MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mat1ric Structured version   Visualization version   GIF version

Theorem mat1ric 21685
Description: A ring is isomorphic to the ring of matrices with dimension 1 over this ring. (Contributed by AV, 30-Dec-2019.)
Hypothesis
Ref Expression
mat1ric.a 𝐴 = ({𝐸} Mat 𝑅)
Assertion
Ref Expression
mat1ric ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝑅𝑟 𝐴)

Proof of Theorem mat1ric
Dummy variables 𝑦 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . . 4 (Base‘𝑅) = (Base‘𝑅)
2 mat1ric.a . . . 4 𝐴 = ({𝐸} Mat 𝑅)
3 eqid 2736 . . . 4 (Base‘𝐴) = (Base‘𝐴)
4 eqid 2736 . . . 4 𝐸, 𝐸⟩ = ⟨𝐸, 𝐸
5 opeq2 4810 . . . . . 6 (𝑥 = 𝑦 → ⟨⟨𝐸, 𝐸⟩, 𝑥⟩ = ⟨⟨𝐸, 𝐸⟩, 𝑦⟩)
65sneqd 4577 . . . . 5 (𝑥 = 𝑦 → {⟨⟨𝐸, 𝐸⟩, 𝑥⟩} = {⟨⟨𝐸, 𝐸⟩, 𝑦⟩})
76cbvmptv 5194 . . . 4 (𝑥 ∈ (Base‘𝑅) ↦ {⟨⟨𝐸, 𝐸⟩, 𝑥⟩}) = (𝑦 ∈ (Base‘𝑅) ↦ {⟨⟨𝐸, 𝐸⟩, 𝑦⟩})
81, 2, 3, 4, 7mat1rngiso 21684 . . 3 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝑥 ∈ (Base‘𝑅) ↦ {⟨⟨𝐸, 𝐸⟩, 𝑥⟩}) ∈ (𝑅 RingIso 𝐴))
98ne0d 4275 . 2 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝑅 RingIso 𝐴) ≠ ∅)
10 brric 20037 . 2 (𝑅𝑟 𝐴 ↔ (𝑅 RingIso 𝐴) ≠ ∅)
119, 10sylibr 233 1 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝑅𝑟 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1539  wcel 2104  wne 2941  c0 4262  {csn 4565  cop 4571   class class class wbr 5081  cmpt 5164  cfv 6458  (class class class)co 7307  Basecbs 16961  Ringcrg 19832   RingIso crs 20006  𝑟 cric 20007   Mat cmat 21603
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-cnex 10977  ax-resscn 10978  ax-1cn 10979  ax-icn 10980  ax-addcl 10981  ax-addrcl 10982  ax-mulcl 10983  ax-mulrcl 10984  ax-mulcom 10985  ax-addass 10986  ax-mulass 10987  ax-distr 10988  ax-i2m1 10989  ax-1ne0 10990  ax-1rid 10991  ax-rnegex 10992  ax-rrecex 10993  ax-cnre 10994  ax-pre-lttri 10995  ax-pre-lttrn 10996  ax-pre-ltadd 10997  ax-pre-mulgt0 10998
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3304  df-reu 3305  df-rab 3306  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-tp 4570  df-op 4572  df-ot 4574  df-uni 4845  df-int 4887  df-iun 4933  df-iin 4934  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-se 5556  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-isom 6467  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-of 7565  df-om 7745  df-1st 7863  df-2nd 7864  df-supp 8009  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-1o 8328  df-er 8529  df-map 8648  df-ixp 8717  df-en 8765  df-dom 8766  df-sdom 8767  df-fin 8768  df-fsupp 9177  df-sup 9249  df-oi 9317  df-card 9745  df-pnf 11061  df-mnf 11062  df-xr 11063  df-ltxr 11064  df-le 11065  df-sub 11257  df-neg 11258  df-nn 12024  df-2 12086  df-3 12087  df-4 12088  df-5 12089  df-6 12090  df-7 12091  df-8 12092  df-9 12093  df-n0 12284  df-z 12370  df-dec 12488  df-uz 12633  df-fz 13290  df-fzo 13433  df-seq 13772  df-hash 14095  df-struct 16897  df-sets 16914  df-slot 16932  df-ndx 16944  df-base 16962  df-ress 16991  df-plusg 17024  df-mulr 17025  df-sca 17027  df-vsca 17028  df-ip 17029  df-tset 17030  df-ple 17031  df-ds 17033  df-hom 17035  df-cco 17036  df-0g 17201  df-gsum 17202  df-prds 17207  df-pws 17209  df-mre 17344  df-mrc 17345  df-acs 17347  df-mgm 18375  df-sgrp 18424  df-mnd 18435  df-mhm 18479  df-submnd 18480  df-grp 18629  df-minusg 18630  df-sbg 18631  df-mulg 18750  df-subg 18801  df-ghm 18881  df-cntz 18972  df-cmn 19437  df-abl 19438  df-mgp 19770  df-ur 19787  df-ring 19834  df-rnghom 20008  df-rngiso 20009  df-ric 20011  df-subrg 20071  df-lmod 20174  df-lss 20243  df-sra 20483  df-rgmod 20484  df-dsmm 20988  df-frlm 21003  df-mamu 21582  df-mat 21604
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator