MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rtrclind Structured version   Visualization version   GIF version

Theorem rtrclind 14288
Description: Principle of transitive induction. The first four hypotheses give various existences, the next four give necessary substitutions and the last two are the basis and the induction step. (Contributed by Drahflow, 12-Nov-2015.)
Hypotheses
Ref Expression
rtrclind.1 (𝜂 → Rel 𝑅)
rtrclind.2 (𝜂𝑅 ∈ V)
rtrclind.3 (𝜂𝑆 ∈ V)
rtrclind.4 (𝜂𝑋 ∈ V)
rtrclind.5 (𝑖 = 𝑆 → (𝜑𝜒))
rtrclind.6 (𝑖 = 𝑥 → (𝜑𝜓))
rtrclind.7 (𝑖 = 𝑗 → (𝜑𝜃))
rtrclind.8 (𝑥 = 𝑋 → (𝜓𝜏))
rtrclind.9 (𝜂𝜒)
rtrclind.10 (𝜂 → (𝑗𝑅𝑥 → (𝜃𝜓)))
Assertion
Ref Expression
rtrclind (𝜂 → (𝑆(t*‘𝑅)𝑋𝜏))
Distinct variable groups:   𝑥,𝑅,𝑖,𝑗   𝑥,𝑆,𝑖,𝑗   𝑥,𝑋   𝜂,𝑥,𝑖,𝑗   𝜏,𝑥   𝜓,𝑖,𝑗   𝜃,𝑖   𝜑,𝑗,𝑥   𝜒,𝑖
Allowed substitution hints:   𝜑(𝑖)   𝜓(𝑥)   𝜒(𝑥,𝑗)   𝜃(𝑥,𝑗)   𝜏(𝑖,𝑗)   𝑋(𝑖,𝑗)

Proof of Theorem rtrclind
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 rtrclind.1 . . 3 (𝜂 → Rel 𝑅)
2 rtrclind.2 . . 3 (𝜂𝑅 ∈ V)
31, 2dfrtrcl2 14285 . 2 (𝜂 → (t*‘𝑅) = (t*rec‘𝑅))
41, 2dfrtrclrec2 14280 . . . . . 6 (𝜂 → (𝑆(t*rec‘𝑅)𝑋 ↔ ∃𝑛 ∈ ℕ0 𝑆(𝑅𝑟𝑛)𝑋))
54biimpac 471 . . . . 5 ((𝑆(t*rec‘𝑅)𝑋𝜂) → ∃𝑛 ∈ ℕ0 𝑆(𝑅𝑟𝑛)𝑋)
6 simprl 758 . . . . . . . . . 10 ((𝑆(t*rec‘𝑅)𝑋 ∧ (𝜂 ∧ (𝑆(𝑅𝑟𝑛)𝑋𝑛 ∈ ℕ0))) → 𝜂)
7 simprrr 769 . . . . . . . . . 10 ((𝑆(t*rec‘𝑅)𝑋 ∧ (𝜂 ∧ (𝑆(𝑅𝑟𝑛)𝑋𝑛 ∈ ℕ0))) → 𝑛 ∈ ℕ0)
8 simprrl 768 . . . . . . . . . 10 ((𝑆(t*rec‘𝑅)𝑋 ∧ (𝜂 ∧ (𝑆(𝑅𝑟𝑛)𝑋𝑛 ∈ ℕ0))) → 𝑆(𝑅𝑟𝑛)𝑋)
9 rtrclind.3 . . . . . . . . . . 11 (𝜂𝑆 ∈ V)
10 rtrclind.4 . . . . . . . . . . 11 (𝜂𝑋 ∈ V)
11 rtrclind.5 . . . . . . . . . . 11 (𝑖 = 𝑆 → (𝜑𝜒))
12 rtrclind.6 . . . . . . . . . . 11 (𝑖 = 𝑥 → (𝜑𝜓))
13 rtrclind.7 . . . . . . . . . . 11 (𝑖 = 𝑗 → (𝜑𝜃))
14 rtrclind.8 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝜓𝜏))
15 rtrclind.9 . . . . . . . . . . 11 (𝜂𝜒)
16 rtrclind.10 . . . . . . . . . . 11 (𝜂 → (𝑗𝑅𝑥 → (𝜃𝜓)))
171, 2, 9, 10, 11, 12, 13, 14, 15, 16relexpind 14287 . . . . . . . . . 10 (𝜂 → (𝑛 ∈ ℕ0 → (𝑆(𝑅𝑟𝑛)𝑋𝜏)))
186, 7, 8, 17syl3c 66 . . . . . . . . 9 ((𝑆(t*rec‘𝑅)𝑋 ∧ (𝜂 ∧ (𝑆(𝑅𝑟𝑛)𝑋𝑛 ∈ ℕ0))) → 𝜏)
1918anassrs 460 . . . . . . . 8 (((𝑆(t*rec‘𝑅)𝑋𝜂) ∧ (𝑆(𝑅𝑟𝑛)𝑋𝑛 ∈ ℕ0)) → 𝜏)
2019expcom 406 . . . . . . 7 ((𝑆(𝑅𝑟𝑛)𝑋𝑛 ∈ ℕ0) → ((𝑆(t*rec‘𝑅)𝑋𝜂) → 𝜏))
2120expcom 406 . . . . . 6 (𝑛 ∈ ℕ0 → (𝑆(𝑅𝑟𝑛)𝑋 → ((𝑆(t*rec‘𝑅)𝑋𝜂) → 𝜏)))
2221rexlimiv 3225 . . . . 5 (∃𝑛 ∈ ℕ0 𝑆(𝑅𝑟𝑛)𝑋 → ((𝑆(t*rec‘𝑅)𝑋𝜂) → 𝜏))
