MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwsco2rhm Structured version   Visualization version   GIF version

Theorem pwsco2rhm 20189
Description: Left composition with a ring homomorphism yields a ring homomorphism of structure powers. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
pwsco2rhm.y 𝑌 = (𝑅s 𝐴)
pwsco2rhm.z 𝑍 = (𝑆s 𝐴)
pwsco2rhm.b 𝐵 = (Base‘𝑌)
pwsco2rhm.a (𝜑𝐴𝑉)
pwsco2rhm.f (𝜑𝐹 ∈ (𝑅 RingHom 𝑆))
Assertion
Ref Expression
pwsco2rhm (𝜑 → (𝑔𝐵 ↦ (𝐹𝑔)) ∈ (𝑌 RingHom 𝑍))
Distinct variable groups:   𝐴,𝑔   𝜑,𝑔   𝑅,𝑔   𝑆,𝑔   𝑔,𝑌   𝐵,𝑔   𝑔,𝐹   𝑔,𝑍
Allowed substitution hint:   𝑉(𝑔)

Proof of Theorem pwsco2rhm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwsco2rhm.f . . . 4 (𝜑𝐹 ∈ (𝑅 RingHom 𝑆))
2 rhmrcl1 20166 . . . 4 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring)
31, 2syl 17 . . 3 (𝜑𝑅 ∈ Ring)
4 pwsco2rhm.a . . 3 (𝜑𝐴𝑉)
5 pwsco2rhm.y . . . 4 𝑌 = (𝑅s 𝐴)
65pwsring 20053 . . 3 ((𝑅 ∈ Ring ∧ 𝐴𝑉) → 𝑌 ∈ Ring)
73, 4, 6syl2anc 584 . 2 (𝜑𝑌 ∈ Ring)
8 rhmrcl2 20167 . . . 4 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring)
91, 8syl 17 . . 3 (𝜑𝑆 ∈ Ring)
10 pwsco2rhm.z . . . 4 𝑍 = (𝑆s 𝐴)
1110pwsring 20053 . . 3 ((𝑆 ∈ Ring ∧ 𝐴𝑉) → 𝑍 ∈ Ring)
129, 4, 11syl2anc 584 . 2 (𝜑𝑍 ∈ Ring)
13 pwsco2rhm.b . . . . 5 𝐵 = (Base‘𝑌)
14 rhmghm 20173 . . . . . . 7 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆))
151, 14syl 17 . . . . . 6 (𝜑𝐹 ∈ (𝑅 GrpHom 𝑆))
16 ghmmhm 19032 . . . . . 6 (𝐹 ∈ (𝑅 GrpHom 𝑆) → 𝐹 ∈ (𝑅 MndHom 𝑆))
1715, 16syl 17 . . . . 5 (𝜑𝐹 ∈ (𝑅 MndHom 𝑆))
185, 10, 13, 4, 17pwsco2mhm 18657 . . . 4 (𝜑 → (𝑔𝐵 ↦ (𝐹𝑔)) ∈ (𝑌 MndHom 𝑍))
19 ringgrp 19983 . . . . . 6 (𝑌 ∈ Ring → 𝑌 ∈ Grp)
207, 19syl 17 . . . . 5 (𝜑𝑌 ∈ Grp)
21 ringgrp 19983 . . . . . 6 (𝑍 ∈ Ring → 𝑍 ∈ Grp)
2212, 21syl 17 . . . . 5 (𝜑𝑍 ∈ Grp)
23 ghmmhmb 19033 . . . . 5 ((𝑌 ∈ Grp ∧ 𝑍 ∈ Grp) → (𝑌 GrpHom 𝑍) = (𝑌 MndHom 𝑍))
2420, 22, 23syl2anc 584 . . . 4 (𝜑 → (𝑌 GrpHom 𝑍) = (𝑌 MndHom 𝑍))
2518, 24eleqtrrd 2835 . . 3 (𝜑 → (𝑔𝐵 ↦ (𝐹𝑔)) ∈ (𝑌 GrpHom 𝑍))
26 eqid 2731 . . . . 5 ((mulGrp‘𝑅) ↑s 𝐴) = ((mulGrp‘𝑅) ↑s 𝐴)
27 eqid 2731 . . . . 5 ((mulGrp‘𝑆) ↑s 𝐴) = ((mulGrp‘𝑆) ↑s 𝐴)
28 eqid 2731 . . . . 5 (Base‘((mulGrp‘𝑅) ↑s 𝐴)) = (Base‘((mulGrp‘𝑅) ↑s 𝐴))
29 eqid 2731 . . . . . . 7 (mulGrp‘𝑅) = (mulGrp‘𝑅)
30 eqid 2731 . . . . . . 7 (mulGrp‘𝑆) = (mulGrp‘𝑆)
3129, 30rhmmhm 20169 . . . . . 6 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)))
321, 31syl 17 . . . . 5 (𝜑𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)))
3326, 27, 28, 4, 32pwsco2mhm 18657 . . . 4 (𝜑 → (𝑔 ∈ (Base‘((mulGrp‘𝑅) ↑s 𝐴)) ↦ (𝐹𝑔)) ∈ (((mulGrp‘𝑅) ↑s 𝐴) MndHom ((mulGrp‘𝑆) ↑s 𝐴)))
