Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1029 Structured version   Visualization version   GIF version

Theorem bnj1029 32848
Description: Property of trCl. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
bnj1029 ((𝑅 FrSe 𝐴𝑋𝐴) → TrFo( trCl(𝑋, 𝐴, 𝑅), 𝐴, 𝑅))

Proof of Theorem bnj1029
Dummy variables 𝑓 𝑖 𝑚 𝑛 𝑝 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 biid 260 . 2 ((𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
2 biid 260 . 2 (∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
3 biid 260 . 2 ((𝑛 ∈ (ω ∖ {∅}) ∧ 𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))) ↔ (𝑛 ∈ (ω ∖ {∅}) ∧ 𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))))
4 biid 260 . 2 ((𝑅 FrSe 𝐴𝑋𝐴𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) ∧ 𝑧 ∈ pred(𝑦, 𝐴, 𝑅)) ↔ (𝑅 FrSe 𝐴𝑋𝐴𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) ∧ 𝑧 ∈ pred(𝑦, 𝐴, 𝑅)))
5 biid 260 . 2 ((𝑚 ∈ ω ∧ 𝑛 = suc 𝑚𝑝 = suc 𝑛) ↔ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚𝑝 = suc 𝑛))
6 biid 260 . 2 ((𝑖𝑛𝑦 ∈ (𝑓𝑖)) ↔ (𝑖𝑛𝑦 ∈ (𝑓𝑖)))
7 biid 260 . 2 ([𝑝 / 𝑛](𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ↔ [𝑝 / 𝑛](𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
8 biid 260 . 2 ([𝑝 / 𝑛]𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ [𝑝 / 𝑛]𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
9 biid 260 . 2 ([𝑝 / 𝑛](𝑛 ∈ (ω ∖ {∅}) ∧ 𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))) ↔ [𝑝 / 𝑛](𝑛 ∈ (ω ∖ {∅}) ∧ 𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))))
10 biid 260 . 2 ([(𝑓 ∪ {⟨𝑛, 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)⟩}) / 𝑓][𝑝 / 𝑛](𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ↔ [(𝑓 ∪ {⟨𝑛, 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)⟩}) / 𝑓][𝑝 / 𝑛](𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
11 biid 260 . 2 ([(𝑓 ∪ {⟨𝑛, 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)⟩}) / 𝑓][𝑝 / 𝑛]𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ [(𝑓 ∪ {⟨𝑛, 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)⟩}) / 𝑓][𝑝 / 𝑛]𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
12 biid 260 . 2 ([(𝑓 ∪ {⟨𝑛, 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)⟩}) / 𝑓][𝑝 / 𝑛](𝑛 ∈ (ω ∖ {∅}) ∧ 𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))) ↔ [(𝑓 ∪ {⟨𝑛, 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)⟩}) / 𝑓][𝑝 / 𝑛](𝑛 ∈ (ω ∖ {∅}) ∧ 𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))))
13 eqid 2738 . 2 (ω ∖ {∅}) = (ω ∖ {∅})
14 eqid 2738 . 2 {𝑓 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))} = {𝑓 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))}
15 eqid 2738 . 2 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅) = 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)
16 eqid 2738 . 2 (𝑓 ∪ {⟨𝑛, 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)⟩}) = (𝑓 ∪ {⟨𝑛, 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)⟩})
171, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16bnj907 32847 1 ((𝑅 FrSe 𝐴𝑋𝐴) → TrFo( trCl(𝑋, 𝐴, 𝑅), 𝐴, 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  {cab 2715  wral 3063  wrex 3064  [wsbc 3711  cdif 3880  cun 3881  c0 4253  {csn 4558  cop 4564   ciun 4921  suc csuc 6253   Fn wfn 6413  cfv 6418  ωcom 7687  w-bnj17 32565   predc-bnj14 32567   FrSe w-bnj15 32571   trClc-bnj18 32573   TrFow-bnj19 32575
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566  ax-reg 9281
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-om 7688  df-bnj17 32566  df-bnj14 32568  df-bnj13 32570  df-bnj15 32572  df-bnj18 32574  df-bnj19 32576
This theorem is referenced by:  bnj1125  32872
  Copyright terms: Public domain W3C validator