MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablsubsub4 Structured version   Visualization version   GIF version

Theorem ablsubsub4 19860
Description: Law for double subtraction. (Contributed by NM, 7-Apr-2015.)
Hypotheses
Ref Expression
ablsubadd.b 𝐵 = (Base‘𝐺)
ablsubadd.p + = (+g𝐺)
ablsubadd.m = (-g𝐺)
ablsubsub.g (𝜑𝐺 ∈ Abel)
ablsubsub.x (𝜑𝑋𝐵)
ablsubsub.y (𝜑𝑌𝐵)
ablsubsub.z (𝜑𝑍𝐵)
Assertion
Ref Expression
ablsubsub4 (𝜑 → ((𝑋 𝑌) 𝑍) = (𝑋 (𝑌 + 𝑍)))

Proof of Theorem ablsubsub4
StepHypRef Expression
1 ablsubsub.g . . . . 5 (𝜑𝐺 ∈ Abel)
2 ablgrp 19827 . . . . 5 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
31, 2syl 17 . . . 4 (𝜑𝐺 ∈ Grp)
4 ablsubsub.x . . . 4 (𝜑𝑋𝐵)
5 ablsubsub.y . . . 4 (𝜑𝑌𝐵)
6 ablsubadd.b . . . . 5 𝐵 = (Base‘𝐺)
7 ablsubadd.m . . . . 5 = (-g𝐺)
86, 7grpsubcl 19060 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
93, 4, 5, 8syl3anc 1371 . . 3 (𝜑 → (𝑋 𝑌) ∈ 𝐵)
10 ablsubsub.z . . 3 (𝜑𝑍𝐵)
11 ablsubadd.p . . . 4 + = (+g𝐺)
12 eqid 2740 . . . 4 (invg𝐺) = (invg𝐺)
136, 11, 12, 7grpsubval 19025 . . 3 (((𝑋 𝑌) ∈ 𝐵𝑍𝐵) → ((𝑋 𝑌) 𝑍) = ((𝑋 𝑌) + ((invg𝐺)‘𝑍)))
149, 10, 13syl2anc 583 . 2 (𝜑 → ((𝑋 𝑌) 𝑍) = ((𝑋 𝑌) + ((invg𝐺)‘𝑍)))
156, 12grpinvcl 19027 . . . 4 ((𝐺 ∈ Grp ∧ 𝑍𝐵) → ((invg𝐺)‘𝑍) ∈ 𝐵)
163, 10, 15syl2anc 583 . . 3 (𝜑 → ((invg𝐺)‘𝑍) ∈ 𝐵)
176, 11, 7, 1, 4, 5, 16ablsubsub 19859 . 2 (𝜑 → (𝑋 (𝑌 ((invg𝐺)‘𝑍))) = ((𝑋 𝑌) + ((invg𝐺)‘𝑍)))
186, 11, 7, 12, 3, 5, 10grpsubinv 19052 . . 3 (𝜑 → (𝑌 ((invg𝐺)‘𝑍)) = (𝑌 + 𝑍))
1918oveq2d 7464 . 2 (𝜑 → (𝑋 (𝑌 ((invg𝐺)‘𝑍))) = (𝑋 (𝑌 + 𝑍)))
2014, 17, 193eqtr2d 2786 1 (𝜑 → ((𝑋 𝑌) 𝑍) = (𝑋 (𝑌 + 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  cfv 6573  (class class class)co 7448  Basecbs 17258  +gcplusg 17311  Grpcgrp 18973  invgcminusg 18974  -gcsg 18975  Abelcabl 19823
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-sbg 18978  df-cmn 19824  df-abl 19825
This theorem is referenced by:  ablsub32  19863  ablnnncan  19864  rngqiprngfulem4  21347  ip2subdi  21685  cpmadugsumlemF  22903  baerlem5alem2  41668
  Copyright terms: Public domain W3C validator