Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1029 Structured version   Visualization version   GIF version

Theorem bnj1029 34982
Description: Property of trCl. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
bnj1029 ((𝑅 FrSe 𝐴𝑋𝐴) → TrFo( trCl(𝑋, 𝐴, 𝑅), 𝐴, 𝑅))

Proof of Theorem bnj1029
Dummy variables 𝑓 𝑖 𝑚 𝑛 𝑝 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 biid 261 . 2 ((𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
2 biid 261 . 2 (∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
3 biid 261 . 2 ((𝑛 ∈ (ω ∖ {∅}) ∧ 𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))) ↔ (𝑛 ∈ (ω ∖ {∅}) ∧ 𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))))
4 biid 261 . 2 ((𝑅 FrSe 𝐴𝑋𝐴𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) ∧ 𝑧 ∈ pred(𝑦, 𝐴, 𝑅)) ↔ (𝑅 FrSe 𝐴𝑋𝐴𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) ∧ 𝑧 ∈ pred(𝑦, 𝐴, 𝑅)))
5 biid 261 . 2 ((𝑚 ∈ ω ∧ 𝑛 = suc 𝑚𝑝 = suc 𝑛) ↔ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚𝑝 = suc 𝑛))
6 biid 261 . 2 ((𝑖𝑛𝑦 ∈ (𝑓𝑖)) ↔ (𝑖𝑛𝑦 ∈ (𝑓𝑖)))
7 biid 261 . 2 ([𝑝 / 𝑛](𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ↔ [𝑝 / 𝑛](𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
8 biid 261 . 2 ([𝑝 / 𝑛]𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ [𝑝 / 𝑛]𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
9 biid 261 . 2 ([𝑝 / 𝑛](𝑛 ∈ (ω ∖ {∅}) ∧ 𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))) ↔ [𝑝 / 𝑛](𝑛 ∈ (ω ∖ {∅}) ∧ 𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))))
10 biid 261 . 2 ([(𝑓 ∪ {⟨𝑛, 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)⟩}) / 𝑓][𝑝 / 𝑛](𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ↔ [(𝑓 ∪ {⟨𝑛, 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)⟩}) / 𝑓][𝑝 / 𝑛](𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
11 biid 261 . 2 ([(𝑓 ∪ {⟨𝑛, 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)⟩}) / 𝑓][𝑝 / 𝑛]𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ [(𝑓 ∪ {⟨𝑛, 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)⟩}) / 𝑓][𝑝 / 𝑛]𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
12 biid 261 . 2 ([(𝑓 ∪ {⟨𝑛, 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)⟩}) / 𝑓][𝑝 / 𝑛](𝑛 ∈ (ω ∖ {∅}) ∧ 𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))) ↔ [(𝑓 ∪ {⟨𝑛, 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)⟩}) / 𝑓][𝑝 / 𝑛](𝑛 ∈ (ω ∖ {∅}) ∧ 𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))))
13 eqid 2737 . 2 (ω ∖ {∅}) = (ω ∖ {∅})
14 eqid 2737 . 2 {𝑓 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))} = {𝑓 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))}
15 eqid 2737 . 2 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅) = 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)
16 eqid 2737 . 2 (𝑓 ∪ {⟨𝑛, 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)⟩}) = (𝑓 ∪ {⟨𝑛, 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)⟩})
171, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16bnj907 34981 1 ((𝑅 FrSe 𝐴𝑋𝐴) → TrFo( trCl(𝑋, 𝐴, 𝑅), 𝐴, 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  {cab 2714  wral 3061  wrex 3070  [wsbc 3788  cdif 3948  cun 3949  c0 4333  {csn 4626  cop 4632   ciun 4991  suc csuc 6386   Fn wfn 6556  cfv 6561  ωcom 7887  w-bnj17 34700   predc-bnj14 34702   FrSe w-bnj15 34706   trClc-bnj18 34708   TrFow-bnj19 34710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-un 7755  ax-reg 9632
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-res 5697  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-fv 6569  df-om 7888  df-bnj17 34701  df-bnj14 34703  df-bnj13 34705  df-bnj15 34707  df-bnj18 34709  df-bnj19 34711
This theorem is referenced by:  bnj1125  35006
  Copyright terms: Public domain W3C validator