![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lflnegl | Structured version Visualization version GIF version |
Description: A functional plus its negative is the zero functional. (This is specialized for the purpose of proving ldualgrp 38613, and we do not define a general operation here.) (Contributed by NM, 22-Oct-2014.) |
Ref | Expression |
---|---|
lflnegcl.v | β’ π = (Baseβπ) |
lflnegcl.r | β’ π = (Scalarβπ) |
lflnegcl.i | β’ πΌ = (invgβπ ) |
lflnegcl.n | β’ π = (π₯ β π β¦ (πΌβ(πΊβπ₯))) |
lflnegcl.f | β’ πΉ = (LFnlβπ) |
lflnegcl.w | β’ (π β π β LMod) |
lflnegcl.g | β’ (π β πΊ β πΉ) |
lflnegl.p | β’ + = (+gβπ ) |
lflnegl.o | β’ 0 = (0gβπ ) |
Ref | Expression |
---|---|
lflnegl | β’ (π β (π βf + πΊ) = (π Γ { 0 })) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lflnegcl.v | . . . 4 β’ π = (Baseβπ) | |
2 | 1 | fvexi 6906 | . . 3 β’ π β V |
3 | 2 | a1i 11 | . 2 β’ (π β π β V) |
4 | lflnegcl.w | . . 3 β’ (π β π β LMod) | |
5 | lflnegcl.g | . . 3 β’ (π β πΊ β πΉ) | |
6 | lflnegcl.r | . . . 4 β’ π = (Scalarβπ) | |
7 | eqid 2728 | . . . 4 β’ (Baseβπ ) = (Baseβπ ) | |
8 | lflnegcl.f | . . . 4 β’ πΉ = (LFnlβπ) | |
9 | 6, 7, 1, 8 | lflf 38530 | . . 3 β’ ((π β LMod β§ πΊ β πΉ) β πΊ:πβΆ(Baseβπ )) |
10 | 4, 5, 9 | syl2anc 583 | . 2 β’ (π β πΊ:πβΆ(Baseβπ )) |
11 | lflnegl.o | . . . 4 β’ 0 = (0gβπ ) | |
12 | 11 | fvexi 6906 | . . 3 β’ 0 β V |
13 | 12 | a1i 11 | . 2 β’ (π β 0 β V) |
14 | lflnegcl.i | . . . 4 β’ πΌ = (invgβπ ) | |
15 | 6 | lmodring 20745 | . . . . 5 β’ (π β LMod β π β Ring) |
16 | ringgrp 20172 | . . . . 5 β’ (π β Ring β π β Grp) | |
17 | 4, 15, 16 | 3syl 18 | . . . 4 β’ (π β π β Grp) |
18 | 7, 14, 17 | grpinvf1o 18959 | . . 3 β’ (π β πΌ:(Baseβπ )β1-1-ontoβ(Baseβπ )) |
19 | f1of 6834 | . . 3 β’ (πΌ:(Baseβπ )β1-1-ontoβ(Baseβπ ) β πΌ:(Baseβπ )βΆ(Baseβπ )) | |
20 | 18, 19 | syl 17 | . 2 β’ (π β πΌ:(Baseβπ )βΆ(Baseβπ )) |
21 | lflnegcl.n | . . 3 β’ π = (π₯ β π β¦ (πΌβ(πΊβπ₯))) | |
22 | 21 | a1i 11 | . 2 β’ (π β π = (π₯ β π β¦ (πΌβ(πΊβπ₯)))) |
23 | lflnegl.p | . . . 4 β’ + = (+gβπ ) | |
24 | 7, 23, 11, 14 | grplinv 18940 | . . 3 β’ ((π β Grp β§ π¦ β (Baseβπ )) β ((πΌβπ¦) + π¦) = 0 ) |
25 | 17, 24 | sylan 579 | . 2 β’ ((π β§ π¦ β (Baseβπ )) β ((πΌβπ¦) + π¦) = 0 ) |
26 | 3, 10, 13, 20, 22, 25 | caofinvl 7710 | 1 β’ (π β (π βf + πΊ) = (π Γ { 0 })) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1534 β wcel 2099 Vcvv 3470 {csn 4625 β¦ cmpt 5226 Γ cxp 5671 βΆwf 6539 β1-1-ontoβwf1o 6542 βcfv 6543 (class class class)co 7415 βf cof 7678 Basecbs 17174 +gcplusg 17227 Scalarcsca 17230 0gc0g 17415 Grpcgrp 18884 invgcminusg 18885 Ringcrg 20167 LModclmod 20737 LFnlclfn 38524 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5360 ax-pr 5424 ax-un 7735 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-iun 4994 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5571 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-of 7680 df-map 8841 df-0g 17417 df-mgm 18594 df-sgrp 18673 df-mnd 18689 df-grp 18887 df-minusg 18888 df-ring 20169 df-lmod 20739 df-lfl 38525 |
This theorem is referenced by: ldualgrplem 38612 |
Copyright terms: Public domain | W3C validator |