MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwsco2rhm Structured version   Visualization version   GIF version

Theorem pwsco2rhm 20520
Description: Left composition with a ring homomorphism yields a ring homomorphism of structure powers. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
pwsco2rhm.y 𝑌 = (𝑅s 𝐴)
pwsco2rhm.z 𝑍 = (𝑆s 𝐴)
pwsco2rhm.b 𝐵 = (Base‘𝑌)
pwsco2rhm.a (𝜑𝐴𝑉)
pwsco2rhm.f (𝜑𝐹 ∈ (𝑅 RingHom 𝑆))
Assertion
Ref Expression
pwsco2rhm (𝜑 → (𝑔𝐵 ↦ (𝐹𝑔)) ∈ (𝑌 RingHom 𝑍))
Distinct variable groups:   𝐴,𝑔   𝜑,𝑔   𝑅,𝑔   𝑆,𝑔   𝑔,𝑌   𝐵,𝑔   𝑔,𝐹   𝑔,𝑍
Allowed substitution hint:   𝑉(𝑔)

Proof of Theorem pwsco2rhm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwsco2rhm.f . . . 4 (𝜑𝐹 ∈ (𝑅 RingHom 𝑆))
2 rhmrcl1 20493 . . . 4 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring)
31, 2syl 17 . . 3 (𝜑𝑅 ∈ Ring)
4 pwsco2rhm.a . . 3 (𝜑𝐴𝑉)
5 pwsco2rhm.y . . . 4 𝑌 = (𝑅s 𝐴)
65pwsring 20338 . . 3 ((𝑅 ∈ Ring ∧ 𝐴𝑉) → 𝑌 ∈ Ring)
73, 4, 6syl2anc 584 . 2 (𝜑𝑌 ∈ Ring)
8 rhmrcl2 20494 . . . 4 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring)
91, 8syl 17 . . 3 (𝜑𝑆 ∈ Ring)
10 pwsco2rhm.z . . . 4 𝑍 = (𝑆s 𝐴)
1110pwsring 20338 . . 3 ((𝑆 ∈ Ring ∧ 𝐴𝑉) → 𝑍 ∈ Ring)
129, 4, 11syl2anc 584 . 2 (𝜑𝑍 ∈ Ring)
13 pwsco2rhm.b . . . . 5 𝐵 = (Base‘𝑌)
14 rhmghm 20501 . . . . . . 7 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆))
151, 14syl 17 . . . . . 6 (𝜑𝐹 ∈ (𝑅 GrpHom 𝑆))
16 ghmmhm 19257 . . . . . 6 (𝐹 ∈ (𝑅 GrpHom 𝑆) → 𝐹 ∈ (𝑅 MndHom 𝑆))
1715, 16syl 17 . . . . 5 (𝜑𝐹 ∈ (𝑅 MndHom 𝑆))
185, 10, 13, 4, 17pwsco2mhm 18859 . . . 4 (𝜑 → (𝑔𝐵 ↦ (𝐹𝑔)) ∈ (𝑌 MndHom 𝑍))
19 ringgrp 20256 . . . . . 6 (𝑌 ∈ Ring → 𝑌 ∈ Grp)
207, 19syl 17 . . . . 5 (𝜑𝑌 ∈ Grp)
21 ringgrp 20256 . . . . . 6 (𝑍 ∈ Ring → 𝑍 ∈ Grp)
2212, 21syl 17 . . . . 5 (𝜑𝑍 ∈ Grp)
23 ghmmhmb 19258 . . . . 5 ((𝑌 ∈ Grp ∧ 𝑍 ∈ Grp) → (𝑌 GrpHom 𝑍) = (𝑌 MndHom 𝑍))
2420, 22, 23syl2anc 584 . . . 4 (𝜑 → (𝑌 GrpHom 𝑍) = (𝑌 MndHom 𝑍))
2518, 24eleqtrrd 2842 . . 3 (𝜑 → (𝑔𝐵 ↦ (𝐹𝑔)) ∈ (𝑌 GrpHom 𝑍))
26 eqid 2735 . . . . 5 ((mulGrp‘𝑅) ↑s 𝐴) = ((mulGrp‘𝑅) ↑s 𝐴)
27 eqid 2735 . . . . 5 ((mulGrp‘𝑆) ↑s 𝐴) = ((mulGrp‘𝑆) ↑s 𝐴)
28 eqid 2735 . . . . 5 (Base‘((mulGrp‘𝑅) ↑s 𝐴)) = (Base‘((mulGrp‘𝑅) ↑s 𝐴))
29 eqid 2735 . . . . . . 7 (mulGrp‘𝑅) = (mulGrp‘𝑅)
30 eqid 2735 . . . . . . 7 (mulGrp‘𝑆) = (mulGrp‘𝑆)
3129, 30rhmmhm 20496 . . . . . 6 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)))
321, 31syl 17 . . . . 5 (𝜑𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)))
3326, 27, 28, 4, 32pwsco2mhm 18859 . . . 4 (𝜑 → (𝑔 ∈ (Base‘((mulGrp‘𝑅) ↑s 𝐴)) ↦ (𝐹𝑔)) ∈ (((mulGrp‘𝑅) ↑s 𝐴) MndHom ((mulGrp‘𝑆) ↑s 𝐴)))
34 eqid 2735 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
355, 34pwsbas 17534 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐴𝑉) → ((Base‘𝑅) ↑m 𝐴) = (Base‘𝑌))
363, 4, 35syl2anc 584 . . . . . . 7 (𝜑 → ((Base‘𝑅) ↑m 𝐴) = (Base‘𝑌))
3736, 13eqtr4di 2793 . . . . . 6 (𝜑 → ((Base‘𝑅) ↑m 𝐴) = 𝐵)
3829ringmgp 20257 . . . . . . . 8 (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd)
393, 38syl 17 . . . . . . 7 (𝜑 → (mulGrp‘𝑅) ∈ Mnd)
4029, 34mgpbas 20158 . . . . . . . 8 (Base‘𝑅) = (Base‘(mulGrp‘𝑅))
4126, 40pwsbas 17534 . . . . . . 7 (((mulGrp‘𝑅) ∈ Mnd ∧ 𝐴𝑉) → ((Base‘𝑅) ↑m 𝐴) = (Base‘((mulGrp‘𝑅) ↑s 𝐴)))
4239, 4, 41syl2anc 584 . . . . . 6 (𝜑 → ((Base‘𝑅) ↑m 𝐴) = (Base‘((mulGrp‘𝑅) ↑s 𝐴)))
4337, 42eqtr3d 2777 . . . . 5 (𝜑𝐵 = (Base‘((mulGrp‘𝑅) ↑s 𝐴)))
4443mpteq1d 5243 . . . 4 (𝜑 → (𝑔𝐵 ↦ (𝐹𝑔)) = (𝑔 ∈ (Base‘((mulGrp‘𝑅) ↑s 𝐴)) ↦ (𝐹𝑔)))
45 eqidd 2736 . . . . 5 (𝜑 → (Base‘(mulGrp‘𝑌)) = (Base‘(mulGrp‘𝑌)))
46 eqidd 2736 . . . . 5 (𝜑 → (Base‘(mulGrp‘𝑍)) = (Base‘(mulGrp‘𝑍)))
47 eqid 2735 . . . . . . . 8 (mulGrp‘𝑌) = (mulGrp‘𝑌)
48 eqid 2735 . . . . . . . 8 (Base‘(mulGrp‘𝑌)) = (Base‘(mulGrp‘𝑌))
49 eqid 2735 . . . . . . . 8 (+g‘(mulGrp‘𝑌)) = (+g‘(mulGrp‘𝑌))
50 eqid 2735 . . . . . . . 8 (+g‘((mulGrp‘𝑅) ↑s 𝐴)) = (+g‘((mulGrp‘𝑅) ↑s 𝐴))
515, 29, 26, 47, 48, 28, 49, 50pwsmgp 20341 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐴𝑉) → ((Base‘(mulGrp‘𝑌)) = (Base‘((mulGrp‘𝑅) ↑s 𝐴)) ∧ (+g‘(mulGrp‘𝑌)) = (+g‘((mulGrp‘𝑅) ↑s 𝐴))))
523, 4, 51syl2anc 584 . . . . . 6 (𝜑 → ((Base‘(mulGrp‘𝑌)) = (Base‘((mulGrp‘𝑅) ↑s 𝐴)) ∧ (+g‘(mulGrp‘𝑌)) = (+g‘((mulGrp‘𝑅) ↑s 𝐴))))
5352simpld 494 . . . . 5 (𝜑 → (Base‘(mulGrp‘𝑌)) = (Base‘((mulGrp‘𝑅) ↑s 𝐴)))
54 eqid 2735 . . . . . . . 8 (mulGrp‘𝑍) = (mulGrp‘𝑍)
55 eqid 2735 . . . . . . . 8 (Base‘(mulGrp‘𝑍)) = (Base‘(mulGrp‘𝑍))
56 eqid 2735 . . . . . . . 8 (Base‘((mulGrp‘𝑆) ↑s 𝐴)) = (Base‘((mulGrp‘𝑆) ↑s 𝐴))
57 eqid 2735 . . . . . . . 8 (+g‘(mulGrp‘𝑍)) = (+g‘(mulGrp‘𝑍))
58 eqid 2735 . . . . . . . 8 (+g‘((mulGrp‘𝑆) ↑s 𝐴)) = (+g‘((mulGrp‘𝑆) ↑s 𝐴))
5910, 30, 27, 54, 55, 56, 57, 58pwsmgp 20341 . . . . . . 7 ((𝑆 ∈ Ring ∧ 𝐴𝑉) → ((Base‘(mulGrp‘𝑍)) = (Base‘((mulGrp‘𝑆) ↑s 𝐴)) ∧ (+g‘(mulGrp‘𝑍)) = (+g‘((mulGrp‘𝑆) ↑s 𝐴))))
609, 4, 59syl2anc 584 . . . . . 6 (𝜑 → ((Base‘(mulGrp‘𝑍)) = (Base‘((mulGrp‘𝑆) ↑s 𝐴)) ∧ (+g‘(mulGrp‘𝑍)) = (+g‘((mulGrp‘𝑆) ↑s 𝐴))))
6160simpld 494 . . . . 5 (𝜑 → (Base‘(mulGrp‘𝑍)) = (Base‘((mulGrp‘𝑆) ↑s 𝐴)))
6252simprd 495 . . . . . 6 (𝜑 → (+g‘(mulGrp‘𝑌)) = (+g‘((mulGrp‘𝑅) ↑s 𝐴)))
6362oveqdr 7459 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘(mulGrp‘𝑌)) ∧ 𝑦 ∈ (Base‘(mulGrp‘𝑌)))) → (𝑥(+g‘(mulGrp‘𝑌))𝑦) = (𝑥(+g‘((mulGrp‘𝑅) ↑s 𝐴))𝑦))
6460simprd 495 . . . . . 6 (𝜑 → (+g‘(mulGrp‘𝑍)) = (+g‘((mulGrp‘𝑆) ↑s 𝐴)))
6564oveqdr 7459 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘(mulGrp‘𝑍)) ∧ 𝑦 ∈ (Base‘(mulGrp‘𝑍)))) → (𝑥(+g‘(mulGrp‘𝑍))𝑦) = (𝑥(+g‘((mulGrp‘𝑆) ↑s 𝐴))𝑦))
6645, 46, 53, 61, 63, 65mhmpropd 18818 . . . 4 (𝜑 → ((mulGrp‘𝑌) MndHom (mulGrp‘𝑍)) = (((mulGrp‘𝑅) ↑s 𝐴) MndHom ((mulGrp‘𝑆) ↑s 𝐴)))
6733, 44, 663eltr4d 2854 . . 3 (𝜑 → (𝑔𝐵 ↦ (𝐹𝑔)) ∈ ((mulGrp‘𝑌) MndHom (mulGrp‘𝑍)))
6825, 67jca 511 . 2 (𝜑 → ((𝑔𝐵 ↦ (𝐹𝑔)) ∈ (𝑌 GrpHom 𝑍) ∧ (𝑔𝐵 ↦ (𝐹𝑔)) ∈ ((mulGrp‘𝑌) MndHom (mulGrp‘𝑍))))
6947, 54isrhm 20495 . 2 ((𝑔𝐵 ↦ (𝐹𝑔)) ∈ (𝑌 RingHom 𝑍) ↔ ((𝑌 ∈ Ring ∧ 𝑍 ∈ Ring) ∧ ((𝑔𝐵 ↦ (𝐹𝑔)) ∈ (𝑌 GrpHom 𝑍) ∧ (𝑔𝐵 ↦ (𝐹𝑔)) ∈ ((mulGrp‘𝑌) MndHom (mulGrp‘𝑍)))))
707, 12, 68, 69syl21anbrc 1343 1 (𝜑 → (𝑔𝐵 ↦ (𝐹𝑔)) ∈ (𝑌 RingHom 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  cmpt 5231  ccom 5693  cfv 6563  (class class class)co 7431  m cmap 8865  Basecbs 17245  +gcplusg 17298  s cpws 17493  Mndcmnd 18760   MndHom cmhm 18807  Grpcgrp 18964   GrpHom cghm 19243  mulGrpcmgp 20152  Ringcrg 20251   RingHom crh 20486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-fz 13545  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-hom 17322  df-cco 17323  df-0g 17488  df-prds 17494  df-pws 17496  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-mhm 18809  df-grp 18967  df-minusg 18968  df-ghm 19244  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-rhm 20489
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator