Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  riccrng1 Structured version   Visualization version   GIF version

Theorem riccrng1 41045
Description: Ring isomorphism preserves (multiplicative) commutativity. (Contributed by SN, 10-Jan-2025.)
Assertion
Ref Expression
riccrng1 ((𝑅𝑟 𝑆𝑅 ∈ CRing) → 𝑆 ∈ CRing)

Proof of Theorem riccrng1
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 brric 20272 . . 3 (𝑅𝑟 𝑆 ↔ (𝑅 RingIso 𝑆) ≠ ∅)
2 n0 4345 . . 3 ((𝑅 RingIso 𝑆) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝑅 RingIso 𝑆))
31, 2bitri 275 . 2 (𝑅𝑟 𝑆 ↔ ∃𝑓 𝑓 ∈ (𝑅 RingIso 𝑆))
4 eqid 2733 . . . . . . . . . . 11 (Base‘𝑅) = (Base‘𝑅)
5 eqid 2733 . . . . . . . . . . 11 (Base‘𝑆) = (Base‘𝑆)
64, 5rimf1o 20261 . . . . . . . . . 10 (𝑓 ∈ (𝑅 RingIso 𝑆) → 𝑓:(Base‘𝑅)–1-1-onto→(Base‘𝑆))
7 f1ofo 6837 . . . . . . . . . 10 (𝑓:(Base‘𝑅)–1-1-onto→(Base‘𝑆) → 𝑓:(Base‘𝑅)–onto→(Base‘𝑆))
8 foima 6807 . . . . . . . . . 10 (𝑓:(Base‘𝑅)–onto→(Base‘𝑆) → (𝑓 “ (Base‘𝑅)) = (Base‘𝑆))
96, 7, 83syl 18 . . . . . . . . 9 (𝑓 ∈ (𝑅 RingIso 𝑆) → (𝑓 “ (Base‘𝑅)) = (Base‘𝑆))
109oveq2d 7420 . . . . . . . 8 (𝑓 ∈ (𝑅 RingIso 𝑆) → (𝑆s (𝑓 “ (Base‘𝑅))) = (𝑆s (Base‘𝑆)))
11 rimrcl2 41040 . . . . . . . . 9 (𝑓 ∈ (𝑅 RingIso 𝑆) → 𝑆 ∈ Ring)
125ressid 17185 . . . . . . . . 9 (𝑆 ∈ Ring → (𝑆s (Base‘𝑆)) = 𝑆)
1311, 12syl 17 . . . . . . . 8 (𝑓 ∈ (𝑅 RingIso 𝑆) → (𝑆s (Base‘𝑆)) = 𝑆)
1410, 13eqtr2d 2774 . . . . . . 7 (𝑓 ∈ (𝑅 RingIso 𝑆) → 𝑆 = (𝑆s (𝑓 “ (Base‘𝑅))))
1514adantr 482 . . . . . 6 ((𝑓 ∈ (𝑅 RingIso 𝑆) ∧ 𝑅 ∈ CRing) → 𝑆 = (𝑆s (𝑓 “ (Base‘𝑅))))
16 eqid 2733 . . . . . . 7 (𝑆s (𝑓 “ (Base‘𝑅))) = (𝑆s (𝑓 “ (Base‘𝑅)))
17 rimrhm 20263 . . . . . . . 8 (𝑓 ∈ (𝑅 RingIso 𝑆) → 𝑓 ∈ (𝑅 RingHom 𝑆))
1817adantr 482 . . . . . . 7 ((𝑓 ∈ (𝑅 RingIso 𝑆) ∧ 𝑅 ∈ CRing) → 𝑓 ∈ (𝑅 RingHom 𝑆))
19 simpr 486 . . . . . . 7 ((𝑓 ∈ (𝑅 RingIso 𝑆) ∧ 𝑅 ∈ CRing) → 𝑅 ∈ CRing)
2019crngringd 20060 . . . . . . . 8 ((𝑓 ∈ (𝑅 RingIso 𝑆) ∧ 𝑅 ∈ CRing) → 𝑅 ∈ Ring)
214subrgid 20353 . . . . . . . 8 (𝑅 ∈ Ring → (Base‘𝑅) ∈ (SubRing‘𝑅))
2220, 21syl 17 . . . . . . 7 ((𝑓 ∈ (𝑅 RingIso 𝑆) ∧ 𝑅 ∈ CRing) → (Base‘𝑅) ∈ (SubRing‘𝑅))
2316, 18, 19, 22imacrhmcl 41038 . . . . . 6 ((𝑓 ∈ (𝑅 RingIso 𝑆) ∧ 𝑅 ∈ CRing) → (𝑆s (𝑓 “ (Base‘𝑅))) ∈ CRing)
2415, 23eqeltrd 2834 . . . . 5 ((𝑓 ∈ (𝑅 RingIso 𝑆) ∧ 𝑅 ∈ CRing) → 𝑆 ∈ CRing)
2524ex 414 . . . 4 (𝑓 ∈ (𝑅 RingIso 𝑆) → (𝑅 ∈ CRing → 𝑆 ∈ CRing))
2625exlimiv 1934 . . 3 (∃𝑓 𝑓 ∈ (𝑅 RingIso 𝑆) → (𝑅 ∈ CRing → 𝑆 ∈ CRing))
2726imp 408 . 2 ((∃𝑓 𝑓 ∈ (𝑅 RingIso 𝑆) ∧ 𝑅 ∈ CRing) → 𝑆 ∈ CRing)
283, 27sylanb 582 1 ((𝑅𝑟 𝑆𝑅 ∈ CRing) → 𝑆 ∈ CRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wex 1782  wcel 2107  wne 2941  c0 4321   class class class wbr 5147  cima 5678  ontowfo 6538  1-1-ontowf1o 6539  cfv 6540  (class class class)co 7404  Basecbs 17140  s cress 17169  Ringcrg 20047  CRingccrg 20048   RingHom crh 20237   RingIso crs 20238  𝑟 cric 20239  SubRingcsubrg 20347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7851  df-1st 7970  df-2nd 7971  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-mulr 17207  df-0g 17383  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-mhm 18667  df-submnd 18668  df-grp 18818  df-minusg 18819  df-subg 18997  df-ghm 19084  df-cmn 19643  df-mgp 19980  df-ur 19997  df-ring 20049  df-cring 20050  df-rnghom 20240  df-rngiso 20241  df-ric 20243  df-subrg 20349
This theorem is referenced by:  riccrng  41046
  Copyright terms: Public domain W3C validator