| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nnwos | Structured version Visualization version GIF version | ||
| Description: Well-ordering principle: any nonempty set of positive integers has a least element (schema form). (Contributed by NM, 17-Aug-2001.) |
| Ref | Expression |
|---|---|
| nnwos.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| nnwos | ⊢ (∃𝑥 ∈ ℕ 𝜑 → ∃𝑥 ∈ ℕ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓 → 𝑥 ≤ 𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfrab1 3426 | . . 3 ⊢ Ⅎ𝑥{𝑥 ∈ ℕ ∣ 𝜑} | |
| 2 | nfcv 2891 | . . 3 ⊢ Ⅎ𝑦{𝑥 ∈ ℕ ∣ 𝜑} | |
| 3 | 1, 2 | nnwof 12873 | . 2 ⊢ (({𝑥 ∈ ℕ ∣ 𝜑} ⊆ ℕ ∧ {𝑥 ∈ ℕ ∣ 𝜑} ≠ ∅) → ∃𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝜑}∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑}𝑥 ≤ 𝑦) |
| 4 | ssrab2 4043 | . . . 4 ⊢ {𝑥 ∈ ℕ ∣ 𝜑} ⊆ ℕ | |
| 5 | 4 | biantrur 530 | . . 3 ⊢ ({𝑥 ∈ ℕ ∣ 𝜑} ≠ ∅ ↔ ({𝑥 ∈ ℕ ∣ 𝜑} ⊆ ℕ ∧ {𝑥 ∈ ℕ ∣ 𝜑} ≠ ∅)) |
| 6 | rabn0 4352 | . . 3 ⊢ ({𝑥 ∈ ℕ ∣ 𝜑} ≠ ∅ ↔ ∃𝑥 ∈ ℕ 𝜑) | |
| 7 | 5, 6 | bitr3i 277 | . 2 ⊢ (({𝑥 ∈ ℕ ∣ 𝜑} ⊆ ℕ ∧ {𝑥 ∈ ℕ ∣ 𝜑} ≠ ∅) ↔ ∃𝑥 ∈ ℕ 𝜑) |
| 8 | df-rex 3054 | . . 3 ⊢ (∃𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝜑}∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑}𝑥 ≤ 𝑦 ↔ ∃𝑥(𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ∧ ∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑}𝑥 ≤ 𝑦)) | |
| 9 | rabid 3427 | . . . . 5 ⊢ (𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ (𝑥 ∈ ℕ ∧ 𝜑)) | |
| 10 | df-ral 3045 | . . . . . 6 ⊢ (∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑}𝑥 ≤ 𝑦 ↔ ∀𝑦(𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} → 𝑥 ≤ 𝑦)) | |
| 11 | nnwos.1 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 12 | 11 | elrab 3659 | . . . . . . . . 9 ⊢ (𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ (𝑦 ∈ ℕ ∧ 𝜓)) |
| 13 | 12 | imbi1i 349 | . . . . . . . 8 ⊢ ((𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} → 𝑥 ≤ 𝑦) ↔ ((𝑦 ∈ ℕ ∧ 𝜓) → 𝑥 ≤ 𝑦)) |
| 14 | impexp 450 | . . . . . . . 8 ⊢ (((𝑦 ∈ ℕ ∧ 𝜓) → 𝑥 ≤ 𝑦) ↔ (𝑦 ∈ ℕ → (𝜓 → 𝑥 ≤ 𝑦))) | |
| 15 | 13, 14 | bitri 275 | . . . . . . 7 ⊢ ((𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} → 𝑥 ≤ 𝑦) ↔ (𝑦 ∈ ℕ → (𝜓 → 𝑥 ≤ 𝑦))) |
| 16 | 15 | albii 1819 | . . . . . 6 ⊢ (∀𝑦(𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} → 𝑥 ≤ 𝑦) ↔ ∀𝑦(𝑦 ∈ ℕ → (𝜓 → 𝑥 ≤ 𝑦))) |
