Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lflnegl Structured version   Visualization version   GIF version

Theorem lflnegl 39058
Description: A functional plus its negative is the zero functional. (This is specialized for the purpose of proving ldualgrp 39128, and we do not define a general operation here.) (Contributed by NM, 22-Oct-2014.)
Hypotheses
Ref Expression
lflnegcl.v 𝑉 = (Base‘𝑊)
lflnegcl.r 𝑅 = (Scalar‘𝑊)
lflnegcl.i 𝐼 = (invg𝑅)
lflnegcl.n 𝑁 = (𝑥𝑉 ↦ (𝐼‘(𝐺𝑥)))
lflnegcl.f 𝐹 = (LFnl‘𝑊)
lflnegcl.w (𝜑𝑊 ∈ LMod)
lflnegcl.g (𝜑𝐺𝐹)
lflnegl.p + = (+g𝑅)
lflnegl.o 0 = (0g𝑅)
Assertion
Ref Expression
lflnegl (𝜑 → (𝑁f + 𝐺) = (𝑉 × { 0 }))
Distinct variable groups:   𝑥,𝐺   𝑥,𝐼   𝑥,𝑅   𝑥,𝑉   𝑥,𝑊   𝜑,𝑥
Allowed substitution hints:   + (𝑥)   𝐹(𝑥)   𝑁(𝑥)   0 (𝑥)

Proof of Theorem lflnegl
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 lflnegcl.v . . . 4 𝑉 = (Base‘𝑊)
21fvexi 6921 . . 3 𝑉 ∈ V
32a1i 11 . 2 (𝜑𝑉 ∈ V)
4 lflnegcl.w . . 3 (𝜑𝑊 ∈ LMod)
5 lflnegcl.g . . 3 (𝜑𝐺𝐹)
6 lflnegcl.r . . . 4 𝑅 = (Scalar‘𝑊)
7 eqid 2735 . . . 4 (Base‘𝑅) = (Base‘𝑅)
8 lflnegcl.f . . . 4 𝐹 = (LFnl‘𝑊)
96, 7, 1, 8lflf 39045 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → 𝐺:𝑉⟶(Base‘𝑅))
104, 5, 9syl2anc 584 . 2 (𝜑𝐺:𝑉⟶(Base‘𝑅))
11 lflnegl.o . . . 4 0 = (0g𝑅)
1211fvexi 6921 . . 3 0 ∈ V
1312a1i 11 . 2 (𝜑0 ∈ V)
14 lflnegcl.i . . . 4 𝐼 = (invg𝑅)
156lmodring 20883 . . . . 5 (𝑊 ∈ LMod → 𝑅 ∈ Ring)
16 ringgrp 20256 . . . . 5 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
174, 15, 163syl 18 . . . 4 (𝜑𝑅 ∈ Grp)
187, 14, 17grpinvf1o 19040 . . 3 (𝜑𝐼:(Base‘𝑅)–1-1-onto→(Base‘𝑅))
19 f1of 6849 . . 3 (𝐼:(Base‘𝑅)–1-1-onto→(Base‘𝑅) → 𝐼:(Base‘𝑅)⟶(Base‘𝑅))
2018, 19syl 17 . 2 (𝜑𝐼:(Base‘𝑅)⟶(Base‘𝑅))
21 lflnegcl.n . . 3 𝑁 = (𝑥𝑉 ↦ (𝐼‘(𝐺𝑥)))
2221a1i 11 . 2 (𝜑𝑁 = (𝑥𝑉 ↦ (𝐼‘(𝐺𝑥))))
23 lflnegl.p . . . 4 + = (+g𝑅)
247, 23, 11, 14grplinv 19020 . . 3 ((𝑅 ∈ Grp ∧ 𝑦 ∈ (Base‘𝑅)) → ((𝐼𝑦) + 𝑦) = 0 )
2517, 24sylan 580 . 2 ((𝜑𝑦 ∈ (Base‘𝑅)) → ((𝐼𝑦) + 𝑦) = 0 )
263, 10, 13, 20, 22, 25caofinvl 7729 1 (𝜑 → (𝑁f + 𝐺) = (𝑉 × { 0 }))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  Vcvv 3478  {csn 4631  cmpt 5231   × cxp 5687  wf 6559  1-1-ontowf1o 6562  cfv 6563  (class class class)co 7431  f cof 7695  Basecbs 17245  +gcplusg 17298  Scalarcsca 17301  0gc0g 17486  Grpcgrp 18964  invgcminusg 18965  Ringcrg 20251  LModclmod 20875  LFnlclfn 39039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-map 8867  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-grp 18967  df-minusg 18968  df-ring 20253  df-lmod 20877  df-lfl 39040
This theorem is referenced by:  ldualgrplem  39127
  Copyright terms: Public domain W3C validator