![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nnwos | Structured version Visualization version GIF version |
Description: Well-ordering principle: any nonempty set of positive integers has a least element (schema form). (Contributed by NM, 17-Aug-2001.) |
Ref | Expression |
---|---|
nnwos.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
nnwos | ⊢ (∃𝑥 ∈ ℕ 𝜑 → ∃𝑥 ∈ ℕ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓 → 𝑥 ≤ 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfrab1 3451 | . . 3 ⊢ Ⅎ𝑥{𝑥 ∈ ℕ ∣ 𝜑} | |
2 | nfcv 2903 | . . 3 ⊢ Ⅎ𝑦{𝑥 ∈ ℕ ∣ 𝜑} | |
3 | 1, 2 | nnwof 12897 | . 2 ⊢ (({𝑥 ∈ ℕ ∣ 𝜑} ⊆ ℕ ∧ {𝑥 ∈ ℕ ∣ 𝜑} ≠ ∅) → ∃𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝜑}∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑}𝑥 ≤ 𝑦) |
4 | ssrab2 4077 | . . . 4 ⊢ {𝑥 ∈ ℕ ∣ 𝜑} ⊆ ℕ | |
5 | 4 | biantrur 531 | . . 3 ⊢ ({𝑥 ∈ ℕ ∣ 𝜑} ≠ ∅ ↔ ({𝑥 ∈ ℕ ∣ 𝜑} ⊆ ℕ ∧ {𝑥 ∈ ℕ ∣ 𝜑} ≠ ∅)) |
6 | rabn0 4385 | . . 3 ⊢ ({𝑥 ∈ ℕ ∣ 𝜑} ≠ ∅ ↔ ∃𝑥 ∈ ℕ 𝜑) | |
7 | 5, 6 | bitr3i 276 | . 2 ⊢ (({𝑥 ∈ ℕ ∣ 𝜑} ⊆ ℕ ∧ {𝑥 ∈ ℕ ∣ 𝜑} ≠ ∅) ↔ ∃𝑥 ∈ ℕ 𝜑) |
8 | df-rex 3071 | . . 3 ⊢ (∃𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝜑}∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑}𝑥 ≤ 𝑦 ↔ ∃𝑥(𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ∧ ∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑}𝑥 ≤ 𝑦)) | |
9 | rabid 3452 | . . . . 5 ⊢ (𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ (𝑥 ∈ ℕ ∧ 𝜑)) | |
10 | df-ral 3062 | . . . . . 6 ⊢ (∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑}𝑥 ≤ 𝑦 ↔ ∀𝑦(𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} → 𝑥 ≤ 𝑦)) | |
11 | nnwos.1 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
12 | 11 | elrab 3683 | . . . . . . . . 9 ⊢ (𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ (𝑦 ∈ ℕ ∧ 𝜓)) |
13 | 12 | imbi1i 349 | . . . . . . . 8 ⊢ ((𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} → 𝑥 ≤ 𝑦) ↔ ((𝑦 ∈ ℕ ∧ 𝜓) → 𝑥 ≤ 𝑦)) |
14 | impexp 451 | . . . . . . . 8 ⊢ (((𝑦 ∈ ℕ ∧ 𝜓) → 𝑥 ≤ 𝑦) ↔ (𝑦 ∈ ℕ → (𝜓 → 𝑥 ≤ 𝑦))) | |
15 | 13, 14 | bitri 274 | . . . . . . 7 ⊢ ((𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} → 𝑥 ≤ 𝑦) ↔ (𝑦 ∈ ℕ → (𝜓 → 𝑥 ≤ 𝑦))) |
16 | 15 | albii 1821 | . . . . . 6 ⊢ (∀𝑦(𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} → 𝑥 ≤ 𝑦) ↔ ∀𝑦(𝑦 ∈ ℕ → (𝜓 → 𝑥 ≤ 𝑦))) |
