MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablsubsub Structured version   Visualization version   GIF version

Theorem ablsubsub 19603
Description: Law for double subtraction. (Contributed by NM, 7-Apr-2015.)
Hypotheses
Ref Expression
ablsubadd.b 𝐵 = (Base‘𝐺)
ablsubadd.p + = (+g𝐺)
ablsubadd.m = (-g𝐺)
ablsubsub.g (𝜑𝐺 ∈ Abel)
ablsubsub.x (𝜑𝑋𝐵)
ablsubsub.y (𝜑𝑌𝐵)
ablsubsub.z (𝜑𝑍𝐵)
Assertion
Ref Expression
ablsubsub (𝜑 → (𝑋 (𝑌 𝑍)) = ((𝑋 𝑌) + 𝑍))

Proof of Theorem ablsubsub
StepHypRef Expression
1 ablsubsub.g . . . 4 (𝜑𝐺 ∈ Abel)
2 ablgrp 19574 . . . 4 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
31, 2syl 17 . . 3 (𝜑𝐺 ∈ Grp)
4 ablsubsub.x . . 3 (𝜑𝑋𝐵)
5 ablsubsub.y . . 3 (𝜑𝑌𝐵)
6 ablsubsub.z . . 3 (𝜑𝑍𝐵)
7 ablsubadd.b . . . 4 𝐵 = (Base‘𝐺)
8 ablsubadd.p . . . 4 + = (+g𝐺)
9 ablsubadd.m . . . 4 = (-g𝐺)
107, 8, 9grpsubsub 18843 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 (𝑌 𝑍)) = (𝑋 + (𝑍 𝑌)))
113, 4, 5, 6, 10syl13anc 1373 . 2 (𝜑 → (𝑋 (𝑌 𝑍)) = (𝑋 + (𝑍 𝑌)))
127, 8, 9grpaddsubass 18844 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑍𝐵𝑌𝐵)) → ((𝑋 + 𝑍) 𝑌) = (𝑋 + (𝑍 𝑌)))
133, 4, 6, 5, 12syl13anc 1373 . 2 (𝜑 → ((𝑋 + 𝑍) 𝑌) = (𝑋 + (𝑍 𝑌)))
147, 8, 9abladdsub 19600 . . 3 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑍𝐵𝑌𝐵)) → ((𝑋 + 𝑍) 𝑌) = ((𝑋 𝑌) + 𝑍))
151, 4, 6, 5, 14syl13anc 1373 . 2 (𝜑 → ((𝑋 + 𝑍) 𝑌) = ((𝑋 𝑌) + 𝑍))
1611, 13, 153eqtr2d 2783 1 (𝜑 → (𝑋 (𝑌 𝑍)) = ((𝑋 𝑌) + 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2107  cfv 6501  (class class class)co 7362  Basecbs 17090  +gcplusg 17140  Grpcgrp 18755  -gcsg 18757  Abelcabl 19570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-rmo 3356  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-id 5536  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-1st 7926  df-2nd 7927  df-0g 17330  df-mgm 18504  df-sgrp 18553  df-mnd 18564  df-grp 18758  df-minusg 18759  df-sbg 18760  df-cmn 19571  df-abl 19572
This theorem is referenced by:  ablsubsub4  19604  ablnncan  19606  ip2subdi  21064
  Copyright terms: Public domain W3C validator