![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ablsubsub | Structured version Visualization version GIF version |
Description: Law for double subtraction. (Contributed by NM, 7-Apr-2015.) |
Ref | Expression |
---|---|
ablsubadd.b | ⊢ 𝐵 = (Base‘𝐺) |
ablsubadd.p | ⊢ + = (+g‘𝐺) |
ablsubadd.m | ⊢ − = (-g‘𝐺) |
ablsubsub.g | ⊢ (𝜑 → 𝐺 ∈ Abel) |
ablsubsub.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
ablsubsub.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
ablsubsub.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
Ref | Expression |
---|---|
ablsubsub | ⊢ (𝜑 → (𝑋 − (𝑌 − 𝑍)) = ((𝑋 − 𝑌) + 𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ablsubsub.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Abel) | |
2 | ablgrp 19647 | . . . 4 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → 𝐺 ∈ Grp) |
4 | ablsubsub.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
5 | ablsubsub.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
6 | ablsubsub.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
7 | ablsubadd.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
8 | ablsubadd.p | . . . 4 ⊢ + = (+g‘𝐺) | |
9 | ablsubadd.m | . . . 4 ⊢ − = (-g‘𝐺) | |
10 | 7, 8, 9 | grpsubsub 18908 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 − (𝑌 − 𝑍)) = (𝑋 + (𝑍 − 𝑌))) |
11 | 3, 4, 5, 6, 10 | syl13anc 1372 | . 2 ⊢ (𝜑 → (𝑋 − (𝑌 − 𝑍)) = (𝑋 + (𝑍 − 𝑌))) |
12 | 7, 8, 9 | grpaddsubass 18909 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑋 + 𝑍) − 𝑌) = (𝑋 + (𝑍 − 𝑌))) |
13 | 3, 4, 6, 5, 12 | syl13anc 1372 | . 2 ⊢ (𝜑 → ((𝑋 + 𝑍) − 𝑌) = (𝑋 + (𝑍 − 𝑌))) |
14 | 7, 8, 9 | abladdsub 19674 | . . 3 ⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑋 + 𝑍) − 𝑌) = ((𝑋 − 𝑌) + 𝑍)) |
15 | 1, 4, 6, 5, 14 | syl13anc 1372 | . 2 ⊢ (𝜑 → ((𝑋 + 𝑍) − 𝑌) = ((𝑋 − 𝑌) + 𝑍)) |
16 | 11, 13, 15 | 3eqtr2d 2778 | 1 ⊢ (𝜑 → (𝑋 − (𝑌 − 𝑍)) = ((𝑋 − 𝑌) + 𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 ‘cfv 6540 (class class class)co 7405 Basecbs 17140 +gcplusg 17193 Grpcgrp 18815 -gcsg 18817 Abelcabl 19643 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7971 df-2nd 7972 df-0g 17383 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-grp 18818 df-minusg 18819 df-sbg 18820 df-cmn 19644 df-abl 19645 |
This theorem is referenced by: ablsubsub4 19680 ablnncan 19682 ip2subdi 21188 |
Copyright terms: Public domain | W3C validator |