Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lflnegl Structured version   Visualization version   GIF version

Theorem lflnegl 37090
Description: A functional plus its negative is the zero functional. (This is specialized for the purpose of proving ldualgrp 37160, and we do not define a general operation here.) (Contributed by NM, 22-Oct-2014.)
Hypotheses
Ref Expression
lflnegcl.v 𝑉 = (Base‘𝑊)
lflnegcl.r 𝑅 = (Scalar‘𝑊)
lflnegcl.i 𝐼 = (invg𝑅)
lflnegcl.n 𝑁 = (𝑥𝑉 ↦ (𝐼‘(𝐺𝑥)))
lflnegcl.f 𝐹 = (LFnl‘𝑊)
lflnegcl.w (𝜑𝑊 ∈ LMod)
lflnegcl.g (𝜑𝐺𝐹)
lflnegl.p + = (+g𝑅)
lflnegl.o 0 = (0g𝑅)
Assertion
Ref Expression
lflnegl (𝜑 → (𝑁f + 𝐺) = (𝑉 × { 0 }))
Distinct variable groups:   𝑥,𝐺   𝑥,𝐼   𝑥,𝑅   𝑥,𝑉   𝑥,𝑊   𝜑,𝑥
Allowed substitution hints:   + (𝑥)   𝐹(𝑥)   𝑁(𝑥)   0 (𝑥)

Proof of Theorem lflnegl
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 lflnegcl.v . . . 4 𝑉 = (Base‘𝑊)
21fvexi 6788 . . 3 𝑉 ∈ V
32a1i 11 . 2 (𝜑𝑉 ∈ V)
4 lflnegcl.w . . 3 (𝜑𝑊 ∈ LMod)
5 lflnegcl.g . . 3 (𝜑𝐺𝐹)
6 lflnegcl.r . . . 4 𝑅 = (Scalar‘𝑊)
7 eqid 2738 . . . 4 (Base‘𝑅) = (Base‘𝑅)
8 lflnegcl.f . . . 4 𝐹 = (LFnl‘𝑊)
96, 7, 1, 8lflf 37077 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → 𝐺:𝑉⟶(Base‘𝑅))
104, 5, 9syl2anc 584 . 2 (𝜑𝐺:𝑉⟶(Base‘𝑅))
11 lflnegl.o . . . 4 0 = (0g𝑅)
1211fvexi 6788 . . 3 0 ∈ V
1312a1i 11 . 2 (𝜑0 ∈ V)
14 lflnegcl.i . . . 4 𝐼 = (invg𝑅)
156lmodring 20131 . . . . 5 (𝑊 ∈ LMod → 𝑅 ∈ Ring)
16 ringgrp 19788 . . . . 5 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
174, 15, 163syl 18 . . . 4 (𝜑𝑅 ∈ Grp)
187, 14, 17grpinvf1o 18645 . . 3 (𝜑𝐼:(Base‘𝑅)–1-1-onto→(Base‘𝑅))
19 f1of 6716 . . 3 (𝐼:(Base‘𝑅)–1-1-onto→(Base‘𝑅) → 𝐼:(Base‘𝑅)⟶(Base‘𝑅))
2018, 19syl 17 . 2 (𝜑𝐼:(Base‘𝑅)⟶(Base‘𝑅))
21 lflnegcl.n . . 3 𝑁 = (𝑥𝑉 ↦ (𝐼‘(𝐺𝑥)))
2221a1i 11 . 2 (𝜑𝑁 = (𝑥𝑉 ↦ (𝐼‘(𝐺𝑥))))
23 lflnegl.p . . . 4 + = (+g𝑅)
247, 23, 11, 14grplinv 18628 . . 3 ((𝑅 ∈ Grp ∧ 𝑦 ∈ (Base‘𝑅)) → ((𝐼𝑦) + 𝑦) = 0 )
2517, 24sylan 580 . 2 ((𝜑𝑦 ∈ (Base‘𝑅)) → ((𝐼𝑦) + 𝑦) = 0 )
263, 10, 13, 20, 22, 25caofinvl 7563 1 (𝜑 → (𝑁f + 𝐺) = (𝑉 × { 0 }))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  Vcvv 3432  {csn 4561  cmpt 5157   × cxp 5587  wf 6429  1-1-ontowf1o 6432  cfv 6433  (class class class)co 7275  f cof 7531  Basecbs 16912  +gcplusg 16962  Scalarcsca 16965  0gc0g 17150  Grpcgrp 18577  invgcminusg 18578  Ringcrg 19783  LModclmod 20123  LFnlclfn 37071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-map 8617  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-minusg 18581  df-ring 19785  df-lmod 20125  df-lfl 37072
This theorem is referenced by:  ldualgrplem  37159
  Copyright terms: Public domain W3C validator