| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > riccrng1 | Structured version Visualization version GIF version | ||
| Description: Ring isomorphism preserves (multiplicative) commutativity. (Contributed by SN, 10-Jan-2025.) |
| Ref | Expression |
|---|---|
| riccrng1 | ⊢ ((𝑅 ≃𝑟 𝑆 ∧ 𝑅 ∈ CRing) → 𝑆 ∈ CRing) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brric 20419 | . . 3 ⊢ (𝑅 ≃𝑟 𝑆 ↔ (𝑅 RingIso 𝑆) ≠ ∅) | |
| 2 | n0 4300 | . . 3 ⊢ ((𝑅 RingIso 𝑆) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝑅 RingIso 𝑆)) | |
| 3 | 1, 2 | bitri 275 | . 2 ⊢ (𝑅 ≃𝑟 𝑆 ↔ ∃𝑓 𝑓 ∈ (𝑅 RingIso 𝑆)) |
| 4 | eqid 2731 | . . . . . . . . . . 11 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 5 | eqid 2731 | . . . . . . . . . . 11 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 6 | 4, 5 | rimf1o 20410 | . . . . . . . . . 10 ⊢ (𝑓 ∈ (𝑅 RingIso 𝑆) → 𝑓:(Base‘𝑅)–1-1-onto→(Base‘𝑆)) |
| 7 | f1ofo 6770 | . . . . . . . . . 10 ⊢ (𝑓:(Base‘𝑅)–1-1-onto→(Base‘𝑆) → 𝑓:(Base‘𝑅)–onto→(Base‘𝑆)) | |
| 8 | foima 6740 | . . . . . . . . . 10 ⊢ (𝑓:(Base‘𝑅)–onto→(Base‘𝑆) → (𝑓 “ (Base‘𝑅)) = (Base‘𝑆)) | |
| 9 | 6, 7, 8 | 3syl 18 | . . . . . . . . 9 ⊢ (𝑓 ∈ (𝑅 RingIso 𝑆) → (𝑓 “ (Base‘𝑅)) = (Base‘𝑆)) |
| 10 | 9 | oveq2d 7362 | . . . . . . . 8 ⊢ (𝑓 ∈ (𝑅 RingIso 𝑆) → (𝑆 ↾s (𝑓 “ (Base‘𝑅))) = (𝑆 ↾s (Base‘𝑆))) |
| 11 | rimrcl2 42608 | . . . . . . . . 9 ⊢ (𝑓 ∈ (𝑅 RingIso 𝑆) → 𝑆 ∈ Ring) | |
| 12 | 5 | ressid 17155 | . . . . . . . . 9 ⊢ (𝑆 ∈ Ring → (𝑆 ↾s (Base‘𝑆)) = 𝑆) |
| 13 | 11, 12 | syl 17 | . . . . . . . 8 ⊢ (𝑓 ∈ (𝑅 RingIso 𝑆) → (𝑆 ↾s (Base‘𝑆)) = 𝑆) |
| 14 | 10, 13 | eqtr2d 2767 | . . . . . . 7 ⊢ (𝑓 ∈ (𝑅 RingIso 𝑆) → 𝑆 = (𝑆 ↾s (𝑓 “ (Base‘𝑅)))) |
| 15 | 14 | adantr 480 | . . . . . 6 ⊢ ((𝑓 ∈ (𝑅 RingIso 𝑆) ∧ 𝑅 ∈ CRing) → 𝑆 = (𝑆 ↾s (𝑓 “ (Base‘𝑅)))) |
| 16 | eqid 2731 | . . . . . . 7 ⊢ (𝑆 ↾s (𝑓 “ (Base‘𝑅))) = (𝑆 ↾s (𝑓 “ (Base‘𝑅))) | |
| 17 | rimrhm 20411 | . . . . . . . 8 ⊢ (𝑓 ∈ (𝑅 RingIso 𝑆) → 𝑓 ∈ (𝑅 RingHom 𝑆)) | |
| 18 | 17 | adantr 480 | . . . . . . 7 ⊢ ((𝑓 ∈ (𝑅 RingIso 𝑆) ∧ 𝑅 ∈ CRing) → 𝑓 ∈ (𝑅 RingHom 𝑆)) |
| 19 | simpr 484 | . . . . . . 7 ⊢ ((𝑓 ∈ (𝑅 RingIso 𝑆) ∧ 𝑅 ∈ CRing) → 𝑅 ∈ CRing) | |
| 20 | 19 | crngringd 20164 | . . . . . . . 8 ⊢ ((𝑓 ∈ (𝑅 RingIso 𝑆) ∧ 𝑅 ∈ CRing) → 𝑅 ∈ Ring) |
| 21 | 4 | subrgid 20488 | . . . . . . . 8 ⊢ (𝑅 ∈ Ring → (Base‘𝑅) ∈ (SubRing‘𝑅)) |
| 22 | 20, 21 | syl 17 | . . . . . . 7 ⊢ ((𝑓 ∈ (𝑅 RingIso 𝑆) ∧ 𝑅 ∈ CRing) → (Base‘𝑅) ∈ (SubRing‘𝑅)) |
| 23 | 16, 18, 19, 22 | imacrhmcl 42606 | . . . . . 6 ⊢ ((𝑓 ∈ (𝑅 RingIso 𝑆) ∧ 𝑅 ∈ CRing) → (𝑆 ↾s (𝑓 “ (Base‘𝑅))) ∈ CRing) |
| 24 | 15, 23 | eqeltrd 2831 | . . . . 5 ⊢ ((𝑓 ∈ (𝑅 RingIso 𝑆) ∧ 𝑅 ∈ CRing) → 𝑆 ∈ CRing) |
| 25 | 24 | ex 412 | . . . 4 ⊢ (𝑓 ∈ (𝑅 RingIso 𝑆) → (𝑅 ∈ CRing → 𝑆 ∈ CRing)) |
| 26 | 25 | exlimiv 1931 | . . 3 ⊢ (∃𝑓 𝑓 ∈ (𝑅 RingIso 𝑆) → (𝑅 ∈ CRing → 𝑆 ∈ CRing)) |
| 27 | 26 | imp 406 | . 2 ⊢ ((∃𝑓 𝑓 ∈ (𝑅 RingIso 𝑆) ∧ 𝑅 ∈ CRing) → 𝑆 ∈ CRing) |
| 28 | 3, 27 | sylanb 581 | 1 ⊢ ((𝑅 ≃𝑟 𝑆 ∧ 𝑅 ∈ CRing) → 𝑆 ∈ CRing) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 ≠ wne 2928 ∅c0 4280 class class class wbr 5089 “ cima 5617 –onto→wfo 6479 –1-1-onto→wf1o 6480 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 ↾s cress 17141 Ringcrg 20151 CRingccrg 20152 RingHom crh 20387 RingIso crs 20388 ≃𝑟 cric 20389 SubRingcsubrg 20484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-mhm 18691 df-submnd 18692 df-grp 18849 df-minusg 18850 df-subg 19036 df-ghm 19125 df-cmn 19694 df-abl 19695 df-mgp 20059 df-rng 20071 df-ur 20100 df-ring 20153 df-cring 20154 df-rhm 20390 df-rim 20391 df-ric 20393 df-subrng 20461 df-subrg 20485 |
| This theorem is referenced by: riccrng 42614 |
| Copyright terms: Public domain | W3C validator |