| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lflnegl | Structured version Visualization version GIF version | ||
| Description: A functional plus its negative is the zero functional. (This is specialized for the purpose of proving ldualgrp 39193, and we do not define a general operation here.) (Contributed by NM, 22-Oct-2014.) |
| Ref | Expression |
|---|---|
| lflnegcl.v | ⊢ 𝑉 = (Base‘𝑊) |
| lflnegcl.r | ⊢ 𝑅 = (Scalar‘𝑊) |
| lflnegcl.i | ⊢ 𝐼 = (invg‘𝑅) |
| lflnegcl.n | ⊢ 𝑁 = (𝑥 ∈ 𝑉 ↦ (𝐼‘(𝐺‘𝑥))) |
| lflnegcl.f | ⊢ 𝐹 = (LFnl‘𝑊) |
| lflnegcl.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| lflnegcl.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
| lflnegl.p | ⊢ + = (+g‘𝑅) |
| lflnegl.o | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| lflnegl | ⊢ (𝜑 → (𝑁 ∘f + 𝐺) = (𝑉 × { 0 })) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lflnegcl.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
| 2 | 1 | fvexi 6836 | . . 3 ⊢ 𝑉 ∈ V |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → 𝑉 ∈ V) |
| 4 | lflnegcl.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 5 | lflnegcl.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
| 6 | lflnegcl.r | . . . 4 ⊢ 𝑅 = (Scalar‘𝑊) | |
| 7 | eqid 2731 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 8 | lflnegcl.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑊) | |
| 9 | 6, 7, 1, 8 | lflf 39110 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → 𝐺:𝑉⟶(Base‘𝑅)) |
| 10 | 4, 5, 9 | syl2anc 584 | . 2 ⊢ (𝜑 → 𝐺:𝑉⟶(Base‘𝑅)) |
| 11 | lflnegl.o | . . . 4 ⊢ 0 = (0g‘𝑅) | |
| 12 | 11 | fvexi 6836 | . . 3 ⊢ 0 ∈ V |
| 13 | 12 | a1i 11 | . 2 ⊢ (𝜑 → 0 ∈ V) |
| 14 | lflnegcl.i | . . . 4 ⊢ 𝐼 = (invg‘𝑅) | |
| 15 | 6 | lmodring 20801 | . . . . 5 ⊢ (𝑊 ∈ LMod → 𝑅 ∈ Ring) |
| 16 | ringgrp 20156 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
| 17 | 4, 15, 16 | 3syl 18 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Grp) |
| 18 | 7, 14, 17 | grpinvf1o 18922 | . . 3 ⊢ (𝜑 → 𝐼:(Base‘𝑅)–1-1-onto→(Base‘𝑅)) |
| 19 | f1of 6763 | . . 3 ⊢ (𝐼:(Base‘𝑅)–1-1-onto→(Base‘𝑅) → 𝐼:(Base‘𝑅)⟶(Base‘𝑅)) | |
| 20 | 18, 19 | syl 17 | . 2 ⊢ (𝜑 → 𝐼:(Base‘𝑅)⟶(Base‘𝑅)) |
| 21 | lflnegcl.n | . . 3 ⊢ 𝑁 = (𝑥 ∈ 𝑉 ↦ (𝐼‘(𝐺‘𝑥))) | |
| 22 | 21 | a1i 11 | . 2 ⊢ (𝜑 → 𝑁 = (𝑥 ∈ 𝑉 ↦ (𝐼‘(𝐺‘𝑥)))) |
| 23 | lflnegl.p | . . . 4 ⊢ + = (+g‘𝑅) | |
| 24 | 7, 23, 11, 14 | grplinv 18902 | . . 3 ⊢ ((𝑅 ∈ Grp ∧ 𝑦 ∈ (Base‘𝑅)) → ((𝐼‘𝑦) + 𝑦) = 0 ) |
| 25 | 17, 24 | sylan 580 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝑅)) → ((𝐼‘𝑦) + 𝑦) = 0 ) |
| 26 | 3, 10, 13, 20, 22, 25 | caofinvl 7642 | 1 ⊢ (𝜑 → (𝑁 ∘f + 𝐺) = (𝑉 × { 0 })) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 {csn 4573 ↦ cmpt 5170 × cxp 5612 ⟶wf 6477 –1-1-onto→wf1o 6480 ‘cfv 6481 (class class class)co 7346 ∘f cof 7608 Basecbs 17120 +gcplusg 17161 Scalarcsca 17164 0gc0g 17343 Grpcgrp 18846 invgcminusg 18847 Ringcrg 20151 LModclmod 20793 LFnlclfn 39104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-map 8752 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-grp 18849 df-minusg 18850 df-ring 20153 df-lmod 20795 df-lfl 39105 |
| This theorem is referenced by: ldualgrplem 39192 |
| Copyright terms: Public domain | W3C validator |