![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lflnegl | Structured version Visualization version GIF version |
Description: A functional plus its negative is the zero functional. (This is specialized for the purpose of proving ldualgrp 39102, and we do not define a general operation here.) (Contributed by NM, 22-Oct-2014.) |
Ref | Expression |
---|---|
lflnegcl.v | ⊢ 𝑉 = (Base‘𝑊) |
lflnegcl.r | ⊢ 𝑅 = (Scalar‘𝑊) |
lflnegcl.i | ⊢ 𝐼 = (invg‘𝑅) |
lflnegcl.n | ⊢ 𝑁 = (𝑥 ∈ 𝑉 ↦ (𝐼‘(𝐺‘𝑥))) |
lflnegcl.f | ⊢ 𝐹 = (LFnl‘𝑊) |
lflnegcl.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
lflnegcl.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
lflnegl.p | ⊢ + = (+g‘𝑅) |
lflnegl.o | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
lflnegl | ⊢ (𝜑 → (𝑁 ∘f + 𝐺) = (𝑉 × { 0 })) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lflnegcl.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
2 | 1 | fvexi 6934 | . . 3 ⊢ 𝑉 ∈ V |
3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → 𝑉 ∈ V) |
4 | lflnegcl.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
5 | lflnegcl.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
6 | lflnegcl.r | . . . 4 ⊢ 𝑅 = (Scalar‘𝑊) | |
7 | eqid 2740 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
8 | lflnegcl.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑊) | |
9 | 6, 7, 1, 8 | lflf 39019 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → 𝐺:𝑉⟶(Base‘𝑅)) |
10 | 4, 5, 9 | syl2anc 583 | . 2 ⊢ (𝜑 → 𝐺:𝑉⟶(Base‘𝑅)) |
11 | lflnegl.o | . . . 4 ⊢ 0 = (0g‘𝑅) | |
12 | 11 | fvexi 6934 | . . 3 ⊢ 0 ∈ V |
13 | 12 | a1i 11 | . 2 ⊢ (𝜑 → 0 ∈ V) |
14 | lflnegcl.i | . . . 4 ⊢ 𝐼 = (invg‘𝑅) | |
15 | 6 | lmodring 20888 | . . . . 5 ⊢ (𝑊 ∈ LMod → 𝑅 ∈ Ring) |
16 | ringgrp 20265 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
17 | 4, 15, 16 | 3syl 18 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Grp) |
18 | 7, 14, 17 | grpinvf1o 19049 | . . 3 ⊢ (𝜑 → 𝐼:(Base‘𝑅)–1-1-onto→(Base‘𝑅)) |
19 | f1of 6862 | . . 3 ⊢ (𝐼:(Base‘𝑅)–1-1-onto→(Base‘𝑅) → 𝐼:(Base‘𝑅)⟶(Base‘𝑅)) | |
20 | 18, 19 | syl 17 | . 2 ⊢ (𝜑 → 𝐼:(Base‘𝑅)⟶(Base‘𝑅)) |
21 | lflnegcl.n | . . 3 ⊢ 𝑁 = (𝑥 ∈ 𝑉 ↦ (𝐼‘(𝐺‘𝑥))) | |
22 | 21 | a1i 11 | . 2 ⊢ (𝜑 → 𝑁 = (𝑥 ∈ 𝑉 ↦ (𝐼‘(𝐺‘𝑥)))) |
23 | lflnegl.p | . . . 4 ⊢ + = (+g‘𝑅) | |
24 | 7, 23, 11, 14 | grplinv 19029 | . . 3 ⊢ ((𝑅 ∈ Grp ∧ 𝑦 ∈ (Base‘𝑅)) → ((𝐼‘𝑦) + 𝑦) = 0 ) |
25 | 17, 24 | sylan 579 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝑅)) → ((𝐼‘𝑦) + 𝑦) = 0 ) |
26 | 3, 10, 13, 20, 22, 25 | caofinvl 7745 | 1 ⊢ (𝜑 → (𝑁 ∘f + 𝐺) = (𝑉 × { 0 })) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 Vcvv 3488 {csn 4648 ↦ cmpt 5249 × cxp 5698 ⟶wf 6569 –1-1-onto→wf1o 6572 ‘cfv 6573 (class class class)co 7448 ∘f cof 7712 Basecbs 17258 +gcplusg 17311 Scalarcsca 17314 0gc0g 17499 Grpcgrp 18973 invgcminusg 18974 Ringcrg 20260 LModclmod 20880 LFnlclfn 39013 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-map 8886 df-0g 17501 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 df-minusg 18977 df-ring 20262 df-lmod 20882 df-lfl 39014 |
This theorem is referenced by: ldualgrplem 39101 |
Copyright terms: Public domain | W3C validator |