Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lflnegl | Structured version Visualization version GIF version |
Description: A functional plus its negative is the zero functional. (This is specialized for the purpose of proving ldualgrp 37160, and we do not define a general operation here.) (Contributed by NM, 22-Oct-2014.) |
Ref | Expression |
---|---|
lflnegcl.v | ⊢ 𝑉 = (Base‘𝑊) |
lflnegcl.r | ⊢ 𝑅 = (Scalar‘𝑊) |
lflnegcl.i | ⊢ 𝐼 = (invg‘𝑅) |
lflnegcl.n | ⊢ 𝑁 = (𝑥 ∈ 𝑉 ↦ (𝐼‘(𝐺‘𝑥))) |
lflnegcl.f | ⊢ 𝐹 = (LFnl‘𝑊) |
lflnegcl.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
lflnegcl.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
lflnegl.p | ⊢ + = (+g‘𝑅) |
lflnegl.o | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
lflnegl | ⊢ (𝜑 → (𝑁 ∘f + 𝐺) = (𝑉 × { 0 })) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lflnegcl.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
2 | 1 | fvexi 6788 | . . 3 ⊢ 𝑉 ∈ V |
3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → 𝑉 ∈ V) |
4 | lflnegcl.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
5 | lflnegcl.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
6 | lflnegcl.r | . . . 4 ⊢ 𝑅 = (Scalar‘𝑊) | |
7 | eqid 2738 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
8 | lflnegcl.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑊) | |
9 | 6, 7, 1, 8 | lflf 37077 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → 𝐺:𝑉⟶(Base‘𝑅)) |
10 | 4, 5, 9 | syl2anc 584 | . 2 ⊢ (𝜑 → 𝐺:𝑉⟶(Base‘𝑅)) |
11 | lflnegl.o | . . . 4 ⊢ 0 = (0g‘𝑅) | |
12 | 11 | fvexi 6788 | . . 3 ⊢ 0 ∈ V |
13 | 12 | a1i 11 | . 2 ⊢ (𝜑 → 0 ∈ V) |
14 | lflnegcl.i | . . . 4 ⊢ 𝐼 = (invg‘𝑅) | |
15 | 6 | lmodring 20131 | . . . . 5 ⊢ (𝑊 ∈ LMod → 𝑅 ∈ Ring) |
16 | ringgrp 19788 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
17 | 4, 15, 16 | 3syl 18 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Grp) |
18 | 7, 14, 17 | grpinvf1o 18645 | . . 3 ⊢ (𝜑 → 𝐼:(Base‘𝑅)–1-1-onto→(Base‘𝑅)) |
19 | f1of 6716 | . . 3 ⊢ (𝐼:(Base‘𝑅)–1-1-onto→(Base‘𝑅) → 𝐼:(Base‘𝑅)⟶(Base‘𝑅)) | |
20 | 18, 19 | syl 17 | . 2 ⊢ (𝜑 → 𝐼:(Base‘𝑅)⟶(Base‘𝑅)) |
21 | lflnegcl.n | . . 3 ⊢ 𝑁 = (𝑥 ∈ 𝑉 ↦ (𝐼‘(𝐺‘𝑥))) | |
22 | 21 | a1i 11 | . 2 ⊢ (𝜑 → 𝑁 = (𝑥 ∈ 𝑉 ↦ (𝐼‘(𝐺‘𝑥)))) |
23 | lflnegl.p | . . . 4 ⊢ + = (+g‘𝑅) | |
24 | 7, 23, 11, 14 | grplinv 18628 | . . 3 ⊢ ((𝑅 ∈ Grp ∧ 𝑦 ∈ (Base‘𝑅)) → ((𝐼‘𝑦) + 𝑦) = 0 ) |
25 | 17, 24 | sylan 580 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝑅)) → ((𝐼‘𝑦) + 𝑦) = 0 ) |
26 | 3, 10, 13, 20, 22, 25 | caofinvl 7563 | 1 ⊢ (𝜑 → (𝑁 ∘f + 𝐺) = (𝑉 × { 0 })) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 Vcvv 3432 {csn 4561 ↦ cmpt 5157 × cxp 5587 ⟶wf 6429 –1-1-onto→wf1o 6432 ‘cfv 6433 (class class class)co 7275 ∘f cof 7531 Basecbs 16912 +gcplusg 16962 Scalarcsca 16965 0gc0g 17150 Grpcgrp 18577 invgcminusg 18578 Ringcrg 19783 LModclmod 20123 LFnlclfn 37071 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-map 8617 df-0g 17152 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-grp 18580 df-minusg 18581 df-ring 19785 df-lmod 20125 df-lfl 37072 |
This theorem is referenced by: ldualgrplem 37159 |
Copyright terms: Public domain | W3C validator |