MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwsco2rhm Structured version   Visualization version   GIF version

Theorem pwsco2rhm 20461
Description: Left composition with a ring homomorphism yields a ring homomorphism of structure powers. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
pwsco2rhm.y 𝑌 = (𝑅s 𝐴)
pwsco2rhm.z 𝑍 = (𝑆s 𝐴)
pwsco2rhm.b 𝐵 = (Base‘𝑌)
pwsco2rhm.a (𝜑𝐴𝑉)
pwsco2rhm.f (𝜑𝐹 ∈ (𝑅 RingHom 𝑆))
Assertion
Ref Expression
pwsco2rhm (𝜑 → (𝑔𝐵 ↦ (𝐹𝑔)) ∈ (𝑌 RingHom 𝑍))
Distinct variable groups:   𝐴,𝑔   𝜑,𝑔   𝑅,𝑔   𝑆,𝑔   𝑔,𝑌   𝐵,𝑔   𝑔,𝐹   𝑔,𝑍
Allowed substitution hint:   𝑉(𝑔)

Proof of Theorem pwsco2rhm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwsco2rhm.f . . . 4 (𝜑𝐹 ∈ (𝑅 RingHom 𝑆))
2 rhmrcl1 20434 . . . 4 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring)
31, 2syl 17 . . 3 (𝜑𝑅 ∈ Ring)
4 pwsco2rhm.a . . 3 (𝜑𝐴𝑉)
5 pwsco2rhm.y . . . 4 𝑌 = (𝑅s 𝐴)
65pwsring 20282 . . 3 ((𝑅 ∈ Ring ∧ 𝐴𝑉) → 𝑌 ∈ Ring)
73, 4, 6syl2anc 584 . 2 (𝜑𝑌 ∈ Ring)
8 rhmrcl2 20435 . . . 4 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring)
91, 8syl 17 . . 3 (𝜑𝑆 ∈ Ring)
10 pwsco2rhm.z . . . 4 𝑍 = (𝑆s 𝐴)
1110pwsring 20282 . . 3 ((𝑆 ∈ Ring ∧ 𝐴𝑉) → 𝑍 ∈ Ring)
129, 4, 11syl2anc 584 . 2 (𝜑𝑍 ∈ Ring)
13 pwsco2rhm.b . . . . 5 𝐵 = (Base‘𝑌)
14 rhmghm 20442 . . . . . . 7 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆))
151, 14syl 17 . . . . . 6 (𝜑𝐹 ∈ (𝑅 GrpHom 𝑆))
16 ghmmhm 19207 . . . . . 6 (𝐹 ∈ (𝑅 GrpHom 𝑆) → 𝐹 ∈ (𝑅 MndHom 𝑆))
1715, 16syl 17 . . . . 5 (𝜑𝐹 ∈ (𝑅 MndHom 𝑆))
185, 10, 13, 4, 17pwsco2mhm 18809 . . . 4 (𝜑 → (𝑔𝐵 ↦ (𝐹𝑔)) ∈ (𝑌 MndHom 𝑍))
19 ringgrp 20196 . . . . . 6 (𝑌 ∈ Ring → 𝑌 ∈ Grp)
207, 19syl 17 . . . . 5 (𝜑𝑌 ∈ Grp)
21 ringgrp 20196 . . . . . 6 (𝑍 ∈ Ring → 𝑍 ∈ Grp)
2212, 21syl 17 . . . . 5 (𝜑𝑍 ∈ Grp)
23 ghmmhmb 19208 . . . . 5 ((𝑌 ∈ Grp ∧ 𝑍 ∈ Grp) → (𝑌 GrpHom 𝑍) = (𝑌 MndHom 𝑍))
2420, 22, 23syl2anc 584 . . . 4 (𝜑 → (𝑌 GrpHom 𝑍) = (𝑌 MndHom 𝑍))
2518, 24eleqtrrd 2837 . . 3 (𝜑 → (𝑔𝐵 ↦ (𝐹𝑔)) ∈ (𝑌 GrpHom 𝑍))
26 eqid 2735 . . . . 5 ((mulGrp‘𝑅) ↑s 𝐴) = ((mulGrp‘𝑅) ↑s 𝐴)
27 eqid 2735 . . . . 5 ((mulGrp‘𝑆) ↑s 𝐴) = ((mulGrp‘𝑆) ↑s 𝐴)
28 eqid 2735 . . . . 5 (Base‘((mulGrp‘𝑅) ↑s 𝐴)) = (Base‘((mulGrp‘𝑅) ↑s 𝐴))
29 eqid 2735 . . . . . . 7 (mulGrp‘𝑅) = (mulGrp‘𝑅)
30 eqid 2735 . . . . . . 7 (mulGrp‘𝑆) = (mulGrp‘𝑆)
3129, 30rhmmhm 20437 . . . . . 6 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)))
321, 31syl 17 . . . . 5 (𝜑𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)))
