![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpvlinv | Structured version Visualization version GIF version |
Description: Tuple-wise left inverse in groups. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
Ref | Expression |
---|---|
grpvlinv.b | ⊢ 𝐵 = (Base‘𝐺) |
grpvlinv.p | ⊢ + = (+g‘𝐺) |
grpvlinv.n | ⊢ 𝑁 = (invg‘𝐺) |
grpvlinv.z | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
grpvlinv | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) → ((𝑁 ∘ 𝑋) ∘f + 𝑋) = (𝐼 × { 0 })) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elmapex 8825 | . . . 4 ⊢ (𝑋 ∈ (𝐵 ↑m 𝐼) → (𝐵 ∈ V ∧ 𝐼 ∈ V)) | |
2 | 1 | simprd 496 | . . 3 ⊢ (𝑋 ∈ (𝐵 ↑m 𝐼) → 𝐼 ∈ V) |
3 | 2 | adantl 482 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) → 𝐼 ∈ V) |
4 | elmapi 8826 | . . 3 ⊢ (𝑋 ∈ (𝐵 ↑m 𝐼) → 𝑋:𝐼⟶𝐵) | |
5 | 4 | adantl 482 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) → 𝑋:𝐼⟶𝐵) |
6 | grpvlinv.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
7 | grpvlinv.z | . . . 4 ⊢ 0 = (0g‘𝐺) | |
8 | 6, 7 | grpidcl 18825 | . . 3 ⊢ (𝐺 ∈ Grp → 0 ∈ 𝐵) |
9 | 8 | adantr 481 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) → 0 ∈ 𝐵) |
10 | grpvlinv.n | . . . 4 ⊢ 𝑁 = (invg‘𝐺) | |
11 | 6, 10 | grpinvf 18846 | . . 3 ⊢ (𝐺 ∈ Grp → 𝑁:𝐵⟶𝐵) |
12 | 11 | adantr 481 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) → 𝑁:𝐵⟶𝐵) |
13 | fcompt 7115 | . . 3 ⊢ ((𝑁:𝐵⟶𝐵 ∧ 𝑋:𝐼⟶𝐵) → (𝑁 ∘ 𝑋) = (𝑥 ∈ 𝐼 ↦ (𝑁‘(𝑋‘𝑥)))) | |
14 | 11, 4, 13 | syl2an 596 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) → (𝑁 ∘ 𝑋) = (𝑥 ∈ 𝐼 ↦ (𝑁‘(𝑋‘𝑥)))) |
15 | grpvlinv.p | . . . 4 ⊢ + = (+g‘𝐺) | |
16 | 6, 15, 7, 10 | grplinv 18849 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ 𝐵) → ((𝑁‘𝑦) + 𝑦) = 0 ) |
17 | 16 | adantlr 713 | . 2 ⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) ∧ 𝑦 ∈ 𝐵) → ((𝑁‘𝑦) + 𝑦) = 0 ) |
18 | 3, 5, 9, 12, 14, 17 | caofinvl 7683 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) → ((𝑁 ∘ 𝑋) ∘f + 𝑋) = (𝐼 × { 0 })) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 Vcvv 3473 {csn 4622 ↦ cmpt 5224 × cxp 5667 ∘ ccom 5673 ⟶wf 6528 ‘cfv 6532 (class class class)co 7393 ∘f cof 7651 ↑m cmap 8803 Basecbs 17126 +gcplusg 17179 0gc0g 17367 Grpcgrp 18794 invgcminusg 18795 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7708 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6484 df-fun 6534 df-fn 6535 df-f 6536 df-f1 6537 df-fo 6538 df-f1o 6539 df-fv 6540 df-riota 7349 df-ov 7396 df-oprab 7397 df-mpo 7398 df-of 7653 df-1st 7957 df-2nd 7958 df-map 8805 df-0g 17369 df-mgm 18543 df-sgrp 18592 df-mnd 18603 df-grp 18797 df-minusg 18798 |
This theorem is referenced by: mendring 41705 |
Copyright terms: Public domain | W3C validator |