Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lflnegl Structured version   Visualization version   GIF version

Theorem lflnegl 39055
Description: A functional plus its negative is the zero functional. (This is specialized for the purpose of proving ldualgrp 39125, and we do not define a general operation here.) (Contributed by NM, 22-Oct-2014.)
Hypotheses
Ref Expression
lflnegcl.v 𝑉 = (Base‘𝑊)
lflnegcl.r 𝑅 = (Scalar‘𝑊)
lflnegcl.i 𝐼 = (invg𝑅)
lflnegcl.n 𝑁 = (𝑥𝑉 ↦ (𝐼‘(𝐺𝑥)))
lflnegcl.f 𝐹 = (LFnl‘𝑊)
lflnegcl.w (𝜑𝑊 ∈ LMod)
lflnegcl.g (𝜑𝐺𝐹)
lflnegl.p + = (+g𝑅)
lflnegl.o 0 = (0g𝑅)
Assertion
Ref Expression
lflnegl (𝜑 → (𝑁f + 𝐺) = (𝑉 × { 0 }))
Distinct variable groups:   𝑥,𝐺   𝑥,𝐼   𝑥,𝑅   𝑥,𝑉   𝑥,𝑊   𝜑,𝑥
Allowed substitution hints:   + (𝑥)   𝐹(𝑥)   𝑁(𝑥)   0 (𝑥)

Proof of Theorem lflnegl
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 lflnegcl.v . . . 4 𝑉 = (Base‘𝑊)
21fvexi 6836 . . 3 𝑉 ∈ V
32a1i 11 . 2 (𝜑𝑉 ∈ V)
4 lflnegcl.w . . 3 (𝜑𝑊 ∈ LMod)
5 lflnegcl.g . . 3 (𝜑𝐺𝐹)
6 lflnegcl.r . . . 4 𝑅 = (Scalar‘𝑊)
7 eqid 2729 . . . 4 (Base‘𝑅) = (Base‘𝑅)
8 lflnegcl.f . . . 4 𝐹 = (LFnl‘𝑊)
96, 7, 1, 8lflf 39042 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → 𝐺:𝑉⟶(Base‘𝑅))
104, 5, 9syl2anc 584 . 2 (𝜑𝐺:𝑉⟶(Base‘𝑅))
11 lflnegl.o . . . 4 0 = (0g𝑅)
1211fvexi 6836 . . 3 0 ∈ V
1312a1i 11 . 2 (𝜑0 ∈ V)
14 lflnegcl.i . . . 4 𝐼 = (invg𝑅)
156lmodring 20771 . . . . 5 (𝑊 ∈ LMod → 𝑅 ∈ Ring)
16 ringgrp 20123 . . . . 5 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
174, 15, 163syl 18 . . . 4 (𝜑𝑅 ∈ Grp)
187, 14, 17grpinvf1o 18888 . . 3 (𝜑𝐼:(Base‘𝑅)–1-1-onto→(Base‘𝑅))
19 f1of 6764 . . 3 (𝐼:(Base‘𝑅)–1-1-onto→(Base‘𝑅) → 𝐼:(Base‘𝑅)⟶(Base‘𝑅))
2018, 19syl 17 . 2 (𝜑𝐼:(Base‘𝑅)⟶(Base‘𝑅))
21 lflnegcl.n . . 3 𝑁 = (𝑥𝑉 ↦ (𝐼‘(𝐺𝑥)))
2221a1i 11 . 2 (𝜑𝑁 = (𝑥𝑉 ↦ (𝐼‘(𝐺𝑥))))
23 lflnegl.p . . . 4 + = (+g𝑅)
247, 23, 11, 14grplinv 18868 . . 3 ((𝑅 ∈ Grp ∧ 𝑦 ∈ (Base‘𝑅)) → ((𝐼𝑦) + 𝑦) = 0 )
2517, 24sylan 580 . 2 ((𝜑𝑦 ∈ (Base‘𝑅)) → ((𝐼𝑦) + 𝑦) = 0 )
263, 10, 13, 20, 22, 25caofinvl 7645 1 (𝜑 → (𝑁f + 𝐺) = (𝑉 × { 0 }))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3436  {csn 4577  cmpt 5173   × cxp 5617  wf 6478  1-1-ontowf1o 6481  cfv 6482  (class class class)co 7349  f cof 7611  Basecbs 17120  +gcplusg 17161  Scalarcsca 17164  0gc0g 17343  Grpcgrp 18812  invgcminusg 18813  Ringcrg 20118  LModclmod 20763  LFnlclfn 39036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-map 8755  df-0g 17345  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-grp 18815  df-minusg 18816  df-ring 20120  df-lmod 20765  df-lfl 39037
This theorem is referenced by:  ldualgrplem  39124
  Copyright terms: Public domain W3C validator