| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lflnegl | Structured version Visualization version GIF version | ||
| Description: A functional plus its negative is the zero functional. (This is specialized for the purpose of proving ldualgrp 39169, and we do not define a general operation here.) (Contributed by NM, 22-Oct-2014.) |
| Ref | Expression |
|---|---|
| lflnegcl.v | ⊢ 𝑉 = (Base‘𝑊) |
| lflnegcl.r | ⊢ 𝑅 = (Scalar‘𝑊) |
| lflnegcl.i | ⊢ 𝐼 = (invg‘𝑅) |
| lflnegcl.n | ⊢ 𝑁 = (𝑥 ∈ 𝑉 ↦ (𝐼‘(𝐺‘𝑥))) |
| lflnegcl.f | ⊢ 𝐹 = (LFnl‘𝑊) |
| lflnegcl.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| lflnegcl.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
| lflnegl.p | ⊢ + = (+g‘𝑅) |
| lflnegl.o | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| lflnegl | ⊢ (𝜑 → (𝑁 ∘f + 𝐺) = (𝑉 × { 0 })) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lflnegcl.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
| 2 | 1 | fvexi 6895 | . . 3 ⊢ 𝑉 ∈ V |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → 𝑉 ∈ V) |
| 4 | lflnegcl.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 5 | lflnegcl.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
| 6 | lflnegcl.r | . . . 4 ⊢ 𝑅 = (Scalar‘𝑊) | |
| 7 | eqid 2736 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 8 | lflnegcl.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑊) | |
| 9 | 6, 7, 1, 8 | lflf 39086 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → 𝐺:𝑉⟶(Base‘𝑅)) |
| 10 | 4, 5, 9 | syl2anc 584 | . 2 ⊢ (𝜑 → 𝐺:𝑉⟶(Base‘𝑅)) |
| 11 | lflnegl.o | . . . 4 ⊢ 0 = (0g‘𝑅) | |
| 12 | 11 | fvexi 6895 | . . 3 ⊢ 0 ∈ V |
| 13 | 12 | a1i 11 | . 2 ⊢ (𝜑 → 0 ∈ V) |
| 14 | lflnegcl.i | . . . 4 ⊢ 𝐼 = (invg‘𝑅) | |
| 15 | 6 | lmodring 20830 | . . . . 5 ⊢ (𝑊 ∈ LMod → 𝑅 ∈ Ring) |
| 16 | ringgrp 20203 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
| 17 | 4, 15, 16 | 3syl 18 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Grp) |
| 18 | 7, 14, 17 | grpinvf1o 18997 | . . 3 ⊢ (𝜑 → 𝐼:(Base‘𝑅)–1-1-onto→(Base‘𝑅)) |
| 19 | f1of 6823 | . . 3 ⊢ (𝐼:(Base‘𝑅)–1-1-onto→(Base‘𝑅) → 𝐼:(Base‘𝑅)⟶(Base‘𝑅)) | |
| 20 | 18, 19 | syl 17 | . 2 ⊢ (𝜑 → 𝐼:(Base‘𝑅)⟶(Base‘𝑅)) |
| 21 | lflnegcl.n | . . 3 ⊢ 𝑁 = (𝑥 ∈ 𝑉 ↦ (𝐼‘(𝐺‘𝑥))) | |
| 22 | 21 | a1i 11 | . 2 ⊢ (𝜑 → 𝑁 = (𝑥 ∈ 𝑉 ↦ (𝐼‘(𝐺‘𝑥)))) |
| 23 | lflnegl.p | . . . 4 ⊢ + = (+g‘𝑅) | |
| 24 | 7, 23, 11, 14 | grplinv 18977 | . . 3 ⊢ ((𝑅 ∈ Grp ∧ 𝑦 ∈ (Base‘𝑅)) → ((𝐼‘𝑦) + 𝑦) = 0 ) |
| 25 | 17, 24 | sylan 580 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝑅)) → ((𝐼‘𝑦) + 𝑦) = 0 ) |
| 26 | 3, 10, 13, 20, 22, 25 | caofinvl 7708 | 1 ⊢ (𝜑 → (𝑁 ∘f + 𝐺) = (𝑉 × { 0 })) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3464 {csn 4606 ↦ cmpt 5206 × cxp 5657 ⟶wf 6532 –1-1-onto→wf1o 6535 ‘cfv 6536 (class class class)co 7410 ∘f cof 7674 Basecbs 17233 +gcplusg 17276 Scalarcsca 17279 0gc0g 17458 Grpcgrp 18921 invgcminusg 18922 Ringcrg 20198 LModclmod 20822 LFnlclfn 39080 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-of 7676 df-map 8847 df-0g 17460 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-grp 18924 df-minusg 18925 df-ring 20200 df-lmod 20824 df-lfl 39081 |
| This theorem is referenced by: ldualgrplem 39168 |
| Copyright terms: Public domain | W3C validator |