235, 22mpcom 38 . . . 4 ((𝑆(t*rec‘𝑅)𝑋𝜂) → 𝜏)
2423expcom 406 . . 3 (𝜂 → (𝑆(t*rec‘𝑅)𝑋𝜏))
25 breq 4932 . . . 4 ((t*‘𝑅) = (t*rec‘𝑅) → (𝑆(t*‘𝑅)𝑋𝑆(t*rec‘𝑅)𝑋))
2625imbi1d 334 . . 3 ((t*‘𝑅) = (t*rec‘𝑅) → ((𝑆(t*‘𝑅)𝑋𝜏) ↔ (𝑆(t*rec‘𝑅)𝑋𝜏)))
2724, 26syl5ibr 238 . 2 ((t*‘𝑅) = (t*rec‘𝑅) → (𝜂 → (𝑆(t*‘𝑅)𝑋𝜏)))
283, 27mpcom 38 1 (𝜂 → (𝑆(t*‘𝑅)𝑋𝜏))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387   = wceq 1507  wcel 2050  wrex 3089  Vcvv 3415   class class class wbr 4930  Rel wrel 5413  cfv 6190  (class class class)co 6978  0cn0 11710  t*crtcl 14210  𝑟crelexp 14243  t*reccrtrcl 14278
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-rep 5050  ax-sep 5061  ax-nul 5068  ax-pow 5120  ax-pr 5187  ax-un 7281  ax-cnex 10393  ax-resscn 10394  ax-1cn 10395  ax-icn 10396  ax-addcl 10397  ax-addrcl 10398  ax-mulcl 10399  ax-mulrcl 10400  ax-mulcom 10401  ax-addass 10402  ax-mulass 10403  ax-distr 10404  ax-i2m1 10405  ax-1ne0 10406  ax-1rid 10407  ax-rnegex 10408  ax-rrecex 10409  ax-cnre 10410  ax-pre-lttri 10411  ax-pre-lttrn 10412  ax-pre-ltadd 10413  ax-pre-mulgt0 10414
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2583  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rab 3097  df-v 3417  df-sbc 3684  df-csb 3789  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-pss 3847  df-nul 4181  df-if 4352  df-pw 4425  df-sn 4443  df-pr 4445  df-tp 4447  df-op 4449  df-uni 4714  df-int 4751  df-iun 4795  df-br 4931  df-opab 4993  df-mpt 5010  df-tr 5032  df-id 5313  df-eprel 5318  df-po 5327  df-so 5328  df-fr 5367  df-we 5369  df-xp 5414  df-rel 5415  df-cnv 5416  df-co 5417  df-dm 5418  df-rn 5419  df-res 5420  df-ima 5421  df-pred 5988  df-ord 6034  df-on 6035  df-lim 6036  df-suc 6037  df-iota 6154  df-fun 6192  df-fn 6193  df-f 6194  df-f1 6195  df-fo 6196  df-f1o 6197  df-fv 6198  df-riota 6939  df-ov 6981  df-oprab 6982  df-mpo 6983  df-om 7399  df-2nd 7504  df-wrecs 7752  df-recs 7814  df-rdg 7852  df-er 8091  df-en 8309  df-dom 8310  df-sdom 8311  df-pnf 10478  df-mnf 10479  df-xr 10480  df-ltxr 10481  df-le 10482  df-sub 10674  df-neg 10675  df-nn 11442  df-2 11506  df-n0 11711  df-z 11797  df-uz 12062  df-seq 13188  df-rtrcl 14212  df-relexp 14244  df-rtrclrec 14279
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator