Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lflnegl | Structured version Visualization version GIF version |
Description: A functional plus its negative is the zero functional. (This is specialized for the purpose of proving ldualgrp 37139, and we do not define a general operation here.) (Contributed by NM, 22-Oct-2014.) |
Ref | Expression |
---|---|
lflnegcl.v | ⊢ 𝑉 = (Base‘𝑊) |
lflnegcl.r | ⊢ 𝑅 = (Scalar‘𝑊) |
lflnegcl.i | ⊢ 𝐼 = (invg‘𝑅) |
lflnegcl.n | ⊢ 𝑁 = (𝑥 ∈ 𝑉 ↦ (𝐼‘(𝐺‘𝑥))) |
lflnegcl.f | ⊢ 𝐹 = (LFnl‘𝑊) |
lflnegcl.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
lflnegcl.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
lflnegl.p | ⊢ + = (+g‘𝑅) |
lflnegl.o | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
lflnegl | ⊢ (𝜑 → (𝑁 ∘f + 𝐺) = (𝑉 × { 0 })) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lflnegcl.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
2 | 1 | fvexi 6782 | . . 3 ⊢ 𝑉 ∈ V |
3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → 𝑉 ∈ V) |
4 | lflnegcl.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
5 | lflnegcl.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
6 | lflnegcl.r | . . . 4 ⊢ 𝑅 = (Scalar‘𝑊) | |
7 | eqid 2739 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
8 | lflnegcl.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑊) | |
9 | 6, 7, 1, 8 | lflf 37056 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → 𝐺:𝑉⟶(Base‘𝑅)) |
10 | 4, 5, 9 | syl2anc 583 | . 2 ⊢ (𝜑 → 𝐺:𝑉⟶(Base‘𝑅)) |
11 | lflnegl.o | . . . 4 ⊢ 0 = (0g‘𝑅) | |
12 | 11 | fvexi 6782 | . . 3 ⊢ 0 ∈ V |
13 | 12 | a1i 11 | . 2 ⊢ (𝜑 → 0 ∈ V) |
14 | lflnegcl.i | . . . 4 ⊢ 𝐼 = (invg‘𝑅) | |
15 | 6 | lmodring 20112 | . . . . 5 ⊢ (𝑊 ∈ LMod → 𝑅 ∈ Ring) |
16 | ringgrp 19769 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
17 | 4, 15, 16 | 3syl 18 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Grp) |
18 | 7, 14, 17 | grpinvf1o 18626 | . . 3 ⊢ (𝜑 → 𝐼:(Base‘𝑅)–1-1-onto→(Base‘𝑅)) |
19 | f1of 6712 | . . 3 ⊢ (𝐼:(Base‘𝑅)–1-1-onto→(Base‘𝑅) → 𝐼:(Base‘𝑅)⟶(Base‘𝑅)) | |
20 | 18, 19 | syl 17 | . 2 ⊢ (𝜑 → 𝐼:(Base‘𝑅)⟶(Base‘𝑅)) |
21 | lflnegcl.n | . . 3 ⊢ 𝑁 = (𝑥 ∈ 𝑉 ↦ (𝐼‘(𝐺‘𝑥))) | |
22 | 21 | a1i 11 | . 2 ⊢ (𝜑 → 𝑁 = (𝑥 ∈ 𝑉 ↦ (𝐼‘(𝐺‘𝑥)))) |
23 | lflnegl.p | . . . 4 ⊢ + = (+g‘𝑅) | |
24 | 7, 23, 11, 14 | grplinv 18609 | . . 3 ⊢ ((𝑅 ∈ Grp ∧ 𝑦 ∈ (Base‘𝑅)) → ((𝐼‘𝑦) + 𝑦) = 0 ) |
25 | 17, 24 | sylan 579 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝑅)) → ((𝐼‘𝑦) + 𝑦) = 0 ) |
26 | 3, 10, 13, 20, 22, 25 | caofinvl 7554 | 1 ⊢ (𝜑 → (𝑁 ∘f + 𝐺) = (𝑉 × { 0 })) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2109 Vcvv 3430 {csn 4566 ↦ cmpt 5161 × cxp 5586 ⟶wf 6426 –1-1-onto→wf1o 6429 ‘cfv 6430 (class class class)co 7268 ∘f cof 7522 Basecbs 16893 +gcplusg 16943 Scalarcsca 16946 0gc0g 17131 Grpcgrp 18558 invgcminusg 18559 Ringcrg 19764 LModclmod 20104 LFnlclfn 37050 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-of 7524 df-map 8591 df-0g 17133 df-mgm 18307 df-sgrp 18356 df-mnd 18367 df-grp 18561 df-minusg 18562 df-ring 19766 df-lmod 20106 df-lfl 37051 |
This theorem is referenced by: ldualgrplem 37138 |
Copyright terms: Public domain | W3C validator |