17 | 10, 16 | bitri 274 | . . . . 5 ⊢ (∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑}𝑥 ≤ 𝑦 ↔ ∀𝑦(𝑦 ∈ ℕ → (𝜓 → 𝑥 ≤ 𝑦))) |
18 | 9, 17 | anbi12i 627 | . . . 4 ⊢ ((𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ∧ ∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑}𝑥 ≤ 𝑦) ↔ ((𝑥 ∈ ℕ ∧ 𝜑) ∧ ∀𝑦(𝑦 ∈ ℕ → (𝜓 → 𝑥 ≤ 𝑦)))) |
19 | 18 | exbii 1850 | . . 3 ⊢ (∃𝑥(𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ∧ ∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑}𝑥 ≤ 𝑦) ↔ ∃𝑥((𝑥 ∈ ℕ ∧ 𝜑) ∧ ∀𝑦(𝑦 ∈ ℕ → (𝜓 → 𝑥 ≤ 𝑦)))) |
20 | df-ral 3062 | . . . . . . 7 ⊢ (∀𝑦 ∈ ℕ (𝜓 → 𝑥 ≤ 𝑦) ↔ ∀𝑦(𝑦 ∈ ℕ → (𝜓 → 𝑥 ≤ 𝑦))) | |
21 | 20 | anbi2i 623 | . . . . . 6 ⊢ (((𝑥 ∈ ℕ ∧ 𝜑) ∧ ∀𝑦 ∈ ℕ (𝜓 → 𝑥 ≤ 𝑦)) ↔ ((𝑥 ∈ ℕ ∧ 𝜑) ∧ ∀𝑦(𝑦 ∈ ℕ → (𝜓 → 𝑥 ≤ 𝑦)))) |
22 | anass 469 | . . . . . 6 ⊢ (((𝑥 ∈ ℕ ∧ 𝜑) ∧ ∀𝑦 ∈ ℕ (𝜓 → 𝑥 ≤ 𝑦)) ↔ (𝑥 ∈ ℕ ∧ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓 → 𝑥 ≤ 𝑦)))) | |
23 | 21, 22 | bitr3i 276 | . . . . 5 ⊢ (((𝑥 ∈ ℕ ∧ 𝜑) ∧ ∀𝑦(𝑦 ∈ ℕ → (𝜓 → 𝑥 ≤ 𝑦))) ↔ (𝑥 ∈ ℕ ∧ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓 → 𝑥 ≤ 𝑦)))) |
24 | 23 | exbii 1850 | . . . 4 ⊢ (∃𝑥((𝑥 ∈ ℕ ∧ 𝜑) ∧ ∀𝑦(𝑦 ∈ ℕ → (𝜓 → 𝑥 ≤ 𝑦))) ↔ ∃𝑥(𝑥 ∈ ℕ ∧ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓 → 𝑥 ≤ 𝑦)))) |
25 | df-rex 3071 | . . . 4 ⊢ (∃𝑥 ∈ ℕ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓 → 𝑥 ≤ 𝑦)) ↔ ∃𝑥(𝑥 ∈ ℕ ∧ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓 → 𝑥 ≤ 𝑦)))) | |
26 | 24, 25 | bitr4i 277 | . . 3 ⊢ (∃𝑥((𝑥 ∈ ℕ ∧ 𝜑) ∧ ∀𝑦(𝑦 ∈ ℕ → (𝜓 → 𝑥 ≤ 𝑦))) ↔ ∃𝑥 ∈ ℕ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓 → 𝑥 ≤ 𝑦))) |
27 | 8, 19, 26 | 3bitri 296 | . 2 ⊢ (∃𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝜑}∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑}𝑥 ≤ 𝑦 ↔ ∃𝑥 ∈ ℕ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓 → 𝑥 ≤ 𝑦))) |
28 | 3, 7, 27 | 3imtr3i 290 | 1 ⊢ (∃𝑥 ∈ ℕ 𝜑 → ∃𝑥 ∈ ℕ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓 → 𝑥 ≤ 𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∀wal 1539 ∃wex 1781 ∈ wcel 2106 ≠ wne 2940 ∀wral 3061 ∃wrex 3070 {crab 3432 ⊆ wss 3948 ∅c0 4322 class class class wbr 5148 ≤ cle 11248 ℕcn 12211 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-n0 12472 df-z 12558 df-uz 12822 |
This theorem is referenced by: indstr 12899 infpnlem2 16843 |
Copyright terms: Public domain | W3C validator |