| 17 | 10, 16 | bitri 275 | . . . . 5 ⊢ (∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑}𝑥 ≤ 𝑦 ↔ ∀𝑦(𝑦 ∈ ℕ → (𝜓 → 𝑥 ≤ 𝑦))) |
| 18 | 9, 17 | anbi12i 628 | . . . 4 ⊢ ((𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ∧ ∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑}𝑥 ≤ 𝑦) ↔ ((𝑥 ∈ ℕ ∧ 𝜑) ∧ ∀𝑦(𝑦 ∈ ℕ → (𝜓 → 𝑥 ≤ 𝑦)))) |
| 19 | 18 | exbii 1848 | . . 3 ⊢ (∃𝑥(𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ∧ ∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑}𝑥 ≤ 𝑦) ↔ ∃𝑥((𝑥 ∈ ℕ ∧ 𝜑) ∧ ∀𝑦(𝑦 ∈ ℕ → (𝜓 → 𝑥 ≤ 𝑦)))) |
| 20 | df-ral 3045 | . . . . . . 7 ⊢ (∀𝑦 ∈ ℕ (𝜓 → 𝑥 ≤ 𝑦) ↔ ∀𝑦(𝑦 ∈ ℕ → (𝜓 → 𝑥 ≤ 𝑦))) | |
| 21 | 20 | anbi2i 623 | . . . . . 6 ⊢ (((𝑥 ∈ ℕ ∧ 𝜑) ∧ ∀𝑦 ∈ ℕ (𝜓 → 𝑥 ≤ 𝑦)) ↔ ((𝑥 ∈ ℕ ∧ 𝜑) ∧ ∀𝑦(𝑦 ∈ ℕ → (𝜓 → 𝑥 ≤ 𝑦)))) |
| 22 | anass 468 | . . . . . 6 ⊢ (((𝑥 ∈ ℕ ∧ 𝜑) ∧ ∀𝑦 ∈ ℕ (𝜓 → 𝑥 ≤ 𝑦)) ↔ (𝑥 ∈ ℕ ∧ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓 → 𝑥 ≤ 𝑦)))) | |
| 23 | 21, 22 | bitr3i 277 | . . . . 5 ⊢ (((𝑥 ∈ ℕ ∧ 𝜑) ∧ ∀𝑦(𝑦 ∈ ℕ → (𝜓 → 𝑥 ≤ 𝑦))) ↔ (𝑥 ∈ ℕ ∧ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓 → 𝑥 ≤ 𝑦)))) |
| 24 | 23 | exbii 1848 | . . . 4 ⊢ (∃𝑥((𝑥 ∈ ℕ ∧ 𝜑) ∧ ∀𝑦(𝑦 ∈ ℕ → (𝜓 → 𝑥 ≤ 𝑦))) ↔ ∃𝑥(𝑥 ∈ ℕ ∧ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓 → 𝑥 ≤ 𝑦)))) |
| 25 | df-rex 3054 | . . . 4 ⊢ (∃𝑥 ∈ ℕ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓 → 𝑥 ≤ 𝑦)) ↔ ∃𝑥(𝑥 ∈ ℕ ∧ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓 → 𝑥 ≤ 𝑦)))) | |
| 26 | 24, 25 | bitr4i 278 | . . 3 ⊢ (∃𝑥((𝑥 ∈ ℕ ∧ 𝜑) ∧ ∀𝑦(𝑦 ∈ ℕ → (𝜓 → 𝑥 ≤ 𝑦))) ↔ ∃𝑥 ∈ ℕ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓 → 𝑥 ≤ 𝑦))) |
| 27 | 8, 19, 26 | 3bitri 297 | . 2 ⊢ (∃𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝜑}∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑}𝑥 ≤ 𝑦 ↔ ∃𝑥 ∈ ℕ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓 → 𝑥 ≤ 𝑦))) |
| 28 | 3, 7, 27 | 3imtr3i 291 | 1 ⊢ (∃𝑥 ∈ ℕ 𝜑 → ∃𝑥 ∈ ℕ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓 → 𝑥 ≤ 𝑦))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 ∃wex 1779 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∃wrex 3053 {crab 3405 ⊆ wss 3914 ∅c0 4296 class class class wbr 5107 ≤ cle 11209 ℕcn 12186 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-n0 12443 df-z 12530 df-uz 12794 |
| This theorem is referenced by: indstr 12875 infpnlem2 16882 |
| Copyright terms: Public domain | W3C validator |