| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpvlinv | Structured version Visualization version GIF version | ||
| Description: Tuple-wise left inverse in groups. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| Ref | Expression |
|---|---|
| grpvlinv.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpvlinv.p | ⊢ + = (+g‘𝐺) |
| grpvlinv.n | ⊢ 𝑁 = (invg‘𝐺) |
| grpvlinv.z | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| grpvlinv | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) → ((𝑁 ∘ 𝑋) ∘f + 𝑋) = (𝐼 × { 0 })) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elmapex 8782 | . . . 4 ⊢ (𝑋 ∈ (𝐵 ↑m 𝐼) → (𝐵 ∈ V ∧ 𝐼 ∈ V)) | |
| 2 | 1 | simprd 495 | . . 3 ⊢ (𝑋 ∈ (𝐵 ↑m 𝐼) → 𝐼 ∈ V) |
| 3 | 2 | adantl 481 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) → 𝐼 ∈ V) |
| 4 | elmapi 8783 | . . 3 ⊢ (𝑋 ∈ (𝐵 ↑m 𝐼) → 𝑋:𝐼⟶𝐵) | |
| 5 | 4 | adantl 481 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) → 𝑋:𝐼⟶𝐵) |
| 6 | grpvlinv.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 7 | grpvlinv.z | . . . 4 ⊢ 0 = (0g‘𝐺) | |
| 8 | 6, 7 | grpidcl 18862 | . . 3 ⊢ (𝐺 ∈ Grp → 0 ∈ 𝐵) |
| 9 | 8 | adantr 480 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) → 0 ∈ 𝐵) |
| 10 | grpvlinv.n | . . . 4 ⊢ 𝑁 = (invg‘𝐺) | |
| 11 | 6, 10 | grpinvf 18883 | . . 3 ⊢ (𝐺 ∈ Grp → 𝑁:𝐵⟶𝐵) |
| 12 | 11 | adantr 480 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) → 𝑁:𝐵⟶𝐵) |
| 13 | fcompt 7071 | . . 3 ⊢ ((𝑁:𝐵⟶𝐵 ∧ 𝑋:𝐼⟶𝐵) → (𝑁 ∘ 𝑋) = (𝑥 ∈ 𝐼 ↦ (𝑁‘(𝑋‘𝑥)))) | |
| 14 | 11, 4, 13 | syl2an 596 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) → (𝑁 ∘ 𝑋) = (𝑥 ∈ 𝐼 ↦ (𝑁‘(𝑋‘𝑥)))) |
| 15 | grpvlinv.p | . . . 4 ⊢ + = (+g‘𝐺) | |
| 16 | 6, 15, 7, 10 | grplinv 18886 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ 𝐵) → ((𝑁‘𝑦) + 𝑦) = 0 ) |
| 17 | 16 | adantlr 715 | . 2 ⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) ∧ 𝑦 ∈ 𝐵) → ((𝑁‘𝑦) + 𝑦) = 0 ) |
| 18 | 3, 5, 9, 12, 14, 17 | caofinvl 7649 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) → ((𝑁 ∘ 𝑋) ∘f + 𝑋) = (𝐼 × { 0 })) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3438 {csn 4579 ↦ cmpt 5176 × cxp 5621 ∘ ccom 5627 ⟶wf 6482 ‘cfv 6486 (class class class)co 7353 ∘f cof 7615 ↑m cmap 8760 Basecbs 17138 +gcplusg 17179 0gc0g 17361 Grpcgrp 18830 invgcminusg 18831 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-1st 7931 df-2nd 7932 df-map 8762 df-0g 17363 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-grp 18833 df-minusg 18834 |
| This theorem is referenced by: mendring 43161 |
| Copyright terms: Public domain | W3C validator |