![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpvlinv | Structured version Visualization version GIF version |
Description: Tuple-wise left inverse in groups. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
Ref | Expression |
---|---|
grpvlinv.b | ⊢ 𝐵 = (Base‘𝐺) |
grpvlinv.p | ⊢ + = (+g‘𝐺) |
grpvlinv.n | ⊢ 𝑁 = (invg‘𝐺) |
grpvlinv.z | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
grpvlinv | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑𝑚 𝐼)) → ((𝑁 ∘ 𝑋) ∘𝑓 + 𝑋) = (𝐼 × { 0 })) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elmapex 8142 | . . . 4 ⊢ (𝑋 ∈ (𝐵 ↑𝑚 𝐼) → (𝐵 ∈ V ∧ 𝐼 ∈ V)) | |
2 | 1 | simprd 491 | . . 3 ⊢ (𝑋 ∈ (𝐵 ↑𝑚 𝐼) → 𝐼 ∈ V) |
3 | 2 | adantl 475 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑𝑚 𝐼)) → 𝐼 ∈ V) |
4 | elmapi 8143 | . . 3 ⊢ (𝑋 ∈ (𝐵 ↑𝑚 𝐼) → 𝑋:𝐼⟶𝐵) | |
5 | 4 | adantl 475 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑𝑚 𝐼)) → 𝑋:𝐼⟶𝐵) |
6 | grpvlinv.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
7 | grpvlinv.z | . . . 4 ⊢ 0 = (0g‘𝐺) | |
8 | 6, 7 | grpidcl 17803 | . . 3 ⊢ (𝐺 ∈ Grp → 0 ∈ 𝐵) |
9 | 8 | adantr 474 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑𝑚 𝐼)) → 0 ∈ 𝐵) |
10 | grpvlinv.n | . . . 4 ⊢ 𝑁 = (invg‘𝐺) | |
11 | 6, 10 | grpinvf 17819 | . . 3 ⊢ (𝐺 ∈ Grp → 𝑁:𝐵⟶𝐵) |
12 | 11 | adantr 474 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑𝑚 𝐼)) → 𝑁:𝐵⟶𝐵) |
13 | fcompt 6649 | . . 3 ⊢ ((𝑁:𝐵⟶𝐵 ∧ 𝑋:𝐼⟶𝐵) → (𝑁 ∘ 𝑋) = (𝑥 ∈ 𝐼 ↦ (𝑁‘(𝑋‘𝑥)))) | |
14 | 11, 4, 13 | syl2an 591 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑𝑚 𝐼)) → (𝑁 ∘ 𝑋) = (𝑥 ∈ 𝐼 ↦ (𝑁‘(𝑋‘𝑥)))) |
15 | grpvlinv.p | . . . 4 ⊢ + = (+g‘𝐺) | |
16 | 6, 15, 7, 10 | grplinv 17821 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ 𝐵) → ((𝑁‘𝑦) + 𝑦) = 0 ) |
17 | 16 | adantlr 708 | . 2 ⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑𝑚 𝐼)) ∧ 𝑦 ∈ 𝐵) → ((𝑁‘𝑦) + 𝑦) = 0 ) |
18 | 3, 5, 9, 12, 14, 17 | caofinvl 7183 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑𝑚 𝐼)) → ((𝑁 ∘ 𝑋) ∘𝑓 + 𝑋) = (𝐼 × { 0 })) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1658 ∈ wcel 2166 Vcvv 3413 {csn 4396 ↦ cmpt 4951 × cxp 5339 ∘ ccom 5345 ⟶wf 6118 ‘cfv 6122 (class class class)co 6904 ∘𝑓 cof 7154 ↑𝑚 cmap 8121 Basecbs 16221 +gcplusg 16304 0gc0g 16452 Grpcgrp 17775 invgcminusg 17776 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2390 ax-ext 2802 ax-rep 4993 ax-sep 5004 ax-nul 5012 ax-pow 5064 ax-pr 5126 ax-un 7208 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2604 df-eu 2639 df-clab 2811 df-cleq 2817 df-clel 2820 df-nfc 2957 df-ne 2999 df-ral 3121 df-rex 3122 df-reu 3123 df-rmo 3124 df-rab 3125 df-v 3415 df-sbc 3662 df-csb 3757 df-dif 3800 df-un 3802 df-in 3804 df-ss 3811 df-nul 4144 df-if 4306 df-pw 4379 df-sn 4397 df-pr 4399 df-op 4403 df-uni 4658 df-iun 4741 df-br 4873 df-opab 4935 df-mpt 4952 df-id 5249 df-xp 5347 df-rel 5348 df-cnv 5349 df-co 5350 df-dm 5351 df-rn 5352 df-res 5353 df-ima 5354 df-iota 6085 df-fun 6124 df-fn 6125 df-f 6126 df-f1 6127 df-fo 6128 df-f1o 6129 df-fv 6130 df-riota 6865 df-ov 6907 df-oprab 6908 df-mpt2 6909 df-of 7156 df-1st 7427 df-2nd 7428 df-map 8123 df-0g 16454 df-mgm 17594 df-sgrp 17636 df-mnd 17647 df-grp 17778 df-minusg 17779 |
This theorem is referenced by: mendring 38604 |
Copyright terms: Public domain | W3C validator |