34 eqid 2731 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
355, 34pwsbas 17383 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐴𝑉) → ((Base‘𝑅) ↑m 𝐴) = (Base‘𝑌))
363, 4, 35syl2anc 584 . . . . . . 7 (𝜑 → ((Base‘𝑅) ↑m 𝐴) = (Base‘𝑌))
3736, 13eqtr4di 2789 . . . . . 6 (𝜑 → ((Base‘𝑅) ↑m 𝐴) = 𝐵)
3829ringmgp 19984 . . . . . . . 8 (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd)
393, 38syl 17 . . . . . . 7 (𝜑 → (mulGrp‘𝑅) ∈ Mnd)
4029, 34mgpbas 19916 . . . . . . . 8 (Base‘𝑅) = (Base‘(mulGrp‘𝑅))
4126, 40pwsbas 17383 . . . . . . 7 (((mulGrp‘𝑅) ∈ Mnd ∧ 𝐴𝑉) → ((Base‘𝑅) ↑m 𝐴) = (Base‘((mulGrp‘𝑅) ↑s 𝐴)))
4239, 4, 41syl2anc 584 . . . . . 6 (𝜑 → ((Base‘𝑅) ↑m 𝐴) = (Base‘((mulGrp‘𝑅) ↑s 𝐴)))
4337, 42eqtr3d 2773 . . . . 5 (𝜑𝐵 = (Base‘((mulGrp‘𝑅) ↑s 𝐴)))
4443mpteq1d 5205 . . . 4 (𝜑 → (𝑔𝐵 ↦ (𝐹𝑔)) = (𝑔 ∈ (Base‘((mulGrp‘𝑅) ↑s 𝐴)) ↦ (𝐹𝑔)))
45 eqidd 2732 . . . . 5 (𝜑 → (Base‘(mulGrp‘𝑌)) = (Base‘(mulGrp‘𝑌)))
46 eqidd 2732 . . . . 5 (𝜑 → (Base‘(mulGrp‘𝑍)) = (Base‘(mulGrp‘𝑍)))
47 eqid 2731 . . . . . . . 8 (mulGrp‘𝑌) = (mulGrp‘𝑌)
48 eqid 2731 . . . . . . . 8 (Base‘(mulGrp‘𝑌)) = (Base‘(mulGrp‘𝑌))
49 eqid 2731 . . . . . . . 8 (+g‘(mulGrp‘𝑌)) = (+g‘(mulGrp‘𝑌))
50 eqid 2731 . . . . . . . 8 (+g‘((mulGrp‘𝑅) ↑s 𝐴)) = (+g‘((mulGrp‘𝑅) ↑s 𝐴))
515, 29, 26, 47, 48, 28, 49, 50pwsmgp 20056 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐴𝑉) → ((Base‘(mulGrp‘𝑌)) = (Base‘((mulGrp‘𝑅) ↑s 𝐴)) ∧ (+g‘(mulGrp‘𝑌)) = (+g‘((mulGrp‘𝑅) ↑s 𝐴))))
523, 4, 51syl2anc 584 . . . . . 6 (𝜑 → ((Base‘(mulGrp‘𝑌)) = (Base‘((mulGrp‘𝑅) ↑s 𝐴)) ∧ (+g‘(mulGrp‘𝑌)) = (+g‘((mulGrp‘𝑅) ↑s 𝐴))))
5352simpld 495 . . . . 5 (𝜑 → (Base‘(mulGrp‘𝑌)) = (Base‘((mulGrp‘𝑅) ↑s 𝐴)))
54 eqid 2731 . . . . . . . 8 (mulGrp‘𝑍) = (mulGrp‘𝑍)
55 eqid 2731 . . . . . . . 8 (Base‘(mulGrp‘𝑍)) = (Base‘(mulGrp‘𝑍))
56 eqid 2731 . . . . . . . 8 (Base‘((mulGrp‘𝑆) ↑s 𝐴)) = (Base‘((mulGrp‘𝑆) ↑s 𝐴))
57 eqid 2731 . . . . . . . 8 (+g‘(mulGrp‘𝑍)) = (+g‘(mulGrp‘𝑍))
58 eqid 2731 . . . . . . . 8 (+g‘((mulGrp‘𝑆) ↑s 𝐴)) = (+g‘((mulGrp‘𝑆) ↑s 𝐴))
5910, 30, 27, 54, 55, 56, 57, 58pwsmgp 20056 . . . . . . 7 ((𝑆 ∈ Ring ∧ 𝐴𝑉) → ((Base‘(mulGrp‘𝑍)) = (Base‘((mulGrp‘𝑆) ↑s 𝐴)) ∧ (+g‘(mulGrp‘𝑍)) = (+g‘((mulGrp‘𝑆) ↑s 𝐴))))
609, 4, 59syl2anc 584 . . . . . 6 (𝜑 → ((Base‘(mulGrp‘𝑍)) = (Base‘((mulGrp‘𝑆) ↑s 𝐴)) ∧ (+g‘(mulGrp‘𝑍)) = (+g‘((mulGrp‘𝑆) ↑s 𝐴))))
6160simpld 495 . . . . 5 (𝜑 → (Base‘(mulGrp‘𝑍)) = (Base‘((mulGrp‘𝑆) ↑s 𝐴)))
6252simprd 496 . . . . . 6 (𝜑 → (+g‘(mulGrp‘𝑌)) = (+g‘((mulGrp‘𝑅) ↑s 𝐴)))
6362oveqdr 7390 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘(mulGrp‘𝑌)) ∧ 𝑦 ∈ (Base‘(mulGrp‘𝑌)))) → (𝑥(+g‘(mulGrp‘𝑌))𝑦) = (𝑥(+g‘((mulGrp‘𝑅) ↑s 𝐴))𝑦))
