![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rtrclind | Structured version Visualization version GIF version |
Description: Principle of transitive induction. The first three hypotheses give various existences, the next four give necessary substitutions and the last two are the basis and the induction step. (Contributed by Drahflow, 12-Nov-2015.) (Revised by AV, 13-Jul-2024.) |
Ref | Expression |
---|---|
rtrclind.1 | β’ (π β Rel π ) |
rtrclind.2 | β’ (π β π β π) |
rtrclind.3 | β’ (π β π β π) |
rtrclind.4 | β’ (π = π β (π β π)) |
rtrclind.5 | β’ (π = π₯ β (π β π)) |
rtrclind.6 | β’ (π = π β (π β π)) |
rtrclind.7 | β’ (π₯ = π β (π β π)) |
rtrclind.8 | β’ (π β π) |
rtrclind.9 | β’ (π β (ππ π₯ β (π β π))) |
Ref | Expression |
---|---|
rtrclind | β’ (π β (π(t*βπ )π β π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rtrclind.1 | . . 3 β’ (π β Rel π ) | |
2 | 1 | dfrtrcl2 15051 | . 2 β’ (π β (t*βπ ) = (t*recβπ )) |
3 | 1 | dfrtrclrec2 15047 | . . . . . 6 β’ (π β (π(t*recβπ )π β βπ β β0 π(π βππ)π)) |
4 | 3 | biimpac 477 | . . . . 5 β’ ((π(t*recβπ )π β§ π) β βπ β β0 π(π βππ)π) |
5 | simprl 769 | . . . . . . . . . 10 β’ ((π(t*recβπ )π β§ (π β§ (π(π βππ)π β§ π β β0))) β π) | |
6 | simprrr 780 | . . . . . . . . . 10 β’ ((π(t*recβπ )π β§ (π β§ (π(π βππ)π β§ π β β0))) β π β β0) | |
7 | simprrl 779 | . . . . . . . . . 10 β’ ((π(t*recβπ )π β§ (π β§ (π(π βππ)π β§ π β β0))) β π(π βππ)π) | |
8 | rtrclind.2 | . . . . . . . . . . 11 β’ (π β π β π) | |
9 | rtrclind.3 | . . . . . . . . . . 11 β’ (π β π β π) | |
10 | rtrclind.4 | . . . . . . . . . . 11 β’ (π = π β (π β π)) | |
11 | rtrclind.5 | . . . . . . . . . . 11 β’ (π = π₯ β (π β π)) | |
12 | rtrclind.6 | . . . . . . . . . . 11 β’ (π = π β (π β π)) | |
13 | rtrclind.7 | . . . . . . . . . . 11 β’ (π₯ = π β (π β π)) | |
14 | rtrclind.8 | . . . . . . . . . . 11 β’ (π β π) | |
15 | rtrclind.9 | . . . . . . . . . . 11 β’ (π β (ππ π₯ β (π β π))) | |
16 | 1, 8, 9, 10, 11, 12, 13, 14, 15 | relexpind 15053 | . . . . . . . . . 10 β’ (π β (π β β0 β (π(π βππ)π β π))) |
17 | 5, 6, 7, 16 | syl3c 66 | . . . . . . . . 9 β’ ((π(t*recβπ )π β§ (π β§ (π(π βππ)π β§ π β β0))) β π) |
18 | 17 | anassrs 466 | . . . . . . . 8 β’ (((π(t*recβπ )π β§ π) β§ (π(π βππ)π β§ π β β0)) β π) |
19 | 18 | expcom 412 | . . . . . . 7 β’ ((π(π βππ)π β§ π β β0) β ((π(t*recβπ )π β§ π) β π)) |
20 | 19 | expcom 412 | . . . . . 6 β’ (π β β0 β (π(π βππ)π β ((π(t*recβπ )π β§ π) β π))) |
21 | 20 | rexlimiv 3145 | . . . . 5 β’ (βπ β β0 π(π βππ)π β ((π(t*recβπ )π β§ π) β π)) |
22 | 4, 21 | mpcom 38 | . . . 4 β’ ((π(t*recβπ )π β§ π) β π) |
23 | 22 | expcom 412 | . . 3 β’ (π β (π(t*recβπ )π β π)) |
24 | breq 5154 | . . . 4 β’ ((t*βπ ) = (t*recβπ ) β (π(t*βπ )π β π(t*recβπ )π)) | |
25 | 24 | imbi1d 340 | . . 3 β’ ((t*βπ ) = (t*recβπ ) β ((π(t*βπ )π β π) β (π(t*recβπ )π β π))) |
26 | 23, 25 | imbitrrid 245 | . 2 β’ ((t*βπ ) = (t*recβπ ) β (π β (π(t*βπ )π β π))) |
27 | 2, 26 | mpcom 38 | 1 β’ (π β (π(t*βπ )π β π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 394 = wceq 1533 β wcel 2098 βwrex 3067 class class class wbr 5152 Rel wrel 5687 βcfv 6553 (class class class)co 7426 β0cn0 12512 t*crtcl 14975 βπcrelexp 15008 t*reccrtrcl 15044 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7748 ax-cnex 11204 ax-resscn 11205 ax-1cn 11206 ax-icn 11207 ax-addcl 11208 ax-addrcl 11209 ax-mulcl 11210 ax-mulrcl 11211 ax-mulcom 11212 ax-addass 11213 ax-mulass 11214 ax-distr 11215 ax-i2m1 11216 ax-1ne0 11217 ax-1rid 11218 ax-rnegex 11219 ax-rrecex 11220 ax-cnre 11221 ax-pre-lttri 11222 ax-pre-lttrn 11223 ax-pre-ltadd 11224 ax-pre-mulgt0 11225 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-int 4954 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7879 df-2nd 8002 df-frecs 8295 df-wrecs 8326 df-recs 8400 df-rdg 8439 df-er 8733 df-en 8973 df-dom 8974 df-sdom 8975 df-pnf 11290 df-mnf 11291 df-xr 11292 df-ltxr 11293 df-le 11294 df-sub 11486 df-neg 11487 df-nn 12253 df-2 12315 df-n0 12513 df-z 12599 df-uz 12863 df-seq 14009 df-rtrcl 14977 df-relexp 15009 df-rtrclrec 15045 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |