| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > riccrng1 | Structured version Visualization version GIF version | ||
| Description: Ring isomorphism preserves (multiplicative) commutativity. (Contributed by SN, 10-Jan-2025.) |
| Ref | Expression |
|---|---|
| riccrng1 | ⊢ ((𝑅 ≃𝑟 𝑆 ∧ 𝑅 ∈ CRing) → 𝑆 ∈ CRing) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brric 20473 | . . 3 ⊢ (𝑅 ≃𝑟 𝑆 ↔ (𝑅 RingIso 𝑆) ≠ ∅) | |
| 2 | n0 4333 | . . 3 ⊢ ((𝑅 RingIso 𝑆) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝑅 RingIso 𝑆)) | |
| 3 | 1, 2 | bitri 275 | . 2 ⊢ (𝑅 ≃𝑟 𝑆 ↔ ∃𝑓 𝑓 ∈ (𝑅 RingIso 𝑆)) |
| 4 | eqid 2734 | . . . . . . . . . . 11 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 5 | eqid 2734 | . . . . . . . . . . 11 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 6 | 4, 5 | rimf1o 20463 | . . . . . . . . . 10 ⊢ (𝑓 ∈ (𝑅 RingIso 𝑆) → 𝑓:(Base‘𝑅)–1-1-onto→(Base‘𝑆)) |
| 7 | f1ofo 6835 | . . . . . . . . . 10 ⊢ (𝑓:(Base‘𝑅)–1-1-onto→(Base‘𝑆) → 𝑓:(Base‘𝑅)–onto→(Base‘𝑆)) | |
| 8 | foima 6805 | . . . . . . . . . 10 ⊢ (𝑓:(Base‘𝑅)–onto→(Base‘𝑆) → (𝑓 “ (Base‘𝑅)) = (Base‘𝑆)) | |
| 9 | 6, 7, 8 | 3syl 18 | . . . . . . . . 9 ⊢ (𝑓 ∈ (𝑅 RingIso 𝑆) → (𝑓 “ (Base‘𝑅)) = (Base‘𝑆)) |
| 10 | 9 | oveq2d 7429 | . . . . . . . 8 ⊢ (𝑓 ∈ (𝑅 RingIso 𝑆) → (𝑆 ↾s (𝑓 “ (Base‘𝑅))) = (𝑆 ↾s (Base‘𝑆))) |
| 11 | rimrcl2 42505 | . . . . . . . . 9 ⊢ (𝑓 ∈ (𝑅 RingIso 𝑆) → 𝑆 ∈ Ring) | |
| 12 | 5 | ressid 17268 | . . . . . . . . 9 ⊢ (𝑆 ∈ Ring → (𝑆 ↾s (Base‘𝑆)) = 𝑆) |
| 13 | 11, 12 | syl 17 | . . . . . . . 8 ⊢ (𝑓 ∈ (𝑅 RingIso 𝑆) → (𝑆 ↾s (Base‘𝑆)) = 𝑆) |
| 14 | 10, 13 | eqtr2d 2770 | . . . . . . 7 ⊢ (𝑓 ∈ (𝑅 RingIso 𝑆) → 𝑆 = (𝑆 ↾s (𝑓 “ (Base‘𝑅)))) |
| 15 | 14 | adantr 480 | . . . . . 6 ⊢ ((𝑓 ∈ (𝑅 RingIso 𝑆) ∧ 𝑅 ∈ CRing) → 𝑆 = (𝑆 ↾s (𝑓 “ (Base‘𝑅)))) |
| 16 | eqid 2734 | . . . . . . 7 ⊢ (𝑆 ↾s (𝑓 “ (Base‘𝑅))) = (𝑆 ↾s (𝑓 “ (Base‘𝑅))) | |
| 17 | rimrhm 20465 | . . . . . . . 8 ⊢ (𝑓 ∈ (𝑅 RingIso 𝑆) → 𝑓 ∈ (𝑅 RingHom 𝑆)) | |
| 18 | 17 | adantr 480 | . . . . . . 7 ⊢ ((𝑓 ∈ (𝑅 RingIso 𝑆) ∧ 𝑅 ∈ CRing) → 𝑓 ∈ (𝑅 RingHom 𝑆)) |
