Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1029 Structured version   Visualization version   GIF version

Theorem bnj1029 34965
Description: Property of trCl. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
bnj1029 ((𝑅 FrSe 𝐴𝑋𝐴) → TrFo( trCl(𝑋, 𝐴, 𝑅), 𝐴, 𝑅))

Proof of Theorem bnj1029
Dummy variables 𝑓 𝑖 𝑚 𝑛 𝑝 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 biid 261 . 2 ((𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
2 biid 261 . 2 (∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
3 biid 261 . 2 ((𝑛 ∈ (ω ∖ {∅}) ∧ 𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))) ↔ (𝑛 ∈ (ω ∖ {∅}) ∧ 𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))))
4 biid 261 . 2 ((𝑅 FrSe 𝐴𝑋𝐴𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) ∧ 𝑧 ∈ pred(𝑦, 𝐴, 𝑅)) ↔ (𝑅 FrSe 𝐴𝑋𝐴𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) ∧ 𝑧 ∈ pred(𝑦, 𝐴, 𝑅)))
5 biid 261 . 2 ((𝑚 ∈ ω ∧ 𝑛 = suc 𝑚𝑝 = suc 𝑛) ↔ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚𝑝 = suc 𝑛))
6 biid 261 . 2 ((𝑖𝑛𝑦 ∈ (𝑓𝑖)) ↔ (𝑖𝑛𝑦 ∈ (𝑓𝑖)))
7 biid 261 . 2 ([𝑝 / 𝑛](𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ↔ [𝑝 / 𝑛](𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
8 biid 261 . 2 ([𝑝 / 𝑛]𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ [𝑝 / 𝑛]𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
9 biid 261 . 2 ([𝑝 / 𝑛](𝑛 ∈ (ω ∖ {∅}) ∧ 𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))) ↔ [𝑝 / 𝑛](𝑛 ∈ (ω ∖ {∅}) ∧ 𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))))
10 biid 261 . 2 ([(𝑓 ∪ {⟨𝑛, 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)⟩}) / 𝑓][𝑝 / 𝑛](𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ↔ [(𝑓 ∪ {⟨𝑛, 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)⟩}) / 𝑓][𝑝 / 𝑛](𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
11 biid 261 . 2 ([(𝑓 ∪ {⟨𝑛, 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)⟩}) / 𝑓][𝑝 / 𝑛]𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ [(𝑓 ∪ {⟨𝑛, 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)⟩}) / 𝑓][𝑝 / 𝑛]𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
12 biid 261 . 2 ([(𝑓 ∪ {⟨𝑛, 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)⟩}) / 𝑓][𝑝 / 𝑛](𝑛 ∈ (ω ∖ {∅}) ∧ 𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))) ↔ [(𝑓 ∪ {⟨𝑛, 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)⟩}) / 𝑓][𝑝 / 𝑛](𝑛 ∈ (ω ∖ {∅}) ∧ 𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))))
13 eqid 2730 . 2 (ω ∖ {∅}) = (ω ∖ {∅})
14 eqid 2730 . 2 {𝑓 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))} = {𝑓 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))}
15 eqid 2730 . 2 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅) = 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)
16 eqid 2730 . 2 (𝑓 ∪ {⟨𝑛, 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)⟩}) = (𝑓 ∪ {⟨𝑛, 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)⟩})
171, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16bnj907 34964 1 ((𝑅 FrSe 𝐴𝑋𝐴) → TrFo( trCl(𝑋, 𝐴, 𝑅), 𝐴, 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  {cab 2708  wral 3045  wrex 3054  [wsbc 3756  cdif 3914  cun 3915  c0 4299  {csn 4592  cop 4598   ciun 4958  suc csuc 6337   Fn wfn 6509  cfv 6514  ωcom 7845  w-bnj17 34683   predc-bnj14 34685   FrSe w-bnj15 34689   trClc-bnj18 34691   TrFow-bnj19 34693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714  ax-reg 9552
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-res 5653  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-fv 6522  df-om 7846  df-bnj17 34684  df-bnj14 34686  df-bnj13 34688  df-bnj15 34690  df-bnj18 34692  df-bnj19 34694
This theorem is referenced by:  bnj1125  34989
  Copyright terms: Public domain W3C validator