Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nnwos | Structured version Visualization version GIF version |
Description: Well-ordering principle: any nonempty set of positive integers has a least element (schema form). (Contributed by NM, 17-Aug-2001.) |
Ref | Expression |
---|---|
nnwos.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
nnwos | ⊢ (∃𝑥 ∈ ℕ 𝜑 → ∃𝑥 ∈ ℕ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓 → 𝑥 ≤ 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfrab1 3310 | . . 3 ⊢ Ⅎ𝑥{𝑥 ∈ ℕ ∣ 𝜑} | |
2 | nfcv 2906 | . . 3 ⊢ Ⅎ𝑦{𝑥 ∈ ℕ ∣ 𝜑} | |
3 | 1, 2 | nnwof 12583 | . 2 ⊢ (({𝑥 ∈ ℕ ∣ 𝜑} ⊆ ℕ ∧ {𝑥 ∈ ℕ ∣ 𝜑} ≠ ∅) → ∃𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝜑}∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑}𝑥 ≤ 𝑦) |
4 | ssrab2 4009 | . . . 4 ⊢ {𝑥 ∈ ℕ ∣ 𝜑} ⊆ ℕ | |
5 | 4 | biantrur 530 | . . 3 ⊢ ({𝑥 ∈ ℕ ∣ 𝜑} ≠ ∅ ↔ ({𝑥 ∈ ℕ ∣ 𝜑} ⊆ ℕ ∧ {𝑥 ∈ ℕ ∣ 𝜑} ≠ ∅)) |
6 | rabn0 4316 | . . 3 ⊢ ({𝑥 ∈ ℕ ∣ 𝜑} ≠ ∅ ↔ ∃𝑥 ∈ ℕ 𝜑) | |
7 | 5, 6 | bitr3i 276 | . 2 ⊢ (({𝑥 ∈ ℕ ∣ 𝜑} ⊆ ℕ ∧ {𝑥 ∈ ℕ ∣ 𝜑} ≠ ∅) ↔ ∃𝑥 ∈ ℕ 𝜑) |
8 | df-rex 3069 | . . 3 ⊢ (∃𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝜑}∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑}𝑥 ≤ 𝑦 ↔ ∃𝑥(𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ∧ ∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑}𝑥 ≤ 𝑦)) | |
9 | rabid 3304 | . . . . 5 ⊢ (𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ (𝑥 ∈ ℕ ∧ 𝜑)) | |
10 | df-ral 3068 | . . . . . 6 ⊢ (∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑}𝑥 ≤ 𝑦 ↔ ∀𝑦(𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} → 𝑥 ≤ 𝑦)) | |
11 | nnwos.1 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
12 | 11 | elrab 3617 | . . . . . . . . 9 ⊢ (𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ (𝑦 ∈ ℕ ∧ 𝜓)) |
13 | 12 | imbi1i 349 | . . . . . . . 8 ⊢ ((𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} → 𝑥 ≤ 𝑦) ↔ ((𝑦 ∈ ℕ ∧ 𝜓) → 𝑥 ≤ 𝑦)) |
14 | impexp 450 | . . . . . . . 8 ⊢ (((𝑦 ∈ ℕ ∧ 𝜓) → 𝑥 ≤ 𝑦) ↔ (𝑦 ∈ ℕ → (𝜓 → 𝑥 ≤ 𝑦))) | |
15 | 13, 14 | bitri 274 | . . . . . . 7 ⊢ ((𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} → 𝑥 ≤ 𝑦) ↔ (𝑦 ∈ ℕ → (𝜓 → 𝑥 ≤ 𝑦))) |
16 | 15 | albii 1823 | . . . . . 6 ⊢ (∀𝑦(𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} → 𝑥 ≤ 𝑦) ↔ ∀𝑦(𝑦 ∈ ℕ → (𝜓 → 𝑥 ≤ 𝑦))) |
