MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwsco2rhm Structured version   Visualization version   GIF version

Theorem pwsco2rhm 20173
Description: Left composition with a ring homomorphism yields a ring homomorphism of structure powers. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
pwsco2rhm.y 𝑌 = (𝑅s 𝐴)
pwsco2rhm.z 𝑍 = (𝑆s 𝐴)
pwsco2rhm.b 𝐵 = (Base‘𝑌)
pwsco2rhm.a (𝜑𝐴𝑉)
pwsco2rhm.f (𝜑𝐹 ∈ (𝑅 RingHom 𝑆))
Assertion
Ref Expression
pwsco2rhm (𝜑 → (𝑔𝐵 ↦ (𝐹𝑔)) ∈ (𝑌 RingHom 𝑍))
Distinct variable groups:   𝐴,𝑔   𝜑,𝑔   𝑅,𝑔   𝑆,𝑔   𝑔,𝑌   𝐵,𝑔   𝑔,𝐹   𝑔,𝑍
Allowed substitution hint:   𝑉(𝑔)

Proof of Theorem pwsco2rhm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwsco2rhm.f . . . 4 (𝜑𝐹 ∈ (𝑅 RingHom 𝑆))
2 rhmrcl1 20150 . . . 4 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring)
31, 2syl 17 . . 3 (𝜑𝑅 ∈ Ring)
4 pwsco2rhm.a . . 3 (𝜑𝐴𝑉)
5 pwsco2rhm.y . . . 4 𝑌 = (𝑅s 𝐴)
65pwsring 20039 . . 3 ((𝑅 ∈ Ring ∧ 𝐴𝑉) → 𝑌 ∈ Ring)
73, 4, 6syl2anc 584 . 2 (𝜑𝑌 ∈ Ring)
8 rhmrcl2 20151 . . . 4 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring)
91, 8syl 17 . . 3 (𝜑𝑆 ∈ Ring)
10 pwsco2rhm.z . . . 4 𝑍 = (𝑆s 𝐴)
1110pwsring 20039 . . 3 ((𝑆 ∈ Ring ∧ 𝐴𝑉) → 𝑍 ∈ Ring)
129, 4, 11syl2anc 584 . 2 (𝜑𝑍 ∈ Ring)
13 pwsco2rhm.b . . . . 5 𝐵 = (Base‘𝑌)
14 rhmghm 20157 . . . . . . 7 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆))
151, 14syl 17 . . . . . 6 (𝜑𝐹 ∈ (𝑅 GrpHom 𝑆))
16 ghmmhm 19018 . . . . . 6 (𝐹 ∈ (𝑅 GrpHom 𝑆) → 𝐹 ∈ (𝑅 MndHom 𝑆))
1715, 16syl 17 . . . . 5 (𝜑𝐹 ∈ (𝑅 MndHom 𝑆))
185, 10, 13, 4, 17pwsco2mhm 18643 . . . 4 (𝜑 → (𝑔𝐵 ↦ (𝐹𝑔)) ∈ (𝑌 MndHom 𝑍))
19 ringgrp 19969 . . . . . 6 (𝑌 ∈ Ring → 𝑌 ∈ Grp)
207, 19syl 17 . . . . 5 (𝜑𝑌 ∈ Grp)
21 ringgrp 19969 . . . . . 6 (𝑍 ∈ Ring → 𝑍 ∈ Grp)
2212, 21syl 17 . . . . 5 (𝜑𝑍 ∈ Grp)
23 ghmmhmb 19019 . . . . 5 ((𝑌 ∈ Grp ∧ 𝑍 ∈ Grp) → (𝑌 GrpHom 𝑍) = (𝑌 MndHom 𝑍))
2420, 22, 23syl2anc 584 . . . 4 (𝜑 → (𝑌 GrpHom 𝑍) = (𝑌 MndHom 𝑍))
2518, 24eleqtrrd 2841 . . 3 (𝜑 → (𝑔𝐵 ↦ (𝐹𝑔)) ∈ (𝑌 GrpHom 𝑍))
26 eqid 2736 . . . . 5 ((mulGrp‘𝑅) ↑s 𝐴) = ((mulGrp‘𝑅) ↑s 𝐴)
27 eqid 2736 . . . . 5 ((mulGrp‘𝑆) ↑s 𝐴) = ((mulGrp‘𝑆) ↑s 𝐴)
28 eqid 2736 . . . . 5 (Base‘((mulGrp‘𝑅) ↑s 𝐴)) = (Base‘((mulGrp‘𝑅) ↑s 𝐴))
29 eqid 2736 . . . . . . 7 (mulGrp‘𝑅) = (mulGrp‘𝑅)
30 eqid 2736 . . . . . . 7 (mulGrp‘𝑆) = (mulGrp‘𝑆)
