MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablsubsub Structured version   Visualization version   GIF version

Theorem ablsubsub 18575
Description: Law for double subtraction. (Contributed by NM, 7-Apr-2015.)
Hypotheses
Ref Expression
ablsubadd.b 𝐵 = (Base‘𝐺)
ablsubadd.p + = (+g𝐺)
ablsubadd.m = (-g𝐺)
ablsubsub.g (𝜑𝐺 ∈ Abel)
ablsubsub.x (𝜑𝑋𝐵)
ablsubsub.y (𝜑𝑌𝐵)
ablsubsub.z (𝜑𝑍𝐵)
Assertion
Ref Expression
ablsubsub (𝜑 → (𝑋 (𝑌 𝑍)) = ((𝑋 𝑌) + 𝑍))

Proof of Theorem ablsubsub
StepHypRef Expression
1 ablsubsub.g . . . 4 (𝜑𝐺 ∈ Abel)
2 ablgrp 18550 . . . 4 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
31, 2syl 17 . . 3 (𝜑𝐺 ∈ Grp)
4 ablsubsub.x . . 3 (𝜑𝑋𝐵)
5 ablsubsub.y . . 3 (𝜑𝑌𝐵)
6 ablsubsub.z . . 3 (𝜑𝑍𝐵)
7 ablsubadd.b . . . 4 𝐵 = (Base‘𝐺)
8 ablsubadd.p . . . 4 + = (+g𝐺)
9 ablsubadd.m . . . 4 = (-g𝐺)
107, 8, 9grpsubsub 17857 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 (𝑌 𝑍)) = (𝑋 + (𝑍 𝑌)))
113, 4, 5, 6, 10syl13anc 1497 . 2 (𝜑 → (𝑋 (𝑌 𝑍)) = (𝑋 + (𝑍 𝑌)))
127, 8, 9grpaddsubass 17858 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑍𝐵𝑌𝐵)) → ((𝑋 + 𝑍) 𝑌) = (𝑋 + (𝑍 𝑌)))
133, 4, 6, 5, 12syl13anc 1497 . 2 (𝜑 → ((𝑋 + 𝑍) 𝑌) = (𝑋 + (𝑍 𝑌)))
147, 8, 9abladdsub 18572 . . 3 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑍𝐵𝑌𝐵)) → ((𝑋 + 𝑍) 𝑌) = ((𝑋 𝑌) + 𝑍))
151, 4, 6, 5, 14syl13anc 1497 . 2 (𝜑 → ((𝑋 + 𝑍) 𝑌) = ((𝑋 𝑌) + 𝑍))
1611, 13, 153eqtr2d 2866 1 (𝜑 → (𝑋 (𝑌 𝑍)) = ((𝑋 𝑌) + 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1658  wcel 2166  cfv 6122  (class class class)co 6904  Basecbs 16221  +gcplusg 16304  Grpcgrp 17775  -gcsg 17777  Abelcabl 18546
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2390  ax-ext 2802  ax-rep 4993  ax-sep 5004  ax-nul 5012  ax-pow 5064  ax-pr 5126  ax-un 7208
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2604  df-eu 2639  df-clab 2811  df-cleq 2817  df-clel 2820  df-nfc 2957  df-ne 2999  df-ral 3121  df-rex 3122  df-reu 3123  df-rmo 3124  df-rab 3125  df-v 3415  df-sbc 3662  df-csb 3757  df-dif 3800  df-un 3802  df-in 3804  df-ss 3811  df-nul 4144  df-if 4306  df-pw 4379  df-sn 4397  df-pr 4399  df-op 4403  df-uni 4658  df-iun 4741  df-br 4873  df-opab 4935  df-mpt 4952  df-id 5249  df-xp 5347  df-rel 5348  df-cnv 5349  df-co 5350  df-dm 5351  df-rn 5352  df-res 5353  df-ima 5354  df-iota 6085  df-fun 6124  df-fn 6125  df-f 6126  df-f1 6127  df-fo 6128  df-f1o 6129  df-fv 6130  df-riota 6865  df-ov 6907  df-oprab 6908  df-mpt2 6909  df-1st 7427  df-2nd 7428  df-0g 16454  df-mgm 17594  df-sgrp 17636  df-mnd 17647  df-grp 17778  df-minusg 17779  df-sbg 17780  df-cmn 18547  df-abl 18548
This theorem is referenced by:  ablsubsub4  18576  ablnncan  18578  ip2subdi  20350
  Copyright terms: Public domain W3C validator