17 | 10, 16 | bitri 274 | . . . . 5 ⊢ (∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑}𝑥 ≤ 𝑦 ↔ ∀𝑦(𝑦 ∈ ℕ → (𝜓 → 𝑥 ≤ 𝑦))) |
18 | 9, 17 | anbi12i 626 | . . . 4 ⊢ ((𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ∧ ∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑}𝑥 ≤ 𝑦) ↔ ((𝑥 ∈ ℕ ∧ 𝜑) ∧ ∀𝑦(𝑦 ∈ ℕ → (𝜓 → 𝑥 ≤ 𝑦)))) |
19 | 18 | exbii 1851 | . . 3 ⊢ (∃𝑥(𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ∧ ∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑}𝑥 ≤ 𝑦) ↔ ∃𝑥((𝑥 ∈ ℕ ∧ 𝜑) ∧ ∀𝑦(𝑦 ∈ ℕ → (𝜓 → 𝑥 ≤ 𝑦)))) |
20 | df-ral 3068 | . . . . . . 7 ⊢ (∀𝑦 ∈ ℕ (𝜓 → 𝑥 ≤ 𝑦) ↔ ∀𝑦(𝑦 ∈ ℕ → (𝜓 → 𝑥 ≤ 𝑦))) | |
21 | 20 | anbi2i 622 | . . . . . 6 ⊢ (((𝑥 ∈ ℕ ∧ 𝜑) ∧ ∀𝑦 ∈ ℕ (𝜓 → 𝑥 ≤ 𝑦)) ↔ ((𝑥 ∈ ℕ ∧ 𝜑) ∧ ∀𝑦(𝑦 ∈ ℕ → (𝜓 → 𝑥 ≤ 𝑦)))) |
22 | anass 468 | . . . . . 6 ⊢ (((𝑥 ∈ ℕ ∧ 𝜑) ∧ ∀𝑦 ∈ ℕ (𝜓 → 𝑥 ≤ 𝑦)) ↔ (𝑥 ∈ ℕ ∧ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓 → 𝑥 ≤ 𝑦)))) | |
23 | 21, 22 | bitr3i 276 | . . . . 5 ⊢ (((𝑥 ∈ ℕ ∧ 𝜑) ∧ ∀𝑦(𝑦 ∈ ℕ → (𝜓 → 𝑥 ≤ 𝑦))) ↔ (𝑥 ∈ ℕ ∧ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓 → 𝑥 ≤ 𝑦)))) |
24 | 23 | exbii 1851 | . . . 4 ⊢ (∃𝑥((𝑥 ∈ ℕ ∧ 𝜑) ∧ ∀𝑦(𝑦 ∈ ℕ → (𝜓 → 𝑥 ≤ 𝑦))) ↔ ∃𝑥(𝑥 ∈ ℕ ∧ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓 → 𝑥 ≤ 𝑦)))) |
25 | df-rex 3069 | . . . 4 ⊢ (∃𝑥 ∈ ℕ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓 → 𝑥 ≤ 𝑦)) ↔ ∃𝑥(𝑥 ∈ ℕ ∧ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓 → 𝑥 ≤ 𝑦)))) | |
26 | 24, 25 | bitr4i 277 | . . 3 ⊢ (∃𝑥((𝑥 ∈ ℕ ∧ 𝜑) ∧ ∀𝑦(𝑦 ∈ ℕ → (𝜓 → 𝑥 ≤ 𝑦))) ↔ ∃𝑥 ∈ ℕ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓 → 𝑥 ≤ 𝑦))) |
27 | 8, 19, 26 | 3bitri 296 | . 2 ⊢ (∃𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝜑}∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑}𝑥 ≤ 𝑦 ↔ ∃𝑥 ∈ ℕ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓 → 𝑥 ≤ 𝑦))) |
28 | 3, 7, 27 | 3imtr3i 290 | 1 ⊢ (∃𝑥 ∈ ℕ 𝜑 → ∃𝑥 ∈ ℕ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓 → 𝑥 ≤ 𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1537 ∃wex 1783 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 ∃wrex 3064 {crab 3067 ⊆ wss 3883 ∅c0 4253 class class class wbr 5070 ≤ cle 10941 ℕcn 11903 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 |
This theorem is referenced by: indstr 12585 infpnlem2 16540 |
Copyright terms: Public domain | W3C validator |