3129, 30rhmmhm 20153 . . . . . 6 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)))
321, 31syl 17 . . . . 5 (𝜑𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)))
3326, 27, 28, 4, 32pwsco2mhm 18643 . . . 4 (𝜑 → (𝑔 ∈ (Base‘((mulGrp‘𝑅) ↑s 𝐴)) ↦ (𝐹𝑔)) ∈ (((mulGrp‘𝑅) ↑s 𝐴) MndHom ((mulGrp‘𝑆) ↑s 𝐴)))
34 eqid 2736 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
355, 34pwsbas 17369 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐴𝑉) → ((Base‘𝑅) ↑m 𝐴) = (Base‘𝑌))
363, 4, 35syl2anc 584 . . . . . . 7 (𝜑 → ((Base‘𝑅) ↑m 𝐴) = (Base‘𝑌))
3736, 13eqtr4di 2794 . . . . . 6 (𝜑 → ((Base‘𝑅) ↑m 𝐴) = 𝐵)
3829ringmgp 19970 . . . . . . . 8 (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd)
393, 38syl 17 . . . . . . 7 (𝜑 → (mulGrp‘𝑅) ∈ Mnd)
4029, 34mgpbas 19902 . . . . . . . 8 (Base‘𝑅) = (Base‘(mulGrp‘𝑅))
4126, 40pwsbas 17369 . . . . . . 7 (((mulGrp‘𝑅) ∈ Mnd ∧ 𝐴𝑉) → ((Base‘𝑅) ↑m 𝐴) = (Base‘((mulGrp‘𝑅) ↑s 𝐴)))
4239, 4, 41syl2anc 584 . . . . . 6 (𝜑 → ((Base‘𝑅) ↑m 𝐴) = (Base‘((mulGrp‘𝑅) ↑s 𝐴)))
4337, 42eqtr3d 2778 . . . . 5 (𝜑𝐵 = (Base‘((mulGrp‘𝑅) ↑s 𝐴)))
4443mpteq1d 5200 . . . 4 (𝜑 → (𝑔𝐵 ↦ (𝐹𝑔)) = (𝑔 ∈ (Base‘((mulGrp‘𝑅) ↑s 𝐴)) ↦ (𝐹𝑔)))
45 eqidd 2737 . . . . 5 (𝜑 → (Base‘(mulGrp‘𝑌)) = (Base‘(mulGrp‘𝑌)))
46 eqidd 2737 . . . . 5 (𝜑 → (Base‘(mulGrp‘𝑍)) = (Base‘(mulGrp‘𝑍)))
47 eqid 2736 . . . . . . . 8 (mulGrp‘𝑌) = (mulGrp‘𝑌)
48 eqid 2736 . . . . . . . 8 (Base‘(mulGrp‘𝑌)) = (Base‘(mulGrp‘𝑌))
49 eqid 2736 . . . . . . . 8 (+g‘(mulGrp‘𝑌)) = (+g‘(mulGrp‘𝑌))
50 eqid 2736 . . . . . . . 8 (+g‘((mulGrp‘𝑅) ↑s 𝐴)) = (+g‘((mulGrp‘𝑅) ↑s 𝐴))
515, 29, 26, 47, 48, 28, 49, 50pwsmgp 20042 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐴𝑉) → ((Base‘(mulGrp‘𝑌)) = (Base‘((mulGrp‘𝑅) ↑s 𝐴)) ∧ (+g‘(mulGrp‘𝑌)) = (+g‘((mulGrp‘𝑅) ↑s 𝐴))))
523, 4, 51syl2anc 584 . . . . . 6 (𝜑 → ((Base‘(mulGrp‘𝑌)) = (Base‘((mulGrp‘𝑅) ↑s 𝐴)) ∧ (+g‘(mulGrp‘𝑌)) = (+g‘((mulGrp‘𝑅) ↑s 𝐴))))
5352simpld 495 . . . . 5 (𝜑 → (Base‘(mulGrp‘𝑌)) = (Base‘((mulGrp‘𝑅) ↑s 𝐴)))
54 eqid 2736 . . . . . . . 8 (mulGrp‘𝑍) = (mulGrp‘𝑍)
55 eqid 2736 . . . . . . . 8 (Base‘(mulGrp‘𝑍)) = (Base‘(mulGrp‘𝑍))
56 eqid 2736 . . . . . . . 8 (Base‘((mulGrp‘𝑆) ↑s 𝐴)) = (Base‘((mulGrp‘𝑆) ↑s 𝐴))
57 eqid 2736 . . . . . . . 8 (+g‘(mulGrp‘𝑍)) = (+g‘(mulGrp‘𝑍))