| 19 | simpr 484 | . . . . . . 7 ⊢ ((𝑓 ∈ (𝑅 RingIso 𝑆) ∧ 𝑅 ∈ CRing) → 𝑅 ∈ CRing) | |
| 20 | 19 | crngringd 20212 | . . . . . . . 8 ⊢ ((𝑓 ∈ (𝑅 RingIso 𝑆) ∧ 𝑅 ∈ CRing) → 𝑅 ∈ Ring) |
| 21 | 4 | subrgid 20542 | . . . . . . . 8 ⊢ (𝑅 ∈ Ring → (Base‘𝑅) ∈ (SubRing‘𝑅)) |
| 22 | 20, 21 | syl 17 | . . . . . . 7 ⊢ ((𝑓 ∈ (𝑅 RingIso 𝑆) ∧ 𝑅 ∈ CRing) → (Base‘𝑅) ∈ (SubRing‘𝑅)) |
| 23 | 16, 18, 19, 22 | imacrhmcl 42503 | . . . . . 6 ⊢ ((𝑓 ∈ (𝑅 RingIso 𝑆) ∧ 𝑅 ∈ CRing) → (𝑆 ↾s (𝑓 “ (Base‘𝑅))) ∈ CRing) |
| 24 | 15, 23 | eqeltrd 2833 | . . . . 5 ⊢ ((𝑓 ∈ (𝑅 RingIso 𝑆) ∧ 𝑅 ∈ CRing) → 𝑆 ∈ CRing) |
| 25 | 24 | ex 412 | . . . 4 ⊢ (𝑓 ∈ (𝑅 RingIso 𝑆) → (𝑅 ∈ CRing → 𝑆 ∈ CRing)) |
| 26 | 25 | exlimiv 1929 | . . 3 ⊢ (∃𝑓 𝑓 ∈ (𝑅 RingIso 𝑆) → (𝑅 ∈ CRing → 𝑆 ∈ CRing)) |
| 27 | 26 | imp 406 | . 2 ⊢ ((∃𝑓 𝑓 ∈ (𝑅 RingIso 𝑆) ∧ 𝑅 ∈ CRing) → 𝑆 ∈ CRing) |
| 28 | 3, 27 | sylanb 581 | 1 ⊢ ((𝑅 ≃𝑟 𝑆 ∧ 𝑅 ∈ CRing) → 𝑆 ∈ CRing) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∃wex 1778 ∈ wcel 2107 ≠ wne 2931 ∅c0 4313 class class class wbr 5123 “ cima 5668 –onto→wfo 6539 –1-1-onto→wf1o 6540 ‘cfv 6541 (class class class)co 7413 Basecbs 17230 ↾s cress 17253 Ringcrg 20199 CRingccrg 20200 RingHom crh 20438 RingIso crs 20439 ≃𝑟 cric 20440 SubRingcsubrg 20538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-er 8727 df-map 8850 df-en 8968 df-dom 8969 df-sdom 8970 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-2 12311 df-3 12312 df-sets 17184 df-slot 17202 df-ndx 17214 df-base 17231 df-ress 17254 df-plusg 17287 df-mulr 17288 df-0g 17458 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-mhm 18766 df-submnd 18767 df-grp 18924 df-minusg 18925 df-subg 19111 df-ghm 19201 df-cmn 19769 df-abl 19770 df-mgp 20107 df-rng 20119 df-ur 20148 df-ring 20201 df-cring 20202 df-rhm 20441 df-rim 20442 df-ric 20444 df-subrng 20515 df-subrg 20539 |
| This theorem is referenced by: riccrng 42511 |
| Copyright terms: Public domain | W3C validator |