| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ablnncan | Structured version Visualization version GIF version | ||
| Description: Cancellation law for group subtraction. (nncan 11393 analog.) (Contributed by NM, 7-Apr-2015.) |
| Ref | Expression |
|---|---|
| ablnncan.b | ⊢ 𝐵 = (Base‘𝐺) |
| ablnncan.m | ⊢ − = (-g‘𝐺) |
| ablnncan.g | ⊢ (𝜑 → 𝐺 ∈ Abel) |
| ablnncan.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| ablnncan.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| ablnncan | ⊢ (𝜑 → (𝑋 − (𝑋 − 𝑌)) = 𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ablnncan.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | eqid 2729 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 3 | ablnncan.m | . . 3 ⊢ − = (-g‘𝐺) | |
| 4 | ablnncan.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ Abel) | |
| 5 | ablnncan.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 6 | ablnncan.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 7 | 1, 2, 3, 4, 5, 5, 6 | ablsubsub 19696 | . 2 ⊢ (𝜑 → (𝑋 − (𝑋 − 𝑌)) = ((𝑋 − 𝑋)(+g‘𝐺)𝑌)) |
| 8 | ablgrp 19664 | . . . . 5 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) | |
| 9 | 4, 8 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Grp) |
| 10 | eqid 2729 | . . . . 5 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 11 | 1, 10, 3 | grpsubid 18903 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋 − 𝑋) = (0g‘𝐺)) |
| 12 | 9, 5, 11 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑋 − 𝑋) = (0g‘𝐺)) |
| 13 | 12 | oveq1d 7364 | . 2 ⊢ (𝜑 → ((𝑋 − 𝑋)(+g‘𝐺)𝑌) = ((0g‘𝐺)(+g‘𝐺)𝑌)) |
| 14 | 1, 2, 10 | grplid 18846 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵) → ((0g‘𝐺)(+g‘𝐺)𝑌) = 𝑌) |
| 15 | 9, 6, 14 | syl2anc 584 | . 2 ⊢ (𝜑 → ((0g‘𝐺)(+g‘𝐺)𝑌) = 𝑌) |
| 16 | 7, 13, 15 | 3eqtrd 2768 | 1 ⊢ (𝜑 → (𝑋 − (𝑋 − 𝑌)) = 𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6482 (class class class)co 7349 Basecbs 17120 +gcplusg 17161 0gc0g 17343 Grpcgrp 18812 -gcsg 18814 Abelcabl 19660 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-1st 7924 df-2nd 7925 df-0g 17345 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-grp 18815 df-minusg 18816 df-sbg 18817 df-cmn 19661 df-abl 19662 |
| This theorem is referenced by: ablnnncan1 19702 pgpfac1lem3 19958 rngqiprngfulem4 21221 tsmsxplem1 24038 baerlem5blem2 41691 |
| Copyright terms: Public domain | W3C validator |