MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnwos Structured version   Visualization version   GIF version

Theorem nnwos 12936
Description: Well-ordering principle: any nonempty set of positive integers has a least element (schema form). (Contributed by NM, 17-Aug-2001.)
Hypothesis
Ref Expression
nnwos.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
nnwos (∃𝑥 ∈ ℕ 𝜑 → ∃𝑥 ∈ ℕ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓𝑥𝑦)))
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem nnwos
StepHypRef Expression
1 nfrab1 3441 . . 3 𝑥{𝑥 ∈ ℕ ∣ 𝜑}
2 nfcv 2899 . . 3 𝑦{𝑥 ∈ ℕ ∣ 𝜑}
31, 2nnwof 12935 . 2 (({𝑥 ∈ ℕ ∣ 𝜑} ⊆ ℕ ∧ {𝑥 ∈ ℕ ∣ 𝜑} ≠ ∅) → ∃𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝜑}∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑}𝑥𝑦)
4 ssrab2 4060 . . . 4 {𝑥 ∈ ℕ ∣ 𝜑} ⊆ ℕ
54biantrur 530 . . 3 ({𝑥 ∈ ℕ ∣ 𝜑} ≠ ∅ ↔ ({𝑥 ∈ ℕ ∣ 𝜑} ⊆ ℕ ∧ {𝑥 ∈ ℕ ∣ 𝜑} ≠ ∅))
6 rabn0 4369 . . 3 ({𝑥 ∈ ℕ ∣ 𝜑} ≠ ∅ ↔ ∃𝑥 ∈ ℕ 𝜑)
75, 6bitr3i 277 . 2 (({𝑥 ∈ ℕ ∣ 𝜑} ⊆ ℕ ∧ {𝑥 ∈ ℕ ∣ 𝜑} ≠ ∅) ↔ ∃𝑥 ∈ ℕ 𝜑)
8 df-rex 3062 . . 3 (∃𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝜑}∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑}𝑥𝑦 ↔ ∃𝑥(𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ∧ ∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑}𝑥𝑦))
9 rabid 3442 . . . . 5 (𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ (𝑥 ∈ ℕ ∧ 𝜑))
10 df-ral 3053 . . . . . 6 (∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑}𝑥𝑦 ↔ ∀𝑦(𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} → 𝑥𝑦))
11 nnwos.1 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝜑𝜓))
1211elrab 3676 . . . . . . . . 9 (𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ (𝑦 ∈ ℕ ∧ 𝜓))
1312imbi1i 349 . . . . . . . 8 ((𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} → 𝑥𝑦) ↔ ((𝑦 ∈ ℕ ∧ 𝜓) → 𝑥𝑦))
14 impexp 450 . . . . . . . 8 (((𝑦 ∈ ℕ ∧ 𝜓) → 𝑥𝑦) ↔ (𝑦 ∈ ℕ → (𝜓𝑥𝑦)))
1513, 14bitri 275 . . . . . . 7 ((𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} → 𝑥𝑦) ↔ (𝑦 ∈ ℕ → (𝜓𝑥𝑦)))
1615albii 1819 . . . . . 6 (∀𝑦(𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} → 𝑥𝑦) ↔ ∀𝑦(𝑦 ∈ ℕ → (𝜓𝑥𝑦)))
1710, 16bitri 275 . . . . 5 (∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑}𝑥𝑦 ↔ ∀𝑦(𝑦 ∈ ℕ → (𝜓𝑥𝑦)))
189, 17anbi12i 628 . . . 4 ((𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ∧ ∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑}𝑥𝑦) ↔ ((𝑥 ∈ ℕ ∧ 𝜑) ∧ ∀𝑦(𝑦 ∈ ℕ → (𝜓𝑥𝑦))))
1918exbii 1848 . . 3 (∃𝑥(𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ∧ ∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑}𝑥𝑦) ↔ ∃𝑥((𝑥 ∈ ℕ ∧ 𝜑) ∧ ∀𝑦(𝑦 ∈ ℕ → (𝜓𝑥𝑦))))
20 df-ral 3053 . . . . . . 7 (∀𝑦 ∈ ℕ (𝜓𝑥𝑦) ↔ ∀𝑦(𝑦 ∈ ℕ → (𝜓𝑥𝑦)))
2120anbi2i 623 . . . . . 6 (((𝑥 ∈ ℕ ∧ 𝜑) ∧ ∀𝑦 ∈ ℕ (𝜓𝑥𝑦)) ↔ ((𝑥 ∈ ℕ ∧ 𝜑) ∧ ∀𝑦(𝑦 ∈ ℕ → (𝜓𝑥𝑦))))
22 anass 468 . . . . . 6 (((𝑥 ∈ ℕ ∧ 𝜑) ∧ ∀𝑦 ∈ ℕ (𝜓𝑥𝑦)) ↔ (𝑥 ∈ ℕ ∧ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓𝑥𝑦))))
2321, 22bitr3i 277 . . . . 5 (((𝑥 ∈ ℕ ∧ 𝜑) ∧ ∀𝑦(𝑦 ∈ ℕ → (𝜓𝑥𝑦))) ↔ (𝑥 ∈ ℕ ∧ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓𝑥𝑦))))
2423exbii 1848 . . . 4 (∃𝑥((𝑥 ∈ ℕ ∧ 𝜑) ∧ ∀𝑦(𝑦 ∈ ℕ → (𝜓𝑥𝑦))) ↔ ∃𝑥(𝑥 ∈ ℕ ∧ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓𝑥𝑦))))
25 df-rex 3062 . . . 4 (∃𝑥 ∈ ℕ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓𝑥𝑦)) ↔ ∃𝑥(𝑥 ∈ ℕ ∧ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓𝑥𝑦))))
2624, 25bitr4i 278 . . 3 (∃𝑥((𝑥 ∈ ℕ ∧ 𝜑) ∧ ∀𝑦(𝑦 ∈ ℕ → (𝜓𝑥𝑦))) ↔ ∃𝑥 ∈ ℕ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓𝑥𝑦)))
278, 19, 263bitri 297 . 2 (∃𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝜑}∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑}𝑥𝑦 ↔ ∃𝑥 ∈ ℕ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓𝑥𝑦)))
283, 7, 273imtr3i 291 1 (∃𝑥 ∈ ℕ 𝜑 → ∃𝑥 ∈ ℕ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓𝑥𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538  wex 1779  wcel 2109  wne 2933  wral 3052  wrex 3061  {crab 3420  wss 3931  c0 4313   class class class wbr 5124  cle 11275  cn 12245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-n0 12507  df-z 12594  df-uz 12858
This theorem is referenced by:  indstr  12937  infpnlem2  16936
  Copyright terms: Public domain W3C validator