MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablsubsub Structured version   Visualization version   GIF version

Theorem ablsubsub 19419
Description: Law for double subtraction. (Contributed by NM, 7-Apr-2015.)
Hypotheses
Ref Expression
ablsubadd.b 𝐵 = (Base‘𝐺)
ablsubadd.p + = (+g𝐺)
ablsubadd.m = (-g𝐺)
ablsubsub.g (𝜑𝐺 ∈ Abel)
ablsubsub.x (𝜑𝑋𝐵)
ablsubsub.y (𝜑𝑌𝐵)
ablsubsub.z (𝜑𝑍𝐵)
Assertion
Ref Expression
ablsubsub (𝜑 → (𝑋 (𝑌 𝑍)) = ((𝑋 𝑌) + 𝑍))

Proof of Theorem ablsubsub
StepHypRef Expression
1 ablsubsub.g . . . 4 (𝜑𝐺 ∈ Abel)
2 ablgrp 19391 . . . 4 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
31, 2syl 17 . . 3 (𝜑𝐺 ∈ Grp)
4 ablsubsub.x . . 3 (𝜑𝑋𝐵)
5 ablsubsub.y . . 3 (𝜑𝑌𝐵)
6 ablsubsub.z . . 3 (𝜑𝑍𝐵)
7 ablsubadd.b . . . 4 𝐵 = (Base‘𝐺)
8 ablsubadd.p . . . 4 + = (+g𝐺)
9 ablsubadd.m . . . 4 = (-g𝐺)
107, 8, 9grpsubsub 18664 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 (𝑌 𝑍)) = (𝑋 + (𝑍 𝑌)))
113, 4, 5, 6, 10syl13anc 1371 . 2 (𝜑 → (𝑋 (𝑌 𝑍)) = (𝑋 + (𝑍 𝑌)))
127, 8, 9grpaddsubass 18665 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑍𝐵𝑌𝐵)) → ((𝑋 + 𝑍) 𝑌) = (𝑋 + (𝑍 𝑌)))
133, 4, 6, 5, 12syl13anc 1371 . 2 (𝜑 → ((𝑋 + 𝑍) 𝑌) = (𝑋 + (𝑍 𝑌)))
147, 8, 9abladdsub 19416 . . 3 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑍𝐵𝑌𝐵)) → ((𝑋 + 𝑍) 𝑌) = ((𝑋 𝑌) + 𝑍))
151, 4, 6, 5, 14syl13anc 1371 . 2 (𝜑 → ((𝑋 + 𝑍) 𝑌) = ((𝑋 𝑌) + 𝑍))
1611, 13, 153eqtr2d 2784 1 (𝜑 → (𝑋 (𝑌 𝑍)) = ((𝑋 𝑌) + 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  cfv 6433  (class class class)co 7275  Basecbs 16912  +gcplusg 16962  Grpcgrp 18577  -gcsg 18579  Abelcabl 19387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-minusg 18581  df-sbg 18582  df-cmn 19388  df-abl 19389
This theorem is referenced by:  ablsubsub4  19420  ablnncan  19422  ip2subdi  20849
  Copyright terms: Public domain W3C validator