MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpvlinv Structured version   Visualization version   GIF version

Theorem grpvlinv 22311
Description: Tuple-wise left inverse in groups. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
grpvlinv.b 𝐵 = (Base‘𝐺)
grpvlinv.p + = (+g𝐺)
grpvlinv.n 𝑁 = (invg𝐺)
grpvlinv.z 0 = (0g𝐺)
Assertion
Ref Expression
grpvlinv ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵m 𝐼)) → ((𝑁𝑋) ∘f + 𝑋) = (𝐼 × { 0 }))

Proof of Theorem grpvlinv
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elmapex 8772 . . . 4 (𝑋 ∈ (𝐵m 𝐼) → (𝐵 ∈ V ∧ 𝐼 ∈ V))
21simprd 495 . . 3 (𝑋 ∈ (𝐵m 𝐼) → 𝐼 ∈ V)
32adantl 481 . 2 ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵m 𝐼)) → 𝐼 ∈ V)
4 elmapi 8773 . . 3 (𝑋 ∈ (𝐵m 𝐼) → 𝑋:𝐼𝐵)
54adantl 481 . 2 ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵m 𝐼)) → 𝑋:𝐼𝐵)
6 grpvlinv.b . . . 4 𝐵 = (Base‘𝐺)
7 grpvlinv.z . . . 4 0 = (0g𝐺)
86, 7grpidcl 18875 . . 3 (𝐺 ∈ Grp → 0𝐵)
98adantr 480 . 2 ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵m 𝐼)) → 0𝐵)
10 grpvlinv.n . . . 4 𝑁 = (invg𝐺)
116, 10grpinvf 18896 . . 3 (𝐺 ∈ Grp → 𝑁:𝐵𝐵)
1211adantr 480 . 2 ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵m 𝐼)) → 𝑁:𝐵𝐵)
13 fcompt 7066 . . 3 ((𝑁:𝐵𝐵𝑋:𝐼𝐵) → (𝑁𝑋) = (𝑥𝐼 ↦ (𝑁‘(𝑋𝑥))))
1411, 4, 13syl2an 596 . 2 ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵m 𝐼)) → (𝑁𝑋) = (𝑥𝐼 ↦ (𝑁‘(𝑋𝑥))))
15 grpvlinv.p . . . 4 + = (+g𝐺)
166, 15, 7, 10grplinv 18899 . . 3 ((𝐺 ∈ Grp ∧ 𝑦𝐵) → ((𝑁𝑦) + 𝑦) = 0 )
1716adantlr 715 . 2 (((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵m 𝐼)) ∧ 𝑦𝐵) → ((𝑁𝑦) + 𝑦) = 0 )
183, 5, 9, 12, 14, 17caofinvl 7642 1 ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵m 𝐼)) → ((𝑁𝑋) ∘f + 𝑋) = (𝐼 × { 0 }))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  {csn 4576  cmpt 5172   × cxp 5614  ccom 5620  wf 6477  cfv 6481  (class class class)co 7346  f cof 7608  m cmap 8750  Basecbs 17117  +gcplusg 17158  0gc0g 17340  Grpcgrp 18843  invgcminusg 18844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-1st 7921  df-2nd 7922  df-map 8752  df-0g 17342  df-mgm 18545  df-sgrp 18624  df-mnd 18640  df-grp 18846  df-minusg 18847
This theorem is referenced by:  mendring  43220
  Copyright terms: Public domain W3C validator