Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ablsubsub | Structured version Visualization version GIF version |
Description: Law for double subtraction. (Contributed by NM, 7-Apr-2015.) |
Ref | Expression |
---|---|
ablsubadd.b | ⊢ 𝐵 = (Base‘𝐺) |
ablsubadd.p | ⊢ + = (+g‘𝐺) |
ablsubadd.m | ⊢ − = (-g‘𝐺) |
ablsubsub.g | ⊢ (𝜑 → 𝐺 ∈ Abel) |
ablsubsub.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
ablsubsub.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
ablsubsub.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
Ref | Expression |
---|---|
ablsubsub | ⊢ (𝜑 → (𝑋 − (𝑌 − 𝑍)) = ((𝑋 − 𝑌) + 𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ablsubsub.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Abel) | |
2 | ablgrp 19306 | . . . 4 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → 𝐺 ∈ Grp) |
4 | ablsubsub.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
5 | ablsubsub.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
6 | ablsubsub.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
7 | ablsubadd.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
8 | ablsubadd.p | . . . 4 ⊢ + = (+g‘𝐺) | |
9 | ablsubadd.m | . . . 4 ⊢ − = (-g‘𝐺) | |
10 | 7, 8, 9 | grpsubsub 18579 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 − (𝑌 − 𝑍)) = (𝑋 + (𝑍 − 𝑌))) |
11 | 3, 4, 5, 6, 10 | syl13anc 1370 | . 2 ⊢ (𝜑 → (𝑋 − (𝑌 − 𝑍)) = (𝑋 + (𝑍 − 𝑌))) |
12 | 7, 8, 9 | grpaddsubass 18580 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑋 + 𝑍) − 𝑌) = (𝑋 + (𝑍 − 𝑌))) |
13 | 3, 4, 6, 5, 12 | syl13anc 1370 | . 2 ⊢ (𝜑 → ((𝑋 + 𝑍) − 𝑌) = (𝑋 + (𝑍 − 𝑌))) |
14 | 7, 8, 9 | abladdsub 19331 | . . 3 ⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑋 + 𝑍) − 𝑌) = ((𝑋 − 𝑌) + 𝑍)) |
15 | 1, 4, 6, 5, 14 | syl13anc 1370 | . 2 ⊢ (𝜑 → ((𝑋 + 𝑍) − 𝑌) = ((𝑋 − 𝑌) + 𝑍)) |
16 | 11, 13, 15 | 3eqtr2d 2784 | 1 ⊢ (𝜑 → (𝑋 − (𝑌 − 𝑍)) = ((𝑋 − 𝑌) + 𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 +gcplusg 16888 Grpcgrp 18492 -gcsg 18494 Abelcabl 19302 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-0g 17069 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-grp 18495 df-minusg 18496 df-sbg 18497 df-cmn 19303 df-abl 19304 |
This theorem is referenced by: ablsubsub4 19335 ablnncan 19337 ip2subdi 20761 |
Copyright terms: Public domain | W3C validator |