![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ablsubsub4 | Structured version Visualization version GIF version |
Description: Law for double subtraction. (Contributed by NM, 7-Apr-2015.) |
Ref | Expression |
---|---|
ablsubadd.b | ⊢ 𝐵 = (Base‘𝐺) |
ablsubadd.p | ⊢ + = (+g‘𝐺) |
ablsubadd.m | ⊢ − = (-g‘𝐺) |
ablsubsub.g | ⊢ (𝜑 → 𝐺 ∈ Abel) |
ablsubsub.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
ablsubsub.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
ablsubsub.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
Ref | Expression |
---|---|
ablsubsub4 | ⊢ (𝜑 → ((𝑋 − 𝑌) − 𝑍) = (𝑋 − (𝑌 + 𝑍))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ablsubsub.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ Abel) | |
2 | ablgrp 19742 | . . . . 5 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Grp) |
4 | ablsubsub.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
5 | ablsubsub.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
6 | ablsubadd.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
7 | ablsubadd.m | . . . . 5 ⊢ − = (-g‘𝐺) | |
8 | 6, 7 | grpsubcl 18978 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) ∈ 𝐵) |
9 | 3, 4, 5, 8 | syl3anc 1368 | . . 3 ⊢ (𝜑 → (𝑋 − 𝑌) ∈ 𝐵) |
10 | ablsubsub.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
11 | ablsubadd.p | . . . 4 ⊢ + = (+g‘𝐺) | |
12 | eqid 2725 | . . . 4 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
13 | 6, 11, 12, 7 | grpsubval 18944 | . . 3 ⊢ (((𝑋 − 𝑌) ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → ((𝑋 − 𝑌) − 𝑍) = ((𝑋 − 𝑌) + ((invg‘𝐺)‘𝑍))) |
14 | 9, 10, 13 | syl2anc 582 | . 2 ⊢ (𝜑 → ((𝑋 − 𝑌) − 𝑍) = ((𝑋 − 𝑌) + ((invg‘𝐺)‘𝑍))) |
15 | 6, 12 | grpinvcl 18946 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑍 ∈ 𝐵) → ((invg‘𝐺)‘𝑍) ∈ 𝐵) |
16 | 3, 10, 15 | syl2anc 582 | . . 3 ⊢ (𝜑 → ((invg‘𝐺)‘𝑍) ∈ 𝐵) |
17 | 6, 11, 7, 1, 4, 5, 16 | ablsubsub 19774 | . 2 ⊢ (𝜑 → (𝑋 − (𝑌 − ((invg‘𝐺)‘𝑍))) = ((𝑋 − 𝑌) + ((invg‘𝐺)‘𝑍))) |
18 | 6, 11, 7, 12, 3, 5, 10 | grpsubinv 18970 | . . 3 ⊢ (𝜑 → (𝑌 − ((invg‘𝐺)‘𝑍)) = (𝑌 + 𝑍)) |
19 | 18 | oveq2d 7431 | . 2 ⊢ (𝜑 → (𝑋 − (𝑌 − ((invg‘𝐺)‘𝑍))) = (𝑋 − (𝑌 + 𝑍))) |
20 | 14, 17, 19 | 3eqtr2d 2771 | 1 ⊢ (𝜑 → ((𝑋 − 𝑌) − 𝑍) = (𝑋 − (𝑌 + 𝑍))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 ‘cfv 6542 (class class class)co 7415 Basecbs 17177 +gcplusg 17230 Grpcgrp 18892 invgcminusg 18893 -gcsg 18894 Abelcabl 19738 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7737 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-fv 6550 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-1st 7989 df-2nd 7990 df-0g 17420 df-mgm 18597 df-sgrp 18676 df-mnd 18692 df-grp 18895 df-minusg 18896 df-sbg 18897 df-cmn 19739 df-abl 19740 |
This theorem is referenced by: ablsub32 19778 ablnnncan 19779 rngqiprngfulem4 21206 ip2subdi 21578 cpmadugsumlemF 22794 baerlem5alem2 41239 |
Copyright terms: Public domain | W3C validator |