3326, 27, 28, 4, 32pwsco2mhm 18809 . . . 4 (𝜑 → (𝑔 ∈ (Base‘((mulGrp‘𝑅) ↑s 𝐴)) ↦ (𝐹𝑔)) ∈ (((mulGrp‘𝑅) ↑s 𝐴) MndHom ((mulGrp‘𝑆) ↑s 𝐴)))
34 eqid 2735 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
355, 34pwsbas 17499 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐴𝑉) → ((Base‘𝑅) ↑m 𝐴) = (Base‘𝑌))
363, 4, 35syl2anc 584 . . . . . . 7 (𝜑 → ((Base‘𝑅) ↑m 𝐴) = (Base‘𝑌))
3736, 13eqtr4di 2788 . . . . . 6 (𝜑 → ((Base‘𝑅) ↑m 𝐴) = 𝐵)
3829ringmgp 20197 . . . . . . . 8 (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd)
393, 38syl 17 . . . . . . 7 (𝜑 → (mulGrp‘𝑅) ∈ Mnd)
4029, 34mgpbas 20103 . . . . . . . 8 (Base‘𝑅) = (Base‘(mulGrp‘𝑅))
4126, 40pwsbas 17499 . . . . . . 7 (((mulGrp‘𝑅) ∈ Mnd ∧ 𝐴𝑉) → ((Base‘𝑅) ↑m 𝐴) = (Base‘((mulGrp‘𝑅) ↑s 𝐴)))
4239, 4, 41syl2anc 584 . . . . . 6 (𝜑 → ((Base‘𝑅) ↑m 𝐴) = (Base‘((mulGrp‘𝑅) ↑s 𝐴)))
4337, 42eqtr3d 2772 . . . . 5 (𝜑𝐵 = (Base‘((mulGrp‘𝑅) ↑s 𝐴)))
4443mpteq1d 5210 . . . 4 (𝜑 → (𝑔𝐵 ↦ (𝐹𝑔)) = (𝑔 ∈ (Base‘((mulGrp‘𝑅) ↑s 𝐴)) ↦ (𝐹𝑔)))
45 eqidd 2736 . . . . 5 (𝜑 → (Base‘(mulGrp‘𝑌)) = (Base‘(mulGrp‘𝑌)))
46 eqidd 2736 . . . . 5 (𝜑 → (Base‘(mulGrp‘𝑍)) = (Base‘(mulGrp‘𝑍)))
47 eqid 2735 . . . . . . . 8 (mulGrp‘𝑌) = (mulGrp‘𝑌)
48 eqid 2735 . . . . . . . 8 (Base‘(mulGrp‘𝑌)) = (Base‘(mulGrp‘𝑌))
49 eqid 2735 . . . . . . . 8 (+g‘(mulGrp‘𝑌)) = (+g‘(mulGrp‘𝑌))
50 eqid 2735 . . . . . . . 8 (+g‘((mulGrp‘𝑅) ↑s 𝐴)) = (+g‘((mulGrp‘𝑅) ↑s 𝐴))
515, 29, 26, 47, 48, 28, 49, 50pwsmgp 20285 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐴𝑉) → ((Base‘(mulGrp‘𝑌)) = (Base‘((mulGrp‘𝑅) ↑s 𝐴)) ∧ (+g‘(mulGrp‘𝑌)) = (+g‘((mulGrp‘𝑅) ↑s 𝐴))))
523, 4, 51syl2anc 584 . . . . . 6 (𝜑 → ((Base‘(mulGrp‘𝑌)) = (Base‘((mulGrp‘𝑅) ↑s 𝐴)) ∧ (+g‘(mulGrp‘𝑌)) = (+g‘((mulGrp‘𝑅) ↑s 𝐴))))
5352simpld 494 . . . . 5 (𝜑 → (Base‘(mulGrp‘𝑌)) = (Base‘((mulGrp‘𝑅) ↑s 𝐴)))
54 eqid 2735 . . . . . . . 8 (mulGrp‘𝑍) = (mulGrp‘𝑍)
55 eqid 2735 . . . . . . . 8 (Base‘(mulGrp‘𝑍)) = (Base‘(mulGrp‘𝑍))
56 eqid 2735 . . . . . . . 8 (Base‘((mulGrp‘𝑆) ↑s 𝐴)) = (Base‘((mulGrp‘𝑆) ↑s 𝐴))
57 eqid 2735 . . . . . . . 8 (+g‘(mulGrp‘𝑍)) = (+g‘(mulGrp‘𝑍))
58 eqid 2735 . . . . . . . 8 (+g‘((mulGrp‘𝑆) ↑s 𝐴)) = (+g‘((mulGrp‘𝑆) ↑s 𝐴))
5910, 30, 27, 54, 55, 56, 57, 58pwsmgp 20285 . . . . . . 7 ((𝑆 ∈ Ring ∧ 𝐴𝑉) → ((Base‘(mulGrp‘𝑍)) = (Base‘((mulGrp‘𝑆) ↑s 𝐴)) ∧ (+g‘(mulGrp‘𝑍)) = (+g‘((mulGrp‘𝑆) ↑s 𝐴))))
609, 4, 59syl2anc 584 . . . . . 6 (𝜑 → ((Base‘(mulGrp‘𝑍)) = (Base‘((mulGrp‘𝑆) ↑s 𝐴)) ∧ (+g‘(mulGrp‘𝑍)) = (+g‘((mulGrp‘𝑆) ↑s 𝐴))))
