MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwsco2rhm Structured version   Visualization version   GIF version

Theorem pwsco2rhm 20468
Description: Left composition with a ring homomorphism yields a ring homomorphism of structure powers. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
pwsco2rhm.y 𝑌 = (𝑅s 𝐴)
pwsco2rhm.z 𝑍 = (𝑆s 𝐴)
pwsco2rhm.b 𝐵 = (Base‘𝑌)
pwsco2rhm.a (𝜑𝐴𝑉)
pwsco2rhm.f (𝜑𝐹 ∈ (𝑅 RingHom 𝑆))
Assertion
Ref Expression
pwsco2rhm (𝜑 → (𝑔𝐵 ↦ (𝐹𝑔)) ∈ (𝑌 RingHom 𝑍))
Distinct variable groups:   𝐴,𝑔   𝜑,𝑔   𝑅,𝑔   𝑆,𝑔   𝑔,𝑌   𝐵,𝑔   𝑔,𝐹   𝑔,𝑍
Allowed substitution hint:   𝑉(𝑔)

Proof of Theorem pwsco2rhm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwsco2rhm.f . . . 4 (𝜑𝐹 ∈ (𝑅 RingHom 𝑆))
2 rhmrcl1 20441 . . . 4 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring)
31, 2syl 17 . . 3 (𝜑𝑅 ∈ Ring)
4 pwsco2rhm.a . . 3 (𝜑𝐴𝑉)
5 pwsco2rhm.y . . . 4 𝑌 = (𝑅s 𝐴)
65pwsring 20289 . . 3 ((𝑅 ∈ Ring ∧ 𝐴𝑉) → 𝑌 ∈ Ring)
73, 4, 6syl2anc 584 . 2 (𝜑𝑌 ∈ Ring)
8 rhmrcl2 20442 . . . 4 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring)
91, 8syl 17 . . 3 (𝜑𝑆 ∈ Ring)
10 pwsco2rhm.z . . . 4 𝑍 = (𝑆s 𝐴)
1110pwsring 20289 . . 3 ((𝑆 ∈ Ring ∧ 𝐴𝑉) → 𝑍 ∈ Ring)
129, 4, 11syl2anc 584 . 2 (𝜑𝑍 ∈ Ring)
13 pwsco2rhm.b . . . . 5 𝐵 = (Base‘𝑌)
14 rhmghm 20449 . . . . . . 7 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆))
151, 14syl 17 . . . . . 6 (𝜑𝐹 ∈ (𝑅 GrpHom 𝑆))
16 ghmmhm 19214 . . . . . 6 (𝐹 ∈ (𝑅 GrpHom 𝑆) → 𝐹 ∈ (𝑅 MndHom 𝑆))
1715, 16syl 17 . . . . 5 (𝜑𝐹 ∈ (𝑅 MndHom 𝑆))
185, 10, 13, 4, 17pwsco2mhm 18816 . . . 4 (𝜑 → (𝑔𝐵 ↦ (𝐹𝑔)) ∈ (𝑌 MndHom 𝑍))
19 ringgrp 20203 . . . . . 6 (𝑌 ∈ Ring → 𝑌 ∈ Grp)
207, 19syl 17 . . . . 5 (𝜑𝑌 ∈ Grp)
21 ringgrp 20203 . . . . . 6 (𝑍 ∈ Ring → 𝑍 ∈ Grp)
2212, 21syl 17 . . . . 5 (𝜑𝑍 ∈ Grp)
23 ghmmhmb 19215 . . . . 5 ((𝑌 ∈ Grp ∧ 𝑍 ∈ Grp) → (𝑌 GrpHom 𝑍) = (𝑌 MndHom 𝑍))
2420, 22, 23syl2anc 584 . . . 4 (𝜑 → (𝑌 GrpHom 𝑍) = (𝑌 MndHom 𝑍))
2518, 24eleqtrrd 2838 . . 3 (𝜑 → (𝑔𝐵 ↦ (𝐹𝑔)) ∈ (𝑌 GrpHom 𝑍))
26 eqid 2736 . . . . 5 ((mulGrp‘𝑅) ↑s 𝐴) = ((mulGrp‘𝑅) ↑s 𝐴)
27 eqid 2736 . . . . 5 ((mulGrp‘𝑆) ↑s 𝐴) = ((mulGrp‘𝑆) ↑s 𝐴)
28 eqid 2736 . . . . 5 (Base‘((mulGrp‘𝑅) ↑s 𝐴)) = (Base‘((mulGrp‘𝑅) ↑s 𝐴))
29 eqid 2736 . . . . . . 7 (mulGrp‘𝑅) = (mulGrp‘𝑅)
30 eqid 2736 . . . . . . 7 (mulGrp‘𝑆) = (mulGrp‘𝑆)
