Mathbox for Jonathan Ben-Naim < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1029 Structured version   Visualization version   GIF version

Theorem bnj1029 32244
 Description: Property of trCl. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
bnj1029 ((𝑅 FrSe 𝐴𝑋𝐴) → TrFo( trCl(𝑋, 𝐴, 𝑅), 𝐴, 𝑅))

Proof of Theorem bnj1029
Dummy variables 𝑓 𝑖 𝑚 𝑛 𝑝 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 biid 263 . 2 ((𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
2 biid 263 . 2 (∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
3 biid 263 . 2 ((𝑛 ∈ (ω ∖ {∅}) ∧ 𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))) ↔ (𝑛 ∈ (ω ∖ {∅}) ∧ 𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))))
4 biid 263 . 2 ((𝑅 FrSe 𝐴𝑋𝐴𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) ∧ 𝑧 ∈ pred(𝑦, 𝐴, 𝑅)) ↔ (𝑅 FrSe 𝐴𝑋𝐴𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) ∧ 𝑧 ∈ pred(𝑦, 𝐴, 𝑅)))
5 biid 263 . 2 ((𝑚 ∈ ω ∧ 𝑛 = suc 𝑚𝑝 = suc 𝑛) ↔ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚𝑝 = suc 𝑛))
6 biid 263 . 2 ((𝑖𝑛𝑦 ∈ (𝑓𝑖)) ↔ (𝑖𝑛𝑦 ∈ (𝑓𝑖)))
7 biid 263 . 2 ([𝑝 / 𝑛](𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ↔ [𝑝 / 𝑛](𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
8 biid 263 . 2 ([𝑝 / 𝑛]𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ [𝑝 / 𝑛]𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
9 biid 263 . 2 ([𝑝 / 𝑛](𝑛 ∈ (ω ∖ {∅}) ∧ 𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))) ↔ [𝑝 / 𝑛](𝑛 ∈ (ω ∖ {∅}) ∧ 𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))))
10 biid 263 . 2 ([(𝑓 ∪ {⟨𝑛, 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)⟩}) / 𝑓][𝑝 / 𝑛](𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ↔ [(𝑓 ∪ {⟨𝑛, 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)⟩}) / 𝑓][𝑝 / 𝑛](𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
11 biid 263 . 2 ([(𝑓 ∪ {⟨𝑛, 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)⟩}) / 𝑓][𝑝 / 𝑛]𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ [(𝑓 ∪ {⟨𝑛, 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)⟩}) / 𝑓][𝑝 / 𝑛]𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
12 biid 263 . 2 ([(𝑓 ∪ {⟨𝑛, 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)⟩}) / 𝑓][𝑝 / 𝑛](𝑛 ∈ (ω ∖ {∅}) ∧ 𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))) ↔ [(𝑓 ∪ {⟨𝑛, 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)⟩}) / 𝑓][𝑝 / 𝑛](𝑛 ∈ (ω ∖ {∅}) ∧ 𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))))
13 eqid 2820 . 2 (ω ∖ {∅}) = (ω ∖ {∅})
14 eqid 2820 . 2 {𝑓 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))} = {𝑓 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))}
15 eqid 2820 . 2 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅) = 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)
16 eqid 2820 . 2 (𝑓 ∪ {⟨𝑛, 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)⟩}) = (𝑓 ∪ {⟨𝑛, 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)⟩})
171, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16bnj907 32243 1 ((𝑅 FrSe 𝐴𝑋𝐴) → TrFo( trCl(𝑋, 𝐴, 𝑅), 𝐴, 𝑅))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 398   ∧ w3a 1083   = wceq 1537   ∈ wcel 2114  {cab 2798  ∀wral 3125  ∃wrex 3126  [wsbc 3748   ∖ cdif 3906   ∪ cun 3907  ∅c0 4265  {csn 4539  ⟨cop 4545  ∪ ciun 4891  suc csuc 6165   Fn wfn 6322  ‘cfv 6327  ωcom 7554   ∧ w-bnj17 31960   predc-bnj14 31962   FrSe w-bnj15 31966   trClc-bnj18 31968   TrFow-bnj19 31970 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-rep 5162  ax-sep 5175  ax-nul 5182  ax-pr 5302  ax-un 7435  ax-reg 9030 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-ral 3130  df-rex 3131  df-reu 3132  df-rab 3134  df-v 3472  df-sbc 3749  df-csb 3857  df-dif 3912  df-un 3914  df-in 3916  df-ss 3926  df-pss 3928  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4811  df-iun 4893  df-br 5039  df-opab 5101  df-mpt 5119  df-tr 5145  df-id 5432  df-eprel 5437  df-po 5446  df-so 5447  df-fr 5486  df-we 5488  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6286  df-fun 6329  df-fn 6330  df-f 6331  df-f1 6332  df-fo 6333  df-f1o 6334  df-fv 6335  df-om 7555  df-bnj17 31961  df-bnj14 31963  df-bnj13 31965  df-bnj15 31967  df-bnj18 31969  df-bnj19 31971 This theorem is referenced by:  bnj1125  32268
 Copyright terms: Public domain W3C validator