6160simpld 494 . . . . 5 (𝜑 → (Base‘(mulGrp‘𝑍)) = (Base‘((mulGrp‘𝑆) ↑s 𝐴)))
6252simprd 495 . . . . . 6 (𝜑 → (+g‘(mulGrp‘𝑌)) = (+g‘((mulGrp‘𝑅) ↑s 𝐴)))
6362oveqdr 7431 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘(mulGrp‘𝑌)) ∧ 𝑦 ∈ (Base‘(mulGrp‘𝑌)))) → (𝑥(+g‘(mulGrp‘𝑌))𝑦) = (𝑥(+g‘((mulGrp‘𝑅) ↑s 𝐴))𝑦))
6460simprd 495 . . . . . 6 (𝜑 → (+g‘(mulGrp‘𝑍)) = (+g‘((mulGrp‘𝑆) ↑s 𝐴)))
6564oveqdr 7431 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘(mulGrp‘𝑍)) ∧ 𝑦 ∈ (Base‘(mulGrp‘𝑍)))) → (𝑥(+g‘(mulGrp‘𝑍))𝑦) = (𝑥(+g‘((mulGrp‘𝑆) ↑s 𝐴))𝑦))
6645, 46, 53, 61, 63, 65mhmpropd 18768 . . . 4 (𝜑 → ((mulGrp‘𝑌) MndHom (mulGrp‘𝑍)) = (((mulGrp‘𝑅) ↑s 𝐴) MndHom ((mulGrp‘𝑆) ↑s 𝐴)))
6733, 44, 663eltr4d 2849 . . 3 (𝜑 → (𝑔𝐵 ↦ (𝐹𝑔)) ∈ ((mulGrp‘𝑌) MndHom (mulGrp‘𝑍)))
6825, 67jca 511 . 2 (𝜑 → ((𝑔𝐵 ↦ (𝐹𝑔)) ∈ (𝑌 GrpHom 𝑍) ∧ (𝑔𝐵 ↦ (𝐹𝑔)) ∈ ((mulGrp‘𝑌) MndHom (mulGrp‘𝑍))))
6947, 54isrhm 20436 . 2 ((𝑔𝐵 ↦ (𝐹𝑔)) ∈ (𝑌 RingHom 𝑍) ↔ ((𝑌 ∈ Ring ∧ 𝑍 ∈ Ring) ∧ ((𝑔𝐵 ↦ (𝐹𝑔)) ∈ (𝑌 GrpHom 𝑍) ∧ (𝑔𝐵 ↦ (𝐹𝑔)) ∈ ((mulGrp‘𝑌) MndHom (mulGrp‘𝑍)))))
707, 12, 68, 69syl21anbrc 1345 1 (𝜑 → (𝑔𝐵 ↦ (𝐹𝑔)) ∈ (𝑌 RingHom 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  cmpt 5201  ccom 5658  cfv 6530  (class class class)co 7403  m cmap 8838  Basecbs 17226  +gcplusg 17269  s cpws 17458  Mndcmnd 18710   MndHom cmhm 18757  Grpcgrp 18914   GrpHom cghm 19193  mulGrpcmgp 20098  Ringcrg 20191   RingHom crh 20427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-of 7669  df-om 7860  df-1st 7986  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-er 8717  df-map 8840  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-sup 9452  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-nn 12239  df-2 12301  df-3 12302  df-4 12303  df-5 12304  df-6 12305  df-7 12306  df-8 12307  df-9 12308  df-n0 12500  df-z 12587  df-dec 12707  df-uz 12851  df-fz 13523  df-struct 17164  df-sets 17181  df-slot 17199  df-ndx 17211  df-base 17227  df-plusg 17282  df-mulr 17283  df-sca 17285  df-vsca 17286  df-ip 17287  df-tset 17288  df-ple 17289  df-ds 17291  df-hom 17293  df-cco 17294  df-0g 17453  df-prds 17459  df-pws 17461  df-mgm 18616  df-sgrp 18695  df-mnd 18711  df-mhm 18759  df-grp 18917  df-minusg 18918  df-ghm 19194  df-cmn 19761  df-abl 19762  df-mgp 20099  df-rng 20111  df-ur 20140  df-ring 20193  df-rhm 20430
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator