MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpvlinv Structured version   Visualization version   GIF version

Theorem grpvlinv 20567
Description: Tuple-wise left inverse in groups. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
grpvlinv.b 𝐵 = (Base‘𝐺)
grpvlinv.p + = (+g𝐺)
grpvlinv.n 𝑁 = (invg𝐺)
grpvlinv.z 0 = (0g𝐺)
Assertion
Ref Expression
grpvlinv ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵𝑚 𝐼)) → ((𝑁𝑋) ∘𝑓 + 𝑋) = (𝐼 × { 0 }))

Proof of Theorem grpvlinv
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elmapex 8142 . . . 4 (𝑋 ∈ (𝐵𝑚 𝐼) → (𝐵 ∈ V ∧ 𝐼 ∈ V))
21simprd 491 . . 3 (𝑋 ∈ (𝐵𝑚 𝐼) → 𝐼 ∈ V)
32adantl 475 . 2 ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵𝑚 𝐼)) → 𝐼 ∈ V)
4 elmapi 8143 . . 3 (𝑋 ∈ (𝐵𝑚 𝐼) → 𝑋:𝐼𝐵)
54adantl 475 . 2 ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵𝑚 𝐼)) → 𝑋:𝐼𝐵)
6 grpvlinv.b . . . 4 𝐵 = (Base‘𝐺)
7 grpvlinv.z . . . 4 0 = (0g𝐺)
86, 7grpidcl 17803 . . 3 (𝐺 ∈ Grp → 0𝐵)
98adantr 474 . 2 ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵𝑚 𝐼)) → 0𝐵)
10 grpvlinv.n . . . 4 𝑁 = (invg𝐺)
116, 10grpinvf 17819 . . 3 (𝐺 ∈ Grp → 𝑁:𝐵𝐵)
1211adantr 474 . 2 ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵𝑚 𝐼)) → 𝑁:𝐵𝐵)
13 fcompt 6649 . . 3 ((𝑁:𝐵𝐵𝑋:𝐼𝐵) → (𝑁𝑋) = (𝑥𝐼 ↦ (𝑁‘(𝑋𝑥))))
1411, 4, 13syl2an 591 . 2 ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵𝑚 𝐼)) → (𝑁𝑋) = (𝑥𝐼 ↦ (𝑁‘(𝑋𝑥))))
15 grpvlinv.p . . . 4 + = (+g𝐺)
166, 15, 7, 10grplinv 17821 . . 3 ((𝐺 ∈ Grp ∧ 𝑦𝐵) → ((𝑁𝑦) + 𝑦) = 0 )
1716adantlr 708 . 2 (((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵𝑚 𝐼)) ∧ 𝑦𝐵) → ((𝑁𝑦) + 𝑦) = 0 )
183, 5, 9, 12, 14, 17caofinvl 7183 1 ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵𝑚 𝐼)) → ((𝑁𝑋) ∘𝑓 + 𝑋) = (𝐼 × { 0 }))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1658  wcel 2166  Vcvv 3413  {csn 4396  cmpt 4951   × cxp 5339  ccom 5345  wf 6118  cfv 6122  (class class class)co 6904  𝑓 cof 7154  𝑚 cmap 8121  Basecbs 16221  +gcplusg 16304  0gc0g 16452  Grpcgrp 17775  invgcminusg 17776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2390  ax-ext 2802  ax-rep 4993  ax-sep 5004  ax-nul 5012  ax-pow 5064  ax-pr 5126  ax-un 7208
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2604  df-eu 2639  df-clab 2811  df-cleq 2817  df-clel 2820  df-nfc 2957  df-ne 2999  df-ral 3121  df-rex 3122  df-reu 3123  df-rmo 3124  df-rab 3125  df-v 3415  df-sbc 3662  df-csb 3757  df-dif 3800  df-un 3802  df-in 3804  df-ss 3811  df-nul 4144  df-if 4306  df-pw 4379  df-sn 4397  df-pr 4399  df-op 4403  df-uni 4658  df-iun 4741  df-br 4873  df-opab 4935  df-mpt 4952  df-id 5249  df-xp 5347  df-rel 5348  df-cnv 5349  df-co 5350  df-dm 5351  df-rn 5352  df-res 5353  df-ima 5354  df-iota 6085  df-fun 6124  df-fn 6125  df-f 6126  df-f1 6127  df-fo 6128  df-f1o 6129  df-fv 6130  df-riota 6865  df-ov 6907  df-oprab 6908  df-mpt2 6909  df-of 7156  df-1st 7427  df-2nd 7428  df-map 8123  df-0g 16454  df-mgm 17594  df-sgrp 17636  df-mnd 17647  df-grp 17778  df-minusg 17779
This theorem is referenced by:  mendring  38604
  Copyright terms: Public domain W3C validator