Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rtrclind | Structured version Visualization version GIF version |
Description: Principle of transitive induction. The first three hypotheses give various existences, the next four give necessary substitutions and the last two are the basis and the induction step. (Contributed by Drahflow, 12-Nov-2015.) (Revised by AV, 13-Jul-2024.) |
Ref | Expression |
---|---|
rtrclind.1 | ⊢ (𝜂 → Rel 𝑅) |
rtrclind.2 | ⊢ (𝜂 → 𝑆 ∈ 𝑉) |
rtrclind.3 | ⊢ (𝜂 → 𝑋 ∈ 𝑊) |
rtrclind.4 | ⊢ (𝑖 = 𝑆 → (𝜑 ↔ 𝜒)) |
rtrclind.5 | ⊢ (𝑖 = 𝑥 → (𝜑 ↔ 𝜓)) |
rtrclind.6 | ⊢ (𝑖 = 𝑗 → (𝜑 ↔ 𝜃)) |
rtrclind.7 | ⊢ (𝑥 = 𝑋 → (𝜓 ↔ 𝜏)) |
rtrclind.8 | ⊢ (𝜂 → 𝜒) |
rtrclind.9 | ⊢ (𝜂 → (𝑗𝑅𝑥 → (𝜃 → 𝜓))) |
Ref | Expression |
---|---|
rtrclind | ⊢ (𝜂 → (𝑆(t*‘𝑅)𝑋 → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rtrclind.1 | . . 3 ⊢ (𝜂 → Rel 𝑅) | |
2 | 1 | dfrtrcl2 14880 | . 2 ⊢ (𝜂 → (t*‘𝑅) = (t*rec‘𝑅)) |
3 | 1 | dfrtrclrec2 14876 | . . . . . 6 ⊢ (𝜂 → (𝑆(t*rec‘𝑅)𝑋 ↔ ∃𝑛 ∈ ℕ0 𝑆(𝑅↑𝑟𝑛)𝑋)) |
4 | 3 | biimpac 480 | . . . . 5 ⊢ ((𝑆(t*rec‘𝑅)𝑋 ∧ 𝜂) → ∃𝑛 ∈ ℕ0 𝑆(𝑅↑𝑟𝑛)𝑋) |
5 | simprl 769 | . . . . . . . . . 10 ⊢ ((𝑆(t*rec‘𝑅)𝑋 ∧ (𝜂 ∧ (𝑆(𝑅↑𝑟𝑛)𝑋 ∧ 𝑛 ∈ ℕ0))) → 𝜂) | |
6 | simprrr 780 | . . . . . . . . . 10 ⊢ ((𝑆(t*rec‘𝑅)𝑋 ∧ (𝜂 ∧ (𝑆(𝑅↑𝑟𝑛)𝑋 ∧ 𝑛 ∈ ℕ0))) → 𝑛 ∈ ℕ0) | |
7 | simprrl 779 | . . . . . . . . . 10 ⊢ ((𝑆(t*rec‘𝑅)𝑋 ∧ (𝜂 ∧ (𝑆(𝑅↑𝑟𝑛)𝑋 ∧ 𝑛 ∈ ℕ0))) → 𝑆(𝑅↑𝑟𝑛)𝑋) | |
8 | rtrclind.2 | . . . . . . . . . . 11 ⊢ (𝜂 → 𝑆 ∈ 𝑉) | |
9 | rtrclind.3 | . . . . . . . . . . 11 ⊢ (𝜂 → 𝑋 ∈ 𝑊) | |
10 | rtrclind.4 | . . . . . . . . . . 11 ⊢ (𝑖 = 𝑆 → (𝜑 ↔ 𝜒)) | |
11 | rtrclind.5 | . . . . . . . . . . 11 ⊢ (𝑖 = 𝑥 → (𝜑 ↔ 𝜓)) | |
12 | rtrclind.6 | . . . . . . . . . . 11 ⊢ (𝑖 = 𝑗 → (𝜑 ↔ 𝜃)) | |
13 | rtrclind.7 | . . . . . . . . . . 11 ⊢ (𝑥 = 𝑋 → (𝜓 ↔ 𝜏)) | |
14 | rtrclind.8 | . . . . . . . . . . 11 ⊢ (𝜂 → 𝜒) | |
15 | rtrclind.9 | . . . . . . . . . . 11 ⊢ (𝜂 → (𝑗𝑅𝑥 → (𝜃 → 𝜓))) | |
16 | 1, 8, 9, 10, 11, 12, 13, 14, 15 | relexpind 14882 | . . . . . . . . . 10 ⊢ (𝜂 → (𝑛 ∈ ℕ0 → (𝑆(𝑅↑𝑟𝑛)𝑋 → 𝜏))) |
17 | 5, 6, 7, 16 | syl3c 66 | . . . . . . . . 9 ⊢ ((𝑆(t*rec‘𝑅)𝑋 ∧ (𝜂 ∧ (𝑆(𝑅↑𝑟𝑛)𝑋 ∧ 𝑛 ∈ ℕ0))) → 𝜏) |
18 | 17 | anassrs 469 | . . . . . . . 8 ⊢ (((𝑆(t*rec‘𝑅)𝑋 ∧ 𝜂) ∧ (𝑆(𝑅↑𝑟𝑛)𝑋 ∧ 𝑛 ∈ ℕ0)) → 𝜏) |
19 | 18 | expcom 415 | . . . . . . 7 ⊢ ((𝑆(𝑅↑𝑟𝑛)𝑋 ∧ 𝑛 ∈ ℕ0) → ((𝑆(t*rec‘𝑅)𝑋 ∧ 𝜂) → 𝜏)) |
