 ax-cnex 10636 ax-resscn 10637 ax-1cn 10638 ax-icn 10639 ax-addcl 10640 ax-addrcl 10641 ax-mulcl 10642 ax-mulrcl 10643 ax-mulcom 10644 ax-addass 10645 ax-mulass 10646 ax-distr 10647 ax-i2m1 10648 ax-1ne0 10649 ax-1rid 10650 ax-rnegex 10651 ax-rrecex 10652 ax-cnre 10653 ax-pre-lttri 10654 ax-pre-lttrn 10655 ax-pre-ltadd 10656 ax-pre-mulgt0 10657 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-iun 4888 df-br 5036 df-opab 5098 df-mpt 5116 df-tr 5142 df-id 5433 df-eprel 5438 df-po 5446 df-so 5447 df-fr 5486 df-we 5488 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-pred 6130 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7113 df-ov 7158 df-oprab 7159 df-mpo 7160 df-om 7585 df-1st 7698 df-2nd 7699 df-wrecs 7962 df-recs 8023 df-rdg 8061 df-er 8304 df-map 8423 df-en 8533 df-dom 8534 df-sdom 8535 df-pnf 10720 df-mnf 10721 df-xr 10722 df-ltxr 10723 df-le 10724 df-sub 10915 df-neg 10916 df-nn 11680 df-2 11742 df-n0 11940 df-z 12026 df-uz 12288 df-fz 12945 df-fzo 13088 df-naryf 45434 |
This theorem is referenced by: 2arymaptf1 45460 2arymaptfo 45461 |
Copyright terms: Public domain | W3C validator |