6460simprd 496 . . . . . 6 (𝜑 → (+g‘(mulGrp‘𝑍)) = (+g‘((mulGrp‘𝑆) ↑s 𝐴)))
6564oveqdr 7390 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘(mulGrp‘𝑍)) ∧ 𝑦 ∈ (Base‘(mulGrp‘𝑍)))) → (𝑥(+g‘(mulGrp‘𝑍))𝑦) = (𝑥(+g‘((mulGrp‘𝑆) ↑s 𝐴))𝑦))
6645, 46, 53, 61, 63, 65mhmpropd 18622 . . . 4 (𝜑 → ((mulGrp‘𝑌) MndHom (mulGrp‘𝑍)) = (((mulGrp‘𝑅) ↑s 𝐴) MndHom ((mulGrp‘𝑆) ↑s 𝐴)))
6733, 44, 663eltr4d 2847 . . 3 (𝜑 → (𝑔𝐵 ↦ (𝐹𝑔)) ∈ ((mulGrp‘𝑌) MndHom (mulGrp‘𝑍)))
6825, 67jca 512 . 2 (𝜑 → ((𝑔𝐵 ↦ (𝐹𝑔)) ∈ (𝑌 GrpHom 𝑍) ∧ (𝑔𝐵 ↦ (𝐹𝑔)) ∈ ((mulGrp‘𝑌) MndHom (mulGrp‘𝑍))))
6947, 54isrhm 20168 . 2 ((𝑔𝐵 ↦ (𝐹𝑔)) ∈ (𝑌 RingHom 𝑍) ↔ ((𝑌 ∈ Ring ∧ 𝑍 ∈ Ring) ∧ ((𝑔𝐵 ↦ (𝐹𝑔)) ∈ (𝑌 GrpHom 𝑍) ∧ (𝑔𝐵 ↦ (𝐹𝑔)) ∈ ((mulGrp‘𝑌) MndHom (mulGrp‘𝑍)))))
707, 12, 68, 69syl21anbrc 1344 1 (𝜑 → (𝑔𝐵 ↦ (𝐹𝑔)) ∈ (𝑌 RingHom 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  cmpt 5193  ccom 5642  cfv 6501  (class class class)co 7362  m cmap 8772  Basecbs 17094  +gcplusg 17147  s cpws 17342  Mndcmnd 18570   MndHom cmhm 18613  Grpcgrp 18762   GrpHom cghm 19019  mulGrpcmgp 19910  Ringcrg 19978   RingHom crh 20159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11116  ax-resscn 11117  ax-1cn 11118  ax-icn 11119  ax-addcl 11120  ax-addrcl 11121  ax-mulcl 11122  ax-mulrcl 11123  ax-mulcom 11124  ax-addass 11125  ax-mulass 11126  ax-distr 11127  ax-i2m1 11128  ax-1ne0 11129  ax-1rid 11130  ax-rnegex 11131  ax-rrecex 11132  ax-cnre 11133  ax-pre-lttri 11134  ax-pre-lttrn 11135  ax-pre-ltadd 11136  ax-pre-mulgt0 11137
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3448  df-sbc 3743  df-csb 3859  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-uni 4871  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-of 7622  df-om 7808  df-1st 7926  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-er 8655  df-map 8774  df-ixp 8843  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-sup 9387  df-pnf 11200  df-mnf 11201  df-xr 11202  df-ltxr 11203  df-le 11204  df-sub 11396  df-neg 11397  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12423  df-z 12509  df-dec 12628  df-uz 12773  df-fz 13435  df-struct 17030  df-sets 17047  df-slot 17065  df-ndx 17077  df-base 17095  df-plusg 17160  df-mulr 17161  df-sca 17163  df-vsca 17164  df-ip 17165  df-tset 17166  df-ple 17167  df-ds 17169  df-hom 17171  df-cco 17172  df-0g 17337  df-prds 17343  df-pws 17345  df-mgm 18511  df-sgrp 18560  df-mnd 18571  df-mhm 18615  df-grp 18765  df-minusg 18766  df-ghm 19020  df-mgp 19911  df-ur 19928  df-ring 19980  df-rnghom 20162
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator