Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1029 Structured version   Visualization version   GIF version

Theorem bnj1029 35004
Description: Property of trCl. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
bnj1029 ((𝑅 FrSe 𝐴𝑋𝐴) → TrFo( trCl(𝑋, 𝐴, 𝑅), 𝐴, 𝑅))

Proof of Theorem bnj1029
Dummy variables 𝑓 𝑖 𝑚 𝑛 𝑝 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 biid 261 . 2 ((𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
2 biid 261 . 2 (∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
3 biid 261 . 2 ((𝑛 ∈ (ω ∖ {∅}) ∧ 𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))) ↔ (𝑛 ∈ (ω ∖ {∅}) ∧ 𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))))
4 biid 261 . 2 ((𝑅 FrSe 𝐴𝑋𝐴𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) ∧ 𝑧 ∈ pred(𝑦, 𝐴, 𝑅)) ↔ (𝑅 FrSe 𝐴𝑋𝐴𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) ∧ 𝑧 ∈ pred(𝑦, 𝐴, 𝑅)))
5 biid 261 . 2 ((𝑚 ∈ ω ∧ 𝑛 = suc 𝑚𝑝 = suc 𝑛) ↔ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚𝑝 = suc 𝑛))
6 biid 261 . 2 ((𝑖𝑛𝑦 ∈ (𝑓𝑖)) ↔ (𝑖𝑛𝑦 ∈ (𝑓𝑖)))
7 biid 261 . 2 ([𝑝 / 𝑛](𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ↔ [𝑝 / 𝑛](𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
8 biid 261 . 2 ([𝑝 / 𝑛]𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ [𝑝 / 𝑛]𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
9 biid 261 . 2 ([𝑝 / 𝑛](𝑛 ∈ (ω ∖ {∅}) ∧ 𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))) ↔ [𝑝 / 𝑛](𝑛 ∈ (ω ∖ {∅}) ∧ 𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))))
10 biid 261 . 2 ([(𝑓 ∪ {⟨𝑛, 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)⟩}) / 𝑓][𝑝 / 𝑛](𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ↔ [(𝑓 ∪ {⟨𝑛, 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)⟩}) / 𝑓][𝑝 / 𝑛](𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
11 biid 261 . 2 ([(𝑓 ∪ {⟨𝑛, 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)⟩}) / 𝑓][𝑝 / 𝑛]𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ [(𝑓 ∪ {⟨𝑛, 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)⟩}) / 𝑓][𝑝 / 𝑛]𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
12 biid 261 . 2 ([(𝑓 ∪ {⟨𝑛, 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)⟩}) / 𝑓][𝑝 / 𝑛](𝑛 ∈ (ω ∖ {∅}) ∧ 𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))) ↔ [(𝑓 ∪ {⟨𝑛, 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)⟩}) / 𝑓][𝑝 / 𝑛](𝑛 ∈ (ω ∖ {∅}) ∧ 𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))))
13 eqid 2736 . 2 (ω ∖ {∅}) = (ω ∖ {∅})
14 eqid 2736 . 2 {𝑓 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))} = {𝑓 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))}
15 eqid 2736 . 2 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅) = 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)
16 eqid 2736 . 2 (𝑓 ∪ {⟨𝑛, 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)⟩}) = (𝑓 ∪ {⟨𝑛, 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)⟩})
171, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16bnj907 35003 1 ((𝑅 FrSe 𝐴𝑋𝐴) → TrFo( trCl(𝑋, 𝐴, 𝑅), 𝐴, 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  {cab 2714  wral 3052  wrex 3061  [wsbc 3770  cdif 3928  cun 3929  c0 4313  {csn 4606  cop 4612   ciun 4972  suc csuc 6359   Fn wfn 6531  cfv 6536  ωcom 7866  w-bnj17 34722   predc-bnj14 34724   FrSe w-bnj15 34728   trClc-bnj18 34730   TrFow-bnj19 34732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734  ax-reg 9611
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-res 5671  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-fv 6544  df-om 7867  df-bnj17 34723  df-bnj14 34725  df-bnj13 34727  df-bnj15 34729  df-bnj18 34731  df-bnj19 34733
This theorem is referenced by:  bnj1125  35028
  Copyright terms: Public domain W3C validator