20 | 19 | expcom 415 | . . . . . 6 ⊢ (𝑛 ∈ ℕ0 → (𝑆(𝑅↑𝑟𝑛)𝑋 → ((𝑆(t*rec‘𝑅)𝑋 ∧ 𝜂) → 𝜏))) |
21 | 20 | rexlimiv 3143 | . . . . 5 ⊢ (∃𝑛 ∈ ℕ0 𝑆(𝑅↑𝑟𝑛)𝑋 → ((𝑆(t*rec‘𝑅)𝑋 ∧ 𝜂) → 𝜏)) |
22 | 4, 21 | mpcom 38 | . . . 4 ⊢ ((𝑆(t*rec‘𝑅)𝑋 ∧ 𝜂) → 𝜏) |
23 | 22 | expcom 415 | . . 3 ⊢ (𝜂 → (𝑆(t*rec‘𝑅)𝑋 → 𝜏)) |
24 | breq 5105 | . . . 4 ⊢ ((t*‘𝑅) = (t*rec‘𝑅) → (𝑆(t*‘𝑅)𝑋 ↔ 𝑆(t*rec‘𝑅)𝑋)) | |
25 | 24 | imbi1d 342 | . . 3 ⊢ ((t*‘𝑅) = (t*rec‘𝑅) → ((𝑆(t*‘𝑅)𝑋 → 𝜏) ↔ (𝑆(t*rec‘𝑅)𝑋 → 𝜏))) |
26 | 23, 25 | syl5ibr 246 | . 2 ⊢ ((t*‘𝑅) = (t*rec‘𝑅) → (𝜂 → (𝑆(t*‘𝑅)𝑋 → 𝜏))) |
27 | 2, 26 | mpcom 38 | 1 ⊢ (𝜂 → (𝑆(t*‘𝑅)𝑋 → 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1541 ∈ wcel 2106 ∃wrex 3071 class class class wbr 5103 Rel wrel 5635 ‘cfv 6491 (class class class)co 7349 ℕ0cn0 12346 t*crtcl 14804 ↑𝑟crelexp 14837 t*reccrtrcl 14873 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5240 ax-sep 5254 ax-nul 5261 ax-pow 5318 ax-pr 5382 ax-un 7662 ax-cnex 11040 ax-resscn 11041 ax-1cn 11042 ax-icn 11043 ax-addcl 11044 ax-addrcl 11045 ax-mulcl 11046 ax-mulrcl 11047 ax-mulcom 11048 ax-addass 11049 ax-mulass 11050 ax-distr 11051 ax-i2m1 11052 ax-1ne0 11053 ax-1rid 11054 ax-rnegex 11055 ax-rrecex 11056 ax-cnre 11057 ax-pre-lttri 11058 ax-pre-lttrn 11059 ax-pre-ltadd 11060 ax-pre-mulgt0 11061 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3352 df-rab 3406 df-v 3445 df-sbc 3738 df-csb 3854 df-dif 3911 df-un 3913 df-in 3915 df-ss 3925 df-pss 3927 df-nul 4281 df-if 4485 df-pw 4560 df-sn 4585 df-pr 4587 df-op 4591 df-uni 4864 df-int 4906 df-iun 4954 df-br 5104 df-opab 5166 df-mpt 5187 df-tr 5221 df-id 5528 df-eprel 5534 df-po 5542 df-so 5543 df-fr 5585 df-we 5587 df-xp 5636 df-rel 5637 df-cnv 5638 df-co 5639 df-dm 5640 df-rn 5641 df-res 5642 df-ima 5643 df-pred 6249 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6443 df-fun 6493 df-fn 6494 df-f 6495 df-f1 6496 df-fo 6497 df-f1o 6498 df-fv 6499 df-riota 7305 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7793 df-2nd 7912 df-frecs 8179 df-wrecs 8210 df-recs 8284 df-rdg 8323 df-er 8581 df-en 8817 df-dom 8818 df-sdom 8819 df-pnf 11124 df-mnf 11125 df-xr 11126 df-ltxr 11127 df-le 11128 df-sub 11320 df-neg 11321 df-nn 12087 df-2 12149 df-n0 12347 df-z 12433 df-uz 12696 df-seq 13835 df-rtrcl 14806 df-relexp 14838 df-rtrclrec 14874 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |