![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ablnncan | Structured version Visualization version GIF version |
Description: Cancellation law for group subtraction. (nncan 11536 analog.) (Contributed by NM, 7-Apr-2015.) |
Ref | Expression |
---|---|
ablnncan.b | ⊢ 𝐵 = (Base‘𝐺) |
ablnncan.m | ⊢ − = (-g‘𝐺) |
ablnncan.g | ⊢ (𝜑 → 𝐺 ∈ Abel) |
ablnncan.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
ablnncan.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
ablnncan | ⊢ (𝜑 → (𝑋 − (𝑋 − 𝑌)) = 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ablnncan.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | eqid 2735 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
3 | ablnncan.m | . . 3 ⊢ − = (-g‘𝐺) | |
4 | ablnncan.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ Abel) | |
5 | ablnncan.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
6 | ablnncan.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
7 | 1, 2, 3, 4, 5, 5, 6 | ablsubsub 19850 | . 2 ⊢ (𝜑 → (𝑋 − (𝑋 − 𝑌)) = ((𝑋 − 𝑋)(+g‘𝐺)𝑌)) |
8 | ablgrp 19818 | . . . . 5 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) | |
9 | 4, 8 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Grp) |
10 | eqid 2735 | . . . . 5 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
11 | 1, 10, 3 | grpsubid 19055 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋 − 𝑋) = (0g‘𝐺)) |
12 | 9, 5, 11 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑋 − 𝑋) = (0g‘𝐺)) |
13 | 12 | oveq1d 7446 | . 2 ⊢ (𝜑 → ((𝑋 − 𝑋)(+g‘𝐺)𝑌) = ((0g‘𝐺)(+g‘𝐺)𝑌)) |
14 | 1, 2, 10 | grplid 18998 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵) → ((0g‘𝐺)(+g‘𝐺)𝑌) = 𝑌) |
15 | 9, 6, 14 | syl2anc 584 | . 2 ⊢ (𝜑 → ((0g‘𝐺)(+g‘𝐺)𝑌) = 𝑌) |
16 | 7, 13, 15 | 3eqtrd 2779 | 1 ⊢ (𝜑 → (𝑋 − (𝑋 − 𝑌)) = 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 ‘cfv 6563 (class class class)co 7431 Basecbs 17245 +gcplusg 17298 0gc0g 17486 Grpcgrp 18964 -gcsg 18966 Abelcabl 19814 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8013 df-2nd 8014 df-0g 17488 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-grp 18967 df-minusg 18968 df-sbg 18969 df-cmn 19815 df-abl 19816 |
This theorem is referenced by: ablnnncan1 19856 pgpfac1lem3 20112 rngqiprngfulem4 21342 tsmsxplem1 24177 baerlem5blem2 41695 |
Copyright terms: Public domain | W3C validator |