MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablnncan Structured version   Visualization version   GIF version

Theorem ablnncan 19337
Description: Cancellation law for group subtraction. (nncan 11180 analog.) (Contributed by NM, 7-Apr-2015.)
Hypotheses
Ref Expression
ablnncan.b 𝐵 = (Base‘𝐺)
ablnncan.m = (-g𝐺)
ablnncan.g (𝜑𝐺 ∈ Abel)
ablnncan.x (𝜑𝑋𝐵)
ablnncan.y (𝜑𝑌𝐵)
Assertion
Ref Expression
ablnncan (𝜑 → (𝑋 (𝑋 𝑌)) = 𝑌)

Proof of Theorem ablnncan
StepHypRef Expression
1 ablnncan.b . . 3 𝐵 = (Base‘𝐺)
2 eqid 2738 . . 3 (+g𝐺) = (+g𝐺)
3 ablnncan.m . . 3 = (-g𝐺)
4 ablnncan.g . . 3 (𝜑𝐺 ∈ Abel)
5 ablnncan.x . . 3 (𝜑𝑋𝐵)
6 ablnncan.y . . 3 (𝜑𝑌𝐵)
71, 2, 3, 4, 5, 5, 6ablsubsub 19334 . 2 (𝜑 → (𝑋 (𝑋 𝑌)) = ((𝑋 𝑋)(+g𝐺)𝑌))
8 ablgrp 19306 . . . . 5 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
94, 8syl 17 . . . 4 (𝜑𝐺 ∈ Grp)
10 eqid 2738 . . . . 5 (0g𝐺) = (0g𝐺)
111, 10, 3grpsubid 18574 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋 𝑋) = (0g𝐺))
129, 5, 11syl2anc 583 . . 3 (𝜑 → (𝑋 𝑋) = (0g𝐺))
1312oveq1d 7270 . 2 (𝜑 → ((𝑋 𝑋)(+g𝐺)𝑌) = ((0g𝐺)(+g𝐺)𝑌))
141, 2, 10grplid 18524 . . 3 ((𝐺 ∈ Grp ∧ 𝑌𝐵) → ((0g𝐺)(+g𝐺)𝑌) = 𝑌)
159, 6, 14syl2anc 583 . 2 (𝜑 → ((0g𝐺)(+g𝐺)𝑌) = 𝑌)
167, 13, 153eqtrd 2782 1 (𝜑 → (𝑋 (𝑋 𝑌)) = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  cfv 6418  (class class class)co 7255  Basecbs 16840  +gcplusg 16888  0gc0g 17067  Grpcgrp 18492  -gcsg 18494  Abelcabl 19302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-sbg 18497  df-cmn 19303  df-abl 19304
This theorem is referenced by:  ablnnncan1  19340  pgpfac1lem3  19595  tsmsxplem1  23212  baerlem5blem2  39653
  Copyright terms: Public domain W3C validator