3129, 30rhmmhm 20444 . . . . . 6 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)))
321, 31syl 17 . . . . 5 (𝜑𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)))
3326, 27, 28, 4, 32pwsco2mhm 18816 . . . 4 (𝜑 → (𝑔 ∈ (Base‘((mulGrp‘𝑅) ↑s 𝐴)) ↦ (𝐹𝑔)) ∈ (((mulGrp‘𝑅) ↑s 𝐴) MndHom ((mulGrp‘𝑆) ↑s 𝐴)))
34 eqid 2736 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
355, 34pwsbas 17506 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐴𝑉) → ((Base‘𝑅) ↑m 𝐴) = (Base‘𝑌))
363, 4, 35syl2anc 584 . . . . . . 7 (𝜑 → ((Base‘𝑅) ↑m 𝐴) = (Base‘𝑌))
3736, 13eqtr4di 2789 . . . . . 6 (𝜑 → ((Base‘𝑅) ↑m 𝐴) = 𝐵)
3829ringmgp 20204 . . . . . . . 8 (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd)
393, 38syl 17 . . . . . . 7 (𝜑 → (mulGrp‘𝑅) ∈ Mnd)
4029, 34mgpbas 20110 . . . . . . . 8 (Base‘𝑅) = (Base‘(mulGrp‘𝑅))
4126, 40pwsbas 17506 . . . . . . 7 (((mulGrp‘𝑅) ∈ Mnd ∧ 𝐴𝑉) → ((Base‘𝑅) ↑m 𝐴) = (Base‘((mulGrp‘𝑅) ↑s 𝐴)))
4239, 4, 41syl2anc 584 . . . . . 6 (𝜑 → ((Base‘𝑅) ↑m 𝐴) = (Base‘((mulGrp‘𝑅) ↑s 𝐴)))
4337, 42eqtr3d 2773 . . . . 5 (𝜑𝐵 = (Base‘((mulGrp‘𝑅) ↑s 𝐴)))
4443mpteq1d 5215 . . . 4 (𝜑 → (𝑔𝐵 ↦ (𝐹𝑔)) = (𝑔 ∈ (Base‘((mulGrp‘𝑅) ↑s 𝐴)) ↦ (𝐹𝑔)))
45 eqidd 2737 . . . . 5 (𝜑 → (Base‘(mulGrp‘𝑌)) = (Base‘(mulGrp‘𝑌)))
46 eqidd 2737 . . . . 5 (𝜑 → (Base‘(mulGrp‘𝑍)) = (Base‘(mulGrp‘𝑍)))
47 eqid 2736 . . . . . . . 8 (mulGrp‘𝑌) = (mulGrp‘𝑌)
48 eqid 2736 . . . . . . . 8 (Base‘(mulGrp‘𝑌)) = (Base‘(mulGrp‘𝑌))
49 eqid 2736 . . . . . . . 8 (+g‘(mulGrp‘𝑌)) = (+g‘(mulGrp‘𝑌))
50 eqid 2736 . . . . . . . 8 (+g‘((mulGrp‘𝑅) ↑s 𝐴)) = (+g‘((mulGrp‘𝑅) ↑s 𝐴))
515, 29, 26, 47, 48, 28, 49, 50pwsmgp 20292 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐴𝑉) → ((Base‘(mulGrp‘𝑌)) = (Base‘((mulGrp‘𝑅) ↑s 𝐴)) ∧ (+g‘(mulGrp‘𝑌)) = (+g‘((mulGrp‘𝑅) ↑s 𝐴))))
523, 4, 51syl2anc 584 . . . . . 6 (𝜑 → ((Base‘(mulGrp‘𝑌)) = (Base‘((mulGrp‘𝑅) ↑s 𝐴)) ∧ (+g‘(mulGrp‘𝑌)) = (+g‘((mulGrp‘𝑅) ↑s 𝐴))))
5352simpld 494 . . . . 5 (𝜑 → (Base‘(mulGrp‘𝑌)) = (Base‘((mulGrp‘𝑅) ↑s 𝐴)))
54 eqid 2736 . . . . . . . 8 (mulGrp‘𝑍) = (mulGrp‘𝑍)
55 eqid 2736 . . . . . . . 8 (Base‘(mulGrp‘𝑍)) = (Base‘(mulGrp‘𝑍))
56 eqid 2736 . . . . . . . 8 (Base‘((mulGrp‘𝑆) ↑s 𝐴)) = (Base‘((mulGrp‘𝑆) ↑s 𝐴))
57 eqid 2736 . . . . . . . 8 (+g‘(mulGrp‘𝑍)) = (+g‘(mulGrp‘𝑍))
