Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lflnegl Structured version   Visualization version   GIF version

Theorem lflnegl 38543
Description: A functional plus its negative is the zero functional. (This is specialized for the purpose of proving ldualgrp 38613, and we do not define a general operation here.) (Contributed by NM, 22-Oct-2014.)
Hypotheses
Ref Expression
lflnegcl.v 𝑉 = (Baseβ€˜π‘Š)
lflnegcl.r 𝑅 = (Scalarβ€˜π‘Š)
lflnegcl.i 𝐼 = (invgβ€˜π‘…)
lflnegcl.n 𝑁 = (π‘₯ ∈ 𝑉 ↦ (πΌβ€˜(πΊβ€˜π‘₯)))
lflnegcl.f 𝐹 = (LFnlβ€˜π‘Š)
lflnegcl.w (πœ‘ β†’ π‘Š ∈ LMod)
lflnegcl.g (πœ‘ β†’ 𝐺 ∈ 𝐹)
lflnegl.p + = (+gβ€˜π‘…)
lflnegl.o 0 = (0gβ€˜π‘…)
Assertion
Ref Expression
lflnegl (πœ‘ β†’ (𝑁 ∘f + 𝐺) = (𝑉 Γ— { 0 }))
Distinct variable groups:   π‘₯,𝐺   π‘₯,𝐼   π‘₯,𝑅   π‘₯,𝑉   π‘₯,π‘Š   πœ‘,π‘₯
Allowed substitution hints:   + (π‘₯)   𝐹(π‘₯)   𝑁(π‘₯)   0 (π‘₯)

Proof of Theorem lflnegl
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 lflnegcl.v . . . 4 𝑉 = (Baseβ€˜π‘Š)
21fvexi 6906 . . 3 𝑉 ∈ V
32a1i 11 . 2 (πœ‘ β†’ 𝑉 ∈ V)
4 lflnegcl.w . . 3 (πœ‘ β†’ π‘Š ∈ LMod)
5 lflnegcl.g . . 3 (πœ‘ β†’ 𝐺 ∈ 𝐹)
6 lflnegcl.r . . . 4 𝑅 = (Scalarβ€˜π‘Š)
7 eqid 2728 . . . 4 (Baseβ€˜π‘…) = (Baseβ€˜π‘…)
8 lflnegcl.f . . . 4 𝐹 = (LFnlβ€˜π‘Š)
96, 7, 1, 8lflf 38530 . . 3 ((π‘Š ∈ LMod ∧ 𝐺 ∈ 𝐹) β†’ 𝐺:π‘‰βŸΆ(Baseβ€˜π‘…))
104, 5, 9syl2anc 583 . 2 (πœ‘ β†’ 𝐺:π‘‰βŸΆ(Baseβ€˜π‘…))
11 lflnegl.o . . . 4 0 = (0gβ€˜π‘…)
1211fvexi 6906 . . 3 0 ∈ V
1312a1i 11 . 2 (πœ‘ β†’ 0 ∈ V)
14 lflnegcl.i . . . 4 𝐼 = (invgβ€˜π‘…)
156lmodring 20745 . . . . 5 (π‘Š ∈ LMod β†’ 𝑅 ∈ Ring)
16 ringgrp 20172 . . . . 5 (𝑅 ∈ Ring β†’ 𝑅 ∈ Grp)
174, 15, 163syl 18 . . . 4 (πœ‘ β†’ 𝑅 ∈ Grp)
187, 14, 17grpinvf1o 18959 . . 3 (πœ‘ β†’ 𝐼:(Baseβ€˜π‘…)–1-1-ontoβ†’(Baseβ€˜π‘…))
19 f1of 6834 . . 3 (𝐼:(Baseβ€˜π‘…)–1-1-ontoβ†’(Baseβ€˜π‘…) β†’ 𝐼:(Baseβ€˜π‘…)⟢(Baseβ€˜π‘…))
2018, 19syl 17 . 2 (πœ‘ β†’ 𝐼:(Baseβ€˜π‘…)⟢(Baseβ€˜π‘…))
21 lflnegcl.n . . 3 𝑁 = (π‘₯ ∈ 𝑉 ↦ (πΌβ€˜(πΊβ€˜π‘₯)))
2221a1i 11 . 2 (πœ‘ β†’ 𝑁 = (π‘₯ ∈ 𝑉 ↦ (πΌβ€˜(πΊβ€˜π‘₯))))
23 lflnegl.p . . . 4 + = (+gβ€˜π‘…)
247, 23, 11, 14grplinv 18940 . . 3 ((𝑅 ∈ Grp ∧ 𝑦 ∈ (Baseβ€˜π‘…)) β†’ ((πΌβ€˜π‘¦) + 𝑦) = 0 )
2517, 24sylan 579 . 2 ((πœ‘ ∧ 𝑦 ∈ (Baseβ€˜π‘…)) β†’ ((πΌβ€˜π‘¦) + 𝑦) = 0 )
263, 10, 13, 20, 22, 25caofinvl 7710 1 (πœ‘ β†’ (𝑁 ∘f + 𝐺) = (𝑉 Γ— { 0 }))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1534   ∈ wcel 2099  Vcvv 3470  {csn 4625   ↦ cmpt 5226   Γ— cxp 5671  βŸΆwf 6539  β€“1-1-ontoβ†’wf1o 6542  β€˜cfv 6543  (class class class)co 7415   ∘f cof 7678  Basecbs 17174  +gcplusg 17227  Scalarcsca 17230  0gc0g 17415  Grpcgrp 18884  invgcminusg 18885  Ringcrg 20167  LModclmod 20737  LFnlclfn 38524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5360  ax-pr 5424  ax-un 7735
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-iun 4994  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5571  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-of 7680  df-map 8841  df-0g 17417  df-mgm 18594  df-sgrp 18673  df-mnd 18689  df-grp 18887  df-minusg 18888  df-ring 20169  df-lmod 20739  df-lfl 38525
This theorem is referenced by:  ldualgrplem  38612
  Copyright terms: Public domain W3C validator