MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnwos Structured version   Visualization version   GIF version

Theorem nnwos 12815
Description: Well-ordering principle: any nonempty set of positive integers has a least element (schema form). (Contributed by NM, 17-Aug-2001.)
Hypothesis
Ref Expression
nnwos.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
nnwos (∃𝑥 ∈ ℕ 𝜑 → ∃𝑥 ∈ ℕ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓𝑥𝑦)))
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem nnwos
StepHypRef Expression
1 nfrab1 3416 . . 3 𝑥{𝑥 ∈ ℕ ∣ 𝜑}
2 nfcv 2895 . . 3 𝑦{𝑥 ∈ ℕ ∣ 𝜑}
31, 2nnwof 12814 . 2 (({𝑥 ∈ ℕ ∣ 𝜑} ⊆ ℕ ∧ {𝑥 ∈ ℕ ∣ 𝜑} ≠ ∅) → ∃𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝜑}∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑}𝑥𝑦)
4 ssrab2 4029 . . . 4 {𝑥 ∈ ℕ ∣ 𝜑} ⊆ ℕ
54biantrur 530 . . 3 ({𝑥 ∈ ℕ ∣ 𝜑} ≠ ∅ ↔ ({𝑥 ∈ ℕ ∣ 𝜑} ⊆ ℕ ∧ {𝑥 ∈ ℕ ∣ 𝜑} ≠ ∅))
6 rabn0 4338 . . 3 ({𝑥 ∈ ℕ ∣ 𝜑} ≠ ∅ ↔ ∃𝑥 ∈ ℕ 𝜑)
75, 6bitr3i 277 . 2 (({𝑥 ∈ ℕ ∣ 𝜑} ⊆ ℕ ∧ {𝑥 ∈ ℕ ∣ 𝜑} ≠ ∅) ↔ ∃𝑥 ∈ ℕ 𝜑)
8 df-rex 3058 . . 3 (∃𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝜑}∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑}𝑥𝑦 ↔ ∃𝑥(𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ∧ ∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑}𝑥𝑦))
9 rabid 3417 . . . . 5 (𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ (𝑥 ∈ ℕ ∧ 𝜑))
10 df-ral 3049 . . . . . 6 (∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑}𝑥𝑦 ↔ ∀𝑦(𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} → 𝑥𝑦))
11 nnwos.1 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝜑𝜓))
1211elrab 3643 . . . . . . . . 9 (𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ (𝑦 ∈ ℕ ∧ 𝜓))
1312imbi1i 349 . . . . . . . 8 ((𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} → 𝑥𝑦) ↔ ((𝑦 ∈ ℕ ∧ 𝜓) → 𝑥𝑦))
14 impexp 450 . . . . . . . 8 (((𝑦 ∈ ℕ ∧ 𝜓) → 𝑥𝑦) ↔ (𝑦 ∈ ℕ → (𝜓𝑥𝑦)))
1513, 14bitri 275 . . . . . . 7 ((𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} → 𝑥𝑦) ↔ (𝑦 ∈ ℕ → (𝜓𝑥𝑦)))
1615albii 1820 . . . . . 6 (∀𝑦(𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} → 𝑥𝑦) ↔ ∀𝑦(𝑦 ∈ ℕ → (𝜓𝑥𝑦)))
1710, 16bitri 275 . . . . 5 (∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑}𝑥𝑦 ↔ ∀𝑦(𝑦 ∈ ℕ → (𝜓𝑥𝑦)))
189, 17anbi12i 628 . . . 4 ((𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ∧ ∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑}𝑥𝑦) ↔ ((𝑥 ∈ ℕ ∧ 𝜑) ∧ ∀𝑦(𝑦 ∈ ℕ → (𝜓𝑥𝑦))))
1918exbii 1849 . . 3 (∃𝑥(𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ∧ ∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑}𝑥𝑦) ↔ ∃𝑥((𝑥 ∈ ℕ ∧ 𝜑) ∧ ∀𝑦(𝑦 ∈ ℕ → (𝜓𝑥𝑦))))
20 df-ral 3049 . . . . . . 7 (∀𝑦 ∈ ℕ (𝜓𝑥𝑦) ↔ ∀𝑦(𝑦 ∈ ℕ → (𝜓𝑥𝑦)))
2120anbi2i 623 . . . . . 6 (((𝑥 ∈ ℕ ∧ 𝜑) ∧ ∀𝑦 ∈ ℕ (𝜓𝑥𝑦)) ↔ ((𝑥 ∈ ℕ ∧ 𝜑) ∧ ∀𝑦(𝑦 ∈ ℕ → (𝜓𝑥𝑦))))
22 anass 468 . . . . . 6 (((𝑥 ∈ ℕ ∧ 𝜑) ∧ ∀𝑦 ∈ ℕ (𝜓𝑥𝑦)) ↔ (𝑥 ∈ ℕ ∧ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓𝑥𝑦))))
2321, 22bitr3i 277 . . . . 5 (((𝑥 ∈ ℕ ∧ 𝜑) ∧ ∀𝑦(𝑦 ∈ ℕ → (𝜓𝑥𝑦))) ↔ (𝑥 ∈ ℕ ∧ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓𝑥𝑦))))
2423exbii 1849 . . . 4 (∃𝑥((𝑥 ∈ ℕ ∧ 𝜑) ∧ ∀𝑦(𝑦 ∈ ℕ → (𝜓𝑥𝑦))) ↔ ∃𝑥(𝑥 ∈ ℕ ∧ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓𝑥𝑦))))
25 df-rex 3058 . . . 4 (∃𝑥 ∈ ℕ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓𝑥𝑦)) ↔ ∃𝑥(𝑥 ∈ ℕ ∧ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓𝑥𝑦))))
2624, 25bitr4i 278 . . 3 (∃𝑥((𝑥 ∈ ℕ ∧ 𝜑) ∧ ∀𝑦(𝑦 ∈ ℕ → (𝜓𝑥𝑦))) ↔ ∃𝑥 ∈ ℕ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓𝑥𝑦)))
278, 19, 263bitri 297 . 2 (∃𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝜑}∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑}𝑥𝑦 ↔ ∃𝑥 ∈ ℕ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓𝑥𝑦)))
283, 7, 273imtr3i 291 1 (∃𝑥 ∈ ℕ 𝜑 → ∃𝑥 ∈ ℕ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓𝑥𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1539  wex 1780  wcel 2113  wne 2929  wral 3048  wrex 3057  {crab 3396  wss 3898  c0 4282   class class class wbr 5093  cle 11154  cn 12132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-n0 12389  df-z 12476  df-uz 12739
This theorem is referenced by:  indstr  12816  infpnlem2  16825
  Copyright terms: Public domain W3C validator