58 eqid 2736 . . . . . . . 8 (+g‘((mulGrp‘𝑆) ↑s 𝐴)) = (+g‘((mulGrp‘𝑆) ↑s 𝐴))
5910, 30, 27, 54, 55, 56, 57, 58pwsmgp 20042 . . . . . . 7 ((𝑆 ∈ Ring ∧ 𝐴𝑉) → ((Base‘(mulGrp‘𝑍)) = (Base‘((mulGrp‘𝑆) ↑s 𝐴)) ∧ (+g‘(mulGrp‘𝑍)) = (+g‘((mulGrp‘𝑆) ↑s 𝐴))))
609, 4, 59syl2anc 584 . . . . . 6 (𝜑 → ((Base‘(mulGrp‘𝑍)) = (Base‘((mulGrp‘𝑆) ↑s 𝐴)) ∧ (+g‘(mulGrp‘𝑍)) = (+g‘((mulGrp‘𝑆) ↑s 𝐴))))
6160simpld 495 . . . . 5 (𝜑 → (Base‘(mulGrp‘𝑍)) = (Base‘((mulGrp‘𝑆) ↑s 𝐴)))
6252simprd 496 . . . . . 6 (𝜑 → (+g‘(mulGrp‘𝑌)) = (+g‘((mulGrp‘𝑅) ↑s 𝐴)))
6362oveqdr 7385 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘(mulGrp‘𝑌)) ∧ 𝑦 ∈ (Base‘(mulGrp‘𝑌)))) → (𝑥(+g‘(mulGrp‘𝑌))𝑦) = (𝑥(+g‘((mulGrp‘𝑅) ↑s 𝐴))𝑦))
6460simprd 496 . . . . . 6 (𝜑 → (+g‘(mulGrp‘𝑍)) = (+g‘((mulGrp‘𝑆) ↑s 𝐴)))
6564oveqdr 7385 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘(mulGrp‘𝑍)) ∧ 𝑦 ∈ (Base‘(mulGrp‘𝑍)))) → (𝑥(+g‘(mulGrp‘𝑍))𝑦) = (𝑥(+g‘((mulGrp‘𝑆) ↑s 𝐴))𝑦))
6645, 46, 53, 61, 63, 65mhmpropd 18608 . . . 4 (𝜑 → ((mulGrp‘𝑌) MndHom (mulGrp‘𝑍)) = (((mulGrp‘𝑅) ↑s 𝐴) MndHom ((mulGrp‘𝑆) ↑s 𝐴)))
6733, 44, 663eltr4d 2853 . . 3 (𝜑 → (𝑔𝐵 ↦ (𝐹𝑔)) ∈ ((mulGrp‘𝑌) MndHom (mulGrp‘𝑍)))
6825, 67jca 512 . 2 (𝜑 → ((𝑔𝐵 ↦ (𝐹𝑔)) ∈ (𝑌 GrpHom 𝑍) ∧ (𝑔𝐵 ↦ (𝐹𝑔)) ∈ ((mulGrp‘𝑌) MndHom (mulGrp‘𝑍))))
6947, 54isrhm 20152 . 2 ((𝑔𝐵 ↦ (𝐹𝑔)) ∈ (𝑌 RingHom 𝑍) ↔ ((𝑌 ∈ Ring ∧ 𝑍 ∈ Ring) ∧ ((𝑔𝐵 ↦ (𝐹𝑔)) ∈ (𝑌 GrpHom 𝑍) ∧ (𝑔𝐵 ↦ (𝐹𝑔)) ∈ ((mulGrp‘𝑌) MndHom (mulGrp‘𝑍)))))
707, 12, 68, 69syl21anbrc 1344 1 (𝜑 → (𝑔𝐵 ↦ (𝐹𝑔)) ∈ (𝑌 RingHom 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  cmpt 5188  ccom 5637  cfv 6496  (class class class)co 7357  m cmap 8765  Basecbs 17083  +gcplusg 17133  s cpws 17328  Mndcmnd 18556   MndHom cmhm 18599  Grpcgrp 18748   GrpHom cghm 19005  mulGrpcmgp 19896  Ringcrg 19964   RingHom crh 20143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-fz 13425  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-plusg 17146  df-mulr 17147  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-hom 17157  df-cco 17158  df-0g 17323  df-prds 17329  df-pws 17331  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-mhm 18601  df-grp 18751  df-minusg 18752  df-ghm 19006  df-mgp 19897  df-ur 19914  df-ring 19966  df-rnghom 20146
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator