MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subadd23d Structured version   Visualization version   GIF version

Theorem subadd23d 11515
Description: Commutative/associative law for addition and subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
negidd.1 (𝜑𝐴 ∈ ℂ)
pncand.2 (𝜑𝐵 ∈ ℂ)
subaddd.3 (𝜑𝐶 ∈ ℂ)
Assertion
Ref Expression
subadd23d (𝜑 → ((𝐴𝐵) + 𝐶) = (𝐴 + (𝐶𝐵)))

Proof of Theorem subadd23d
StepHypRef Expression
1 negidd.1 . 2 (𝜑𝐴 ∈ ℂ)
2 pncand.2 . 2 (𝜑𝐵 ∈ ℂ)
3 subaddd.3 . 2 (𝜑𝐶 ∈ ℂ)
4 subadd23 11393 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴𝐵) + 𝐶) = (𝐴 + (𝐶𝐵)))
51, 2, 3, 4syl3anc 1373 1 (𝜑 → ((𝐴𝐵) + 𝐶) = (𝐴 + (𝐶𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  (class class class)co 7353  cc 11026   + caddc 11031  cmin 11365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-po 5531  df-so 5532  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-ltxr 11173  df-sub 11367
This theorem is referenced by:  lincmb01cmp  13416  iccf1o  13417  fzosplitprm1  13698  subfzo0  13710  modfzo0difsn  13868  ccatswrd  14593  isercoll2  15594  fprodser  15874  bpoly4  15984  pythagtriplem1  16746  psdmul  22069  cphipval  25159  ovollb2lem  25405  dvfsumlem1  25948  quart1lem  26781  emcllem2  26923  basellem8  27014  lgseisenlem1  27302  addsq2nreurex  27371  eucrctshift  30205  numclwwlk3lem1  30344  ipval2  30669  lt2addrd  32707  constrrtcclem  33703  constrrecl  33738  bj-bary1lem1  37287  poimirlem19  37621  aks6d1c5lem1  42112  acongrep  42956  jm3.1lem2  42994  oddfl  45263  stoweidlem26  46011  cnambpcma  47282  fmtnorec2lem  47530  fmtnorec3  47536  gpg3nbgrvtx0  48064  submuladdmuld  48690  affinecomb2  48692  itscnhlc0yqe  48748
  Copyright terms: Public domain W3C validator