Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablnncan Structured version   Visualization version   GIF version

Theorem ablnncan 19009
 Description: Cancellation law for group subtraction. (nncan 10953 analog.) (Contributed by NM, 7-Apr-2015.)
Hypotheses
Ref Expression
ablnncan.b 𝐵 = (Base‘𝐺)
ablnncan.m = (-g𝐺)
ablnncan.g (𝜑𝐺 ∈ Abel)
ablnncan.x (𝜑𝑋𝐵)
ablnncan.y (𝜑𝑌𝐵)
Assertion
Ref Expression
ablnncan (𝜑 → (𝑋 (𝑋 𝑌)) = 𝑌)

Proof of Theorem ablnncan
StepHypRef Expression
1 ablnncan.b . . 3 𝐵 = (Base‘𝐺)
2 eqid 2758 . . 3 (+g𝐺) = (+g𝐺)
3 ablnncan.m . . 3 = (-g𝐺)
4 ablnncan.g . . 3 (𝜑𝐺 ∈ Abel)
5 ablnncan.x . . 3 (𝜑𝑋𝐵)
6 ablnncan.y . . 3 (𝜑𝑌𝐵)
71, 2, 3, 4, 5, 5, 6ablsubsub 19006 . 2 (𝜑 → (𝑋 (𝑋 𝑌)) = ((𝑋 𝑋)(+g𝐺)𝑌))
8 ablgrp 18978 . . . . 5 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
94, 8syl 17 . . . 4 (𝜑𝐺 ∈ Grp)
10 eqid 2758 . . . . 5 (0g𝐺) = (0g𝐺)
111, 10, 3grpsubid 18250 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋 𝑋) = (0g𝐺))
129, 5, 11syl2anc 587 . . 3 (𝜑 → (𝑋 𝑋) = (0g𝐺))
1312oveq1d 7165 . 2 (𝜑 → ((𝑋 𝑋)(+g𝐺)𝑌) = ((0g𝐺)(+g𝐺)𝑌))
141, 2, 10grplid 18200 . . 3 ((𝐺 ∈ Grp ∧ 𝑌𝐵) → ((0g𝐺)(+g𝐺)𝑌) = 𝑌)
159, 6, 14syl2anc 587 . 2 (𝜑 → ((0g𝐺)(+g𝐺)𝑌) = 𝑌)
167, 13, 153eqtrd 2797 1 (𝜑 → (𝑋 (𝑋 𝑌)) = 𝑌)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1538   ∈ wcel 2111  ‘cfv 6335  (class class class)co 7150  Basecbs 16541  +gcplusg 16623  0gc0g 16771  Grpcgrp 18169  -gcsg 18171  Abelcabl 18974 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-op 4529  df-uni 4799  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-id 5430  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-fv 6343  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-1st 7693  df-2nd 7694  df-0g 16773  df-mgm 17918  df-sgrp 17967  df-mnd 17978  df-grp 18172  df-minusg 18173  df-sbg 18174  df-cmn 18975  df-abl 18976 This theorem is referenced by:  ablnnncan1  19012  pgpfac1lem3  19267  tsmsxplem1  22853  baerlem5blem2  39288
 Copyright terms: Public domain W3C validator