MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpvlinv Structured version   Visualization version   GIF version

Theorem grpvlinv 21454
Description: Tuple-wise left inverse in groups. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
grpvlinv.b 𝐵 = (Base‘𝐺)
grpvlinv.p + = (+g𝐺)
grpvlinv.n 𝑁 = (invg𝐺)
grpvlinv.z 0 = (0g𝐺)
Assertion
Ref Expression
grpvlinv ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵m 𝐼)) → ((𝑁𝑋) ∘f + 𝑋) = (𝐼 × { 0 }))

Proof of Theorem grpvlinv
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elmapex 8594 . . . 4 (𝑋 ∈ (𝐵m 𝐼) → (𝐵 ∈ V ∧ 𝐼 ∈ V))
21simprd 495 . . 3 (𝑋 ∈ (𝐵m 𝐼) → 𝐼 ∈ V)
32adantl 481 . 2 ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵m 𝐼)) → 𝐼 ∈ V)
4 elmapi 8595 . . 3 (𝑋 ∈ (𝐵m 𝐼) → 𝑋:𝐼𝐵)
54adantl 481 . 2 ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵m 𝐼)) → 𝑋:𝐼𝐵)
6 grpvlinv.b . . . 4 𝐵 = (Base‘𝐺)
7 grpvlinv.z . . . 4 0 = (0g𝐺)
86, 7grpidcl 18522 . . 3 (𝐺 ∈ Grp → 0𝐵)
98adantr 480 . 2 ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵m 𝐼)) → 0𝐵)
10 grpvlinv.n . . . 4 𝑁 = (invg𝐺)
116, 10grpinvf 18541 . . 3 (𝐺 ∈ Grp → 𝑁:𝐵𝐵)
1211adantr 480 . 2 ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵m 𝐼)) → 𝑁:𝐵𝐵)
13 fcompt 6987 . . 3 ((𝑁:𝐵𝐵𝑋:𝐼𝐵) → (𝑁𝑋) = (𝑥𝐼 ↦ (𝑁‘(𝑋𝑥))))
1411, 4, 13syl2an 595 . 2 ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵m 𝐼)) → (𝑁𝑋) = (𝑥𝐼 ↦ (𝑁‘(𝑋𝑥))))
15 grpvlinv.p . . . 4 + = (+g𝐺)
166, 15, 7, 10grplinv 18543 . . 3 ((𝐺 ∈ Grp ∧ 𝑦𝐵) → ((𝑁𝑦) + 𝑦) = 0 )
1716adantlr 711 . 2 (((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵m 𝐼)) ∧ 𝑦𝐵) → ((𝑁𝑦) + 𝑦) = 0 )
183, 5, 9, 12, 14, 17caofinvl 7541 1 ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵m 𝐼)) → ((𝑁𝑋) ∘f + 𝑋) = (𝐼 × { 0 }))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  {csn 4558  cmpt 5153   × cxp 5578  ccom 5584  wf 6414  cfv 6418  (class class class)co 7255  f cof 7509  m cmap 8573  Basecbs 16840  +gcplusg 16888  0gc0g 17067  Grpcgrp 18492  invgcminusg 18493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-1st 7804  df-2nd 7805  df-map 8575  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496
This theorem is referenced by:  mendring  40933
  Copyright terms: Public domain W3C validator