MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rtrclind Structured version   Visualization version   GIF version

Theorem rtrclind 15104
Description: Principle of transitive induction. The first three hypotheses give various existences, the next four give necessary substitutions and the last two are the basis and the induction step. (Contributed by Drahflow, 12-Nov-2015.) (Revised by AV, 13-Jul-2024.)
Hypotheses
Ref Expression
rtrclind.1 (𝜂 → Rel 𝑅)
rtrclind.2 (𝜂𝑆𝑉)
rtrclind.3 (𝜂𝑋𝑊)
rtrclind.4 (𝑖 = 𝑆 → (𝜑𝜒))
rtrclind.5 (𝑖 = 𝑥 → (𝜑𝜓))
rtrclind.6 (𝑖 = 𝑗 → (𝜑𝜃))
rtrclind.7 (𝑥 = 𝑋 → (𝜓𝜏))
rtrclind.8 (𝜂𝜒)
rtrclind.9 (𝜂 → (𝑗𝑅𝑥 → (𝜃𝜓)))
Assertion
Ref Expression
rtrclind (𝜂 → (𝑆(t*‘𝑅)𝑋𝜏))
Distinct variable groups:   𝑥,𝑅,𝑖,𝑗   𝑥,𝑆,𝑖,𝑗   𝑥,𝑋   𝜂,𝑥,𝑖,𝑗   𝜏,𝑥   𝜓,𝑖,𝑗   𝜃,𝑖   𝜑,𝑗,𝑥   𝜒,𝑖
Allowed substitution hints:   𝜑(𝑖)   𝜓(𝑥)   𝜒(𝑥,𝑗)   𝜃(𝑥,𝑗)   𝜏(𝑖,𝑗)   𝑉(𝑥,𝑖,𝑗)   𝑊(𝑥,𝑖,𝑗)   𝑋(𝑖,𝑗)

Proof of Theorem rtrclind
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 rtrclind.1 . . 3 (𝜂 → Rel 𝑅)
21dfrtrcl2 15101 . 2 (𝜂 → (t*‘𝑅) = (t*rec‘𝑅))
31dfrtrclrec2 15097 . . . . . 6 (𝜂 → (𝑆(t*rec‘𝑅)𝑋 ↔ ∃𝑛 ∈ ℕ0 𝑆(𝑅𝑟𝑛)𝑋))
43biimpac 478 . . . . 5 ((𝑆(t*rec‘𝑅)𝑋𝜂) → ∃𝑛 ∈ ℕ0 𝑆(𝑅𝑟𝑛)𝑋)
5 simprl 771 . . . . . . . . . 10 ((𝑆(t*rec‘𝑅)𝑋 ∧ (𝜂 ∧ (𝑆(𝑅𝑟𝑛)𝑋𝑛 ∈ ℕ0))) → 𝜂)
6 simprrr 782 . . . . . . . . . 10 ((𝑆(t*rec‘𝑅)𝑋 ∧ (𝜂 ∧ (𝑆(𝑅𝑟𝑛)𝑋𝑛 ∈ ℕ0))) → 𝑛 ∈ ℕ0)
7 simprrl 781 . . . . . . . . . 10 ((𝑆(t*rec‘𝑅)𝑋 ∧ (𝜂 ∧ (𝑆(𝑅𝑟𝑛)𝑋𝑛 ∈ ℕ0))) → 𝑆(𝑅𝑟𝑛)𝑋)
8 rtrclind.2 . . . . . . . . . . 11 (𝜂𝑆𝑉)
9 rtrclind.3 . . . . . . . . . . 11 (𝜂𝑋𝑊)
10 rtrclind.4 . . . . . . . . . . 11 (𝑖 = 𝑆 → (𝜑𝜒))
11 rtrclind.5 . . . . . . . . . . 11 (𝑖 = 𝑥 → (𝜑𝜓))
12 rtrclind.6 . . . . . . . . . . 11 (𝑖 = 𝑗 → (𝜑𝜃))
13 rtrclind.7 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝜓𝜏))
14 rtrclind.8 . . . . . . . . . . 11 (𝜂𝜒)
15 rtrclind.9 . . . . . . . . . . 11 (𝜂 → (𝑗𝑅𝑥 → (𝜃𝜓)))
161, 8, 9, 10, 11, 12, 13, 14, 15relexpind 15103 . . . . . . . . . 10 (𝜂 → (𝑛 ∈ ℕ0 → (𝑆(𝑅𝑟𝑛)𝑋𝜏)))
175, 6, 7, 16syl3c 66 . . . . . . . . 9 ((𝑆(t*rec‘𝑅)𝑋 ∧ (𝜂 ∧ (𝑆(𝑅𝑟𝑛)𝑋𝑛 ∈ ℕ0))) → 𝜏)
1817anassrs 467 . . . . . . . 8 (((𝑆(t*rec‘𝑅)𝑋𝜂) ∧ (𝑆(𝑅𝑟𝑛)𝑋𝑛 ∈ ℕ0)) → 𝜏)
1918expcom 413 . . . . . . 7 ((𝑆(𝑅𝑟𝑛)𝑋𝑛 ∈ ℕ0) → ((𝑆(t*rec‘𝑅)𝑋𝜂) → 𝜏))
2019expcom 413 . . . . . 6 (𝑛 ∈ ℕ0 → (𝑆(𝑅𝑟𝑛)𝑋 → ((𝑆(t*rec‘𝑅)𝑋𝜂) → 𝜏)))
2120rexlimiv 3148 . . . . 5 (∃𝑛 ∈ ℕ0 𝑆(𝑅𝑟𝑛)𝑋 → ((𝑆(t*rec‘𝑅)𝑋𝜂) → 𝜏))
224, 21mpcom 38 . . . 4 ((𝑆(t*rec‘𝑅)𝑋𝜂) → 𝜏)
2322expcom 413 . . 3 (𝜂 → (𝑆(t*rec‘𝑅)𝑋𝜏))
24 breq 5145 . . . 4 ((t*‘𝑅) = (t*rec‘𝑅) → (𝑆(t*‘𝑅)𝑋𝑆(t*rec‘𝑅)𝑋))
2524imbi1d 341 . . 3 ((t*‘𝑅) = (t*rec‘𝑅) → ((𝑆(t*‘𝑅)𝑋𝜏) ↔ (𝑆(t*rec‘𝑅)𝑋𝜏)))
2623, 25imbitrrid 246 . 2 ((t*‘𝑅) = (t*rec‘𝑅) → (𝜂 → (𝑆(t*‘𝑅)𝑋𝜏)))
272, 26mpcom 38 1 (𝜂 → (𝑆(t*‘𝑅)𝑋𝜏))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wrex 3070   class class class wbr 5143  Rel wrel 5690  cfv 6561  (class class class)co 7431  0cn0 12526  t*crtcl 15025  𝑟crelexp 15058  t*reccrtrcl 15094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-n0 12527  df-z 12614  df-uz 12879  df-seq 14043  df-rtrcl 15027  df-relexp 15059  df-rtrclrec 15095
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator