| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpvlinv | Structured version Visualization version GIF version | ||
| Description: Tuple-wise left inverse in groups. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| Ref | Expression |
|---|---|
| grpvlinv.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpvlinv.p | ⊢ + = (+g‘𝐺) |
| grpvlinv.n | ⊢ 𝑁 = (invg‘𝐺) |
| grpvlinv.z | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| grpvlinv | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) → ((𝑁 ∘ 𝑋) ∘f + 𝑋) = (𝐼 × { 0 })) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elmapex 8862 | . . . 4 ⊢ (𝑋 ∈ (𝐵 ↑m 𝐼) → (𝐵 ∈ V ∧ 𝐼 ∈ V)) | |
| 2 | 1 | simprd 495 | . . 3 ⊢ (𝑋 ∈ (𝐵 ↑m 𝐼) → 𝐼 ∈ V) |
| 3 | 2 | adantl 481 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) → 𝐼 ∈ V) |
| 4 | elmapi 8863 | . . 3 ⊢ (𝑋 ∈ (𝐵 ↑m 𝐼) → 𝑋:𝐼⟶𝐵) | |
| 5 | 4 | adantl 481 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) → 𝑋:𝐼⟶𝐵) |
| 6 | grpvlinv.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 7 | grpvlinv.z | . . . 4 ⊢ 0 = (0g‘𝐺) | |
| 8 | 6, 7 | grpidcl 18948 | . . 3 ⊢ (𝐺 ∈ Grp → 0 ∈ 𝐵) |
| 9 | 8 | adantr 480 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) → 0 ∈ 𝐵) |
| 10 | grpvlinv.n | . . . 4 ⊢ 𝑁 = (invg‘𝐺) | |
| 11 | 6, 10 | grpinvf 18969 | . . 3 ⊢ (𝐺 ∈ Grp → 𝑁:𝐵⟶𝐵) |
| 12 | 11 | adantr 480 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) → 𝑁:𝐵⟶𝐵) |
| 13 | fcompt 7123 | . . 3 ⊢ ((𝑁:𝐵⟶𝐵 ∧ 𝑋:𝐼⟶𝐵) → (𝑁 ∘ 𝑋) = (𝑥 ∈ 𝐼 ↦ (𝑁‘(𝑋‘𝑥)))) | |
| 14 | 11, 4, 13 | syl2an 596 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) → (𝑁 ∘ 𝑋) = (𝑥 ∈ 𝐼 ↦ (𝑁‘(𝑋‘𝑥)))) |
| 15 | grpvlinv.p | . . . 4 ⊢ + = (+g‘𝐺) | |
| 16 | 6, 15, 7, 10 | grplinv 18972 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ 𝐵) → ((𝑁‘𝑦) + 𝑦) = 0 ) |
| 17 | 16 | adantlr 715 | . 2 ⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) ∧ 𝑦 ∈ 𝐵) → ((𝑁‘𝑦) + 𝑦) = 0 ) |
| 18 | 3, 5, 9, 12, 14, 17 | caofinvl 7703 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) → ((𝑁 ∘ 𝑋) ∘f + 𝑋) = (𝐼 × { 0 })) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3459 {csn 4601 ↦ cmpt 5201 × cxp 5652 ∘ ccom 5658 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 ∘f cof 7669 ↑m cmap 8840 Basecbs 17228 +gcplusg 17271 0gc0g 17453 Grpcgrp 18916 invgcminusg 18917 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7671 df-1st 7988 df-2nd 7989 df-map 8842 df-0g 17455 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-grp 18919 df-minusg 18920 |
| This theorem is referenced by: mendring 43212 |
| Copyright terms: Public domain | W3C validator |