MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpvlinv Structured version   Visualization version   GIF version

Theorem grpvlinv 22292
Description: Tuple-wise left inverse in groups. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
grpvlinv.b 𝐵 = (Base‘𝐺)
grpvlinv.p + = (+g𝐺)
grpvlinv.n 𝑁 = (invg𝐺)
grpvlinv.z 0 = (0g𝐺)
Assertion
Ref Expression
grpvlinv ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵m 𝐼)) → ((𝑁𝑋) ∘f + 𝑋) = (𝐼 × { 0 }))

Proof of Theorem grpvlinv
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elmapex 8824 . . . 4 (𝑋 ∈ (𝐵m 𝐼) → (𝐵 ∈ V ∧ 𝐼 ∈ V))
21simprd 495 . . 3 (𝑋 ∈ (𝐵m 𝐼) → 𝐼 ∈ V)
32adantl 481 . 2 ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵m 𝐼)) → 𝐼 ∈ V)
4 elmapi 8825 . . 3 (𝑋 ∈ (𝐵m 𝐼) → 𝑋:𝐼𝐵)
54adantl 481 . 2 ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵m 𝐼)) → 𝑋:𝐼𝐵)
6 grpvlinv.b . . . 4 𝐵 = (Base‘𝐺)
7 grpvlinv.z . . . 4 0 = (0g𝐺)
86, 7grpidcl 18904 . . 3 (𝐺 ∈ Grp → 0𝐵)
98adantr 480 . 2 ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵m 𝐼)) → 0𝐵)
10 grpvlinv.n . . . 4 𝑁 = (invg𝐺)
116, 10grpinvf 18925 . . 3 (𝐺 ∈ Grp → 𝑁:𝐵𝐵)
1211adantr 480 . 2 ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵m 𝐼)) → 𝑁:𝐵𝐵)
13 fcompt 7108 . . 3 ((𝑁:𝐵𝐵𝑋:𝐼𝐵) → (𝑁𝑋) = (𝑥𝐼 ↦ (𝑁‘(𝑋𝑥))))
1411, 4, 13syl2an 596 . 2 ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵m 𝐼)) → (𝑁𝑋) = (𝑥𝐼 ↦ (𝑁‘(𝑋𝑥))))
15 grpvlinv.p . . . 4 + = (+g𝐺)
166, 15, 7, 10grplinv 18928 . . 3 ((𝐺 ∈ Grp ∧ 𝑦𝐵) → ((𝑁𝑦) + 𝑦) = 0 )
1716adantlr 715 . 2 (((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵m 𝐼)) ∧ 𝑦𝐵) → ((𝑁𝑦) + 𝑦) = 0 )
183, 5, 9, 12, 14, 17caofinvl 7688 1 ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵m 𝐼)) → ((𝑁𝑋) ∘f + 𝑋) = (𝐼 × { 0 }))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  {csn 4592  cmpt 5191   × cxp 5639  ccom 5645  wf 6510  cfv 6514  (class class class)co 7390  f cof 7654  m cmap 8802  Basecbs 17186  +gcplusg 17227  0gc0g 17409  Grpcgrp 18872  invgcminusg 18873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-1st 7971  df-2nd 7972  df-map 8804  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-minusg 18876
This theorem is referenced by:  mendring  43184
  Copyright terms: Public domain W3C validator