Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lflnegl Structured version   Visualization version   GIF version

Theorem lflnegl 37941
Description: A functional plus its negative is the zero functional. (This is specialized for the purpose of proving ldualgrp 38011, and we do not define a general operation here.) (Contributed by NM, 22-Oct-2014.)
Hypotheses
Ref Expression
lflnegcl.v 𝑉 = (Baseβ€˜π‘Š)
lflnegcl.r 𝑅 = (Scalarβ€˜π‘Š)
lflnegcl.i 𝐼 = (invgβ€˜π‘…)
lflnegcl.n 𝑁 = (π‘₯ ∈ 𝑉 ↦ (πΌβ€˜(πΊβ€˜π‘₯)))
lflnegcl.f 𝐹 = (LFnlβ€˜π‘Š)
lflnegcl.w (πœ‘ β†’ π‘Š ∈ LMod)
lflnegcl.g (πœ‘ β†’ 𝐺 ∈ 𝐹)
lflnegl.p + = (+gβ€˜π‘…)
lflnegl.o 0 = (0gβ€˜π‘…)
Assertion
Ref Expression
lflnegl (πœ‘ β†’ (𝑁 ∘f + 𝐺) = (𝑉 Γ— { 0 }))
Distinct variable groups:   π‘₯,𝐺   π‘₯,𝐼   π‘₯,𝑅   π‘₯,𝑉   π‘₯,π‘Š   πœ‘,π‘₯
Allowed substitution hints:   + (π‘₯)   𝐹(π‘₯)   𝑁(π‘₯)   0 (π‘₯)

Proof of Theorem lflnegl
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 lflnegcl.v . . . 4 𝑉 = (Baseβ€˜π‘Š)
21fvexi 6905 . . 3 𝑉 ∈ V
32a1i 11 . 2 (πœ‘ β†’ 𝑉 ∈ V)
4 lflnegcl.w . . 3 (πœ‘ β†’ π‘Š ∈ LMod)
5 lflnegcl.g . . 3 (πœ‘ β†’ 𝐺 ∈ 𝐹)
6 lflnegcl.r . . . 4 𝑅 = (Scalarβ€˜π‘Š)
7 eqid 2732 . . . 4 (Baseβ€˜π‘…) = (Baseβ€˜π‘…)
8 lflnegcl.f . . . 4 𝐹 = (LFnlβ€˜π‘Š)
96, 7, 1, 8lflf 37928 . . 3 ((π‘Š ∈ LMod ∧ 𝐺 ∈ 𝐹) β†’ 𝐺:π‘‰βŸΆ(Baseβ€˜π‘…))
104, 5, 9syl2anc 584 . 2 (πœ‘ β†’ 𝐺:π‘‰βŸΆ(Baseβ€˜π‘…))
11 lflnegl.o . . . 4 0 = (0gβ€˜π‘…)
1211fvexi 6905 . . 3 0 ∈ V
1312a1i 11 . 2 (πœ‘ β†’ 0 ∈ V)
14 lflnegcl.i . . . 4 𝐼 = (invgβ€˜π‘…)
156lmodring 20478 . . . . 5 (π‘Š ∈ LMod β†’ 𝑅 ∈ Ring)
16 ringgrp 20060 . . . . 5 (𝑅 ∈ Ring β†’ 𝑅 ∈ Grp)
174, 15, 163syl 18 . . . 4 (πœ‘ β†’ 𝑅 ∈ Grp)
187, 14, 17grpinvf1o 18892 . . 3 (πœ‘ β†’ 𝐼:(Baseβ€˜π‘…)–1-1-ontoβ†’(Baseβ€˜π‘…))
19 f1of 6833 . . 3 (𝐼:(Baseβ€˜π‘…)–1-1-ontoβ†’(Baseβ€˜π‘…) β†’ 𝐼:(Baseβ€˜π‘…)⟢(Baseβ€˜π‘…))
2018, 19syl 17 . 2 (πœ‘ β†’ 𝐼:(Baseβ€˜π‘…)⟢(Baseβ€˜π‘…))
21 lflnegcl.n . . 3 𝑁 = (π‘₯ ∈ 𝑉 ↦ (πΌβ€˜(πΊβ€˜π‘₯)))
2221a1i 11 . 2 (πœ‘ β†’ 𝑁 = (π‘₯ ∈ 𝑉 ↦ (πΌβ€˜(πΊβ€˜π‘₯))))
23 lflnegl.p . . . 4 + = (+gβ€˜π‘…)
247, 23, 11, 14grplinv 18873 . . 3 ((𝑅 ∈ Grp ∧ 𝑦 ∈ (Baseβ€˜π‘…)) β†’ ((πΌβ€˜π‘¦) + 𝑦) = 0 )
2517, 24sylan 580 . 2 ((πœ‘ ∧ 𝑦 ∈ (Baseβ€˜π‘…)) β†’ ((πΌβ€˜π‘¦) + 𝑦) = 0 )
263, 10, 13, 20, 22, 25caofinvl 7699 1 (πœ‘ β†’ (𝑁 ∘f + 𝐺) = (𝑉 Γ— { 0 }))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1541   ∈ wcel 2106  Vcvv 3474  {csn 4628   ↦ cmpt 5231   Γ— cxp 5674  βŸΆwf 6539  β€“1-1-ontoβ†’wf1o 6542  β€˜cfv 6543  (class class class)co 7408   ∘f cof 7667  Basecbs 17143  +gcplusg 17196  Scalarcsca 17199  0gc0g 17384  Grpcgrp 18818  invgcminusg 18819  Ringcrg 20055  LModclmod 20470  LFnlclfn 37922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-of 7669  df-map 8821  df-0g 17386  df-mgm 18560  df-sgrp 18609  df-mnd 18625  df-grp 18821  df-minusg 18822  df-ring 20057  df-lmod 20472  df-lfl 37923
This theorem is referenced by:  ldualgrplem  38010
  Copyright terms: Public domain W3C validator