58 eqid 2736 . . . . . . . 8 (+g‘((mulGrp‘𝑆) ↑s 𝐴)) = (+g‘((mulGrp‘𝑆) ↑s 𝐴))
5910, 30, 27, 54, 55, 56, 57, 58pwsmgp 20292 . . . . . . 7 ((𝑆 ∈ Ring ∧ 𝐴𝑉) → ((Base‘(mulGrp‘𝑍)) = (Base‘((mulGrp‘𝑆) ↑s 𝐴)) ∧ (+g‘(mulGrp‘𝑍)) = (+g‘((mulGrp‘𝑆) ↑s 𝐴))))
609, 4, 59syl2anc 584 . . . . . 6 (𝜑 → ((Base‘(mulGrp‘𝑍)) = (Base‘((mulGrp‘𝑆) ↑s 𝐴)) ∧ (+g‘(mulGrp‘𝑍)) = (+g‘((mulGrp‘𝑆) ↑s 𝐴))))
6160simpld 494 . . . . 5 (𝜑 → (Base‘(mulGrp‘𝑍)) = (Base‘((mulGrp‘𝑆) ↑s 𝐴)))
6252simprd 495 . . . . . 6 (𝜑 → (+g‘(mulGrp‘𝑌)) = (+g‘((mulGrp‘𝑅) ↑s 𝐴)))
6362oveqdr 7438 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘(mulGrp‘𝑌)) ∧ 𝑦 ∈ (Base‘(mulGrp‘𝑌)))) → (𝑥(+g‘(mulGrp‘𝑌))𝑦) = (𝑥(+g‘((mulGrp‘𝑅) ↑s 𝐴))𝑦))
6460simprd 495 . . . . . 6 (𝜑 → (+g‘(mulGrp‘𝑍)) = (+g‘((mulGrp‘𝑆) ↑s 𝐴)))
6564oveqdr 7438 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘(mulGrp‘𝑍)) ∧ 𝑦 ∈ (Base‘(mulGrp‘𝑍)))) → (𝑥(+g‘(mulGrp‘𝑍))𝑦) = (𝑥(+g‘((mulGrp‘𝑆) ↑s 𝐴))𝑦))
6645, 46, 53, 61, 63, 65mhmpropd 18775 . . . 4 (𝜑 → ((mulGrp‘𝑌) MndHom (mulGrp‘𝑍)) = (((mulGrp‘𝑅) ↑s 𝐴) MndHom ((mulGrp‘𝑆) ↑s 𝐴)))
6733, 44, 663eltr4d 2850 . . 3 (𝜑 → (𝑔𝐵 ↦ (𝐹𝑔)) ∈ ((mulGrp‘𝑌) MndHom (mulGrp‘𝑍)))
6825, 67jca 511 . 2 (𝜑 → ((𝑔𝐵 ↦ (𝐹𝑔)) ∈ (𝑌 GrpHom 𝑍) ∧ (𝑔𝐵 ↦ (𝐹𝑔)) ∈ ((mulGrp‘𝑌) MndHom (mulGrp‘𝑍))))
6947, 54isrhm 20443 . 2 ((𝑔𝐵 ↦ (𝐹𝑔)) ∈ (𝑌 RingHom 𝑍) ↔ ((𝑌 ∈ Ring ∧ 𝑍 ∈ Ring) ∧ ((𝑔𝐵 ↦ (𝐹𝑔)) ∈ (𝑌 GrpHom 𝑍) ∧ (𝑔𝐵 ↦ (𝐹𝑔)) ∈ ((mulGrp‘𝑌) MndHom (mulGrp‘𝑍)))))
707, 12, 68, 69syl21anbrc 1345 1 (𝜑 → (𝑔𝐵 ↦ (𝐹𝑔)) ∈ (𝑌 RingHom 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cmpt 5206  ccom 5663  cfv 6536  (class class class)co 7410  m cmap 8845  Basecbs 17233  +gcplusg 17276  s cpws 17465  Mndcmnd 18717   MndHom cmhm 18764  Grpcgrp 18921   GrpHom cghm 19200  mulGrpcmgp 20105  Ringcrg 20198   RingHom crh 20434
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-fz 13530  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-plusg 17289  df-mulr 17290  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-hom 17300  df-cco 17301  df-0g 17460  df-prds 17466  df-pws 17468  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-mhm 18766  df-grp 18924  df-minusg 18925  df-ghm 19201  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-rhm 20437
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator