| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ablnncan | Structured version Visualization version GIF version | ||
| Description: Cancellation law for group subtraction. (nncan 11390 analog.) (Contributed by NM, 7-Apr-2015.) |
| Ref | Expression |
|---|---|
| ablnncan.b | ⊢ 𝐵 = (Base‘𝐺) |
| ablnncan.m | ⊢ − = (-g‘𝐺) |
| ablnncan.g | ⊢ (𝜑 → 𝐺 ∈ Abel) |
| ablnncan.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| ablnncan.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| ablnncan | ⊢ (𝜑 → (𝑋 − (𝑋 − 𝑌)) = 𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ablnncan.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | eqid 2731 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 3 | ablnncan.m | . . 3 ⊢ − = (-g‘𝐺) | |
| 4 | ablnncan.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ Abel) | |
| 5 | ablnncan.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 6 | ablnncan.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 7 | 1, 2, 3, 4, 5, 5, 6 | ablsubsub 19729 | . 2 ⊢ (𝜑 → (𝑋 − (𝑋 − 𝑌)) = ((𝑋 − 𝑋)(+g‘𝐺)𝑌)) |
| 8 | ablgrp 19697 | . . . . 5 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) | |
| 9 | 4, 8 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Grp) |
| 10 | eqid 2731 | . . . . 5 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 11 | 1, 10, 3 | grpsubid 18937 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋 − 𝑋) = (0g‘𝐺)) |
| 12 | 9, 5, 11 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑋 − 𝑋) = (0g‘𝐺)) |
| 13 | 12 | oveq1d 7361 | . 2 ⊢ (𝜑 → ((𝑋 − 𝑋)(+g‘𝐺)𝑌) = ((0g‘𝐺)(+g‘𝐺)𝑌)) |
| 14 | 1, 2, 10 | grplid 18880 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵) → ((0g‘𝐺)(+g‘𝐺)𝑌) = 𝑌) |
| 15 | 9, 6, 14 | syl2anc 584 | . 2 ⊢ (𝜑 → ((0g‘𝐺)(+g‘𝐺)𝑌) = 𝑌) |
| 16 | 7, 13, 15 | 3eqtrd 2770 | 1 ⊢ (𝜑 → (𝑋 − (𝑋 − 𝑌)) = 𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 +gcplusg 17161 0gc0g 17343 Grpcgrp 18846 -gcsg 18848 Abelcabl 19693 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-grp 18849 df-minusg 18850 df-sbg 18851 df-cmn 19694 df-abl 19695 |
| This theorem is referenced by: ablnnncan1 19735 pgpfac1lem3 19991 rngqiprngfulem4 21251 tsmsxplem1 24068 baerlem5blem2 41759 |
| Copyright terms: Public domain | W3C validator |