| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ablsubsub4 | Structured version Visualization version GIF version | ||
| Description: Law for double subtraction. (Contributed by NM, 7-Apr-2015.) |
| Ref | Expression |
|---|---|
| ablsubadd.b | ⊢ 𝐵 = (Base‘𝐺) |
| ablsubadd.p | ⊢ + = (+g‘𝐺) |
| ablsubadd.m | ⊢ − = (-g‘𝐺) |
| ablsubsub.g | ⊢ (𝜑 → 𝐺 ∈ Abel) |
| ablsubsub.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| ablsubsub.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| ablsubsub.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| ablsubsub4 | ⊢ (𝜑 → ((𝑋 − 𝑌) − 𝑍) = (𝑋 − (𝑌 + 𝑍))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ablsubsub.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ Abel) | |
| 2 | ablgrp 19682 | . . . . 5 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) | |
| 3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Grp) |
| 4 | ablsubsub.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 5 | ablsubsub.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 6 | ablsubadd.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
| 7 | ablsubadd.m | . . . . 5 ⊢ − = (-g‘𝐺) | |
| 8 | 6, 7 | grpsubcl 18917 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) ∈ 𝐵) |
| 9 | 3, 4, 5, 8 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝑋 − 𝑌) ∈ 𝐵) |
| 10 | ablsubsub.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
| 11 | ablsubadd.p | . . . 4 ⊢ + = (+g‘𝐺) | |
| 12 | eqid 2729 | . . . 4 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
| 13 | 6, 11, 12, 7 | grpsubval 18882 | . . 3 ⊢ (((𝑋 − 𝑌) ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → ((𝑋 − 𝑌) − 𝑍) = ((𝑋 − 𝑌) + ((invg‘𝐺)‘𝑍))) |
| 14 | 9, 10, 13 | syl2anc 584 | . 2 ⊢ (𝜑 → ((𝑋 − 𝑌) − 𝑍) = ((𝑋 − 𝑌) + ((invg‘𝐺)‘𝑍))) |
| 15 | 6, 12 | grpinvcl 18884 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑍 ∈ 𝐵) → ((invg‘𝐺)‘𝑍) ∈ 𝐵) |
| 16 | 3, 10, 15 | syl2anc 584 | . . 3 ⊢ (𝜑 → ((invg‘𝐺)‘𝑍) ∈ 𝐵) |
| 17 | 6, 11, 7, 1, 4, 5, 16 | ablsubsub 19714 | . 2 ⊢ (𝜑 → (𝑋 − (𝑌 − ((invg‘𝐺)‘𝑍))) = ((𝑋 − 𝑌) + ((invg‘𝐺)‘𝑍))) |
| 18 | 6, 11, 7, 12, 3, 5, 10 | grpsubinv 18909 | . . 3 ⊢ (𝜑 → (𝑌 − ((invg‘𝐺)‘𝑍)) = (𝑌 + 𝑍)) |
| 19 | 18 | oveq2d 7369 | . 2 ⊢ (𝜑 → (𝑋 − (𝑌 − ((invg‘𝐺)‘𝑍))) = (𝑋 − (𝑌 + 𝑍))) |
| 20 | 14, 17, 19 | 3eqtr2d 2770 | 1 ⊢ (𝜑 → ((𝑋 − 𝑌) − 𝑍) = (𝑋 − (𝑌 + 𝑍))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 +gcplusg 17179 Grpcgrp 18830 invgcminusg 18831 -gcsg 18832 Abelcabl 19678 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-0g 17363 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-grp 18833 df-minusg 18834 df-sbg 18835 df-cmn 19679 df-abl 19680 |
| This theorem is referenced by: ablsub32 19718 ablnnncan 19719 rngqiprngfulem4 21239 ip2subdi 21569 cpmadugsumlemF 22779 baerlem5alem2 41693 |
| Copyright terms: Public domain | W3C validator |