![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lflnegl | Structured version Visualization version GIF version |
Description: A functional plus its negative is the zero functional. (This is specialized for the purpose of proving ldualgrp 38011, and we do not define a general operation here.) (Contributed by NM, 22-Oct-2014.) |
Ref | Expression |
---|---|
lflnegcl.v | β’ π = (Baseβπ) |
lflnegcl.r | β’ π = (Scalarβπ) |
lflnegcl.i | β’ πΌ = (invgβπ ) |
lflnegcl.n | β’ π = (π₯ β π β¦ (πΌβ(πΊβπ₯))) |
lflnegcl.f | β’ πΉ = (LFnlβπ) |
lflnegcl.w | β’ (π β π β LMod) |
lflnegcl.g | β’ (π β πΊ β πΉ) |
lflnegl.p | β’ + = (+gβπ ) |
lflnegl.o | β’ 0 = (0gβπ ) |
Ref | Expression |
---|---|
lflnegl | β’ (π β (π βf + πΊ) = (π Γ { 0 })) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lflnegcl.v | . . . 4 β’ π = (Baseβπ) | |
2 | 1 | fvexi 6905 | . . 3 β’ π β V |
3 | 2 | a1i 11 | . 2 β’ (π β π β V) |
4 | lflnegcl.w | . . 3 β’ (π β π β LMod) | |
5 | lflnegcl.g | . . 3 β’ (π β πΊ β πΉ) | |
6 | lflnegcl.r | . . . 4 β’ π = (Scalarβπ) | |
7 | eqid 2732 | . . . 4 β’ (Baseβπ ) = (Baseβπ ) | |
8 | lflnegcl.f | . . . 4 β’ πΉ = (LFnlβπ) | |
9 | 6, 7, 1, 8 | lflf 37928 | . . 3 β’ ((π β LMod β§ πΊ β πΉ) β πΊ:πβΆ(Baseβπ )) |
10 | 4, 5, 9 | syl2anc 584 | . 2 β’ (π β πΊ:πβΆ(Baseβπ )) |
11 | lflnegl.o | . . . 4 β’ 0 = (0gβπ ) | |
12 | 11 | fvexi 6905 | . . 3 β’ 0 β V |
13 | 12 | a1i 11 | . 2 β’ (π β 0 β V) |
14 | lflnegcl.i | . . . 4 β’ πΌ = (invgβπ ) | |
15 | 6 | lmodring 20478 | . . . . 5 β’ (π β LMod β π β Ring) |
16 | ringgrp 20060 | . . . . 5 β’ (π β Ring β π β Grp) | |
17 | 4, 15, 16 | 3syl 18 | . . . 4 β’ (π β π β Grp) |
18 | 7, 14, 17 | grpinvf1o 18892 | . . 3 β’ (π β πΌ:(Baseβπ )β1-1-ontoβ(Baseβπ )) |
19 | f1of 6833 | . . 3 β’ (πΌ:(Baseβπ )β1-1-ontoβ(Baseβπ ) β πΌ:(Baseβπ )βΆ(Baseβπ )) | |
20 | 18, 19 | syl 17 | . 2 β’ (π β πΌ:(Baseβπ )βΆ(Baseβπ )) |
21 | lflnegcl.n | . . 3 β’ π = (π₯ β π β¦ (πΌβ(πΊβπ₯))) | |
22 | 21 | a1i 11 | . 2 β’ (π β π = (π₯ β π β¦ (πΌβ(πΊβπ₯)))) |
23 | lflnegl.p | . . . 4 β’ + = (+gβπ ) | |
24 | 7, 23, 11, 14 | grplinv 18873 | . . 3 β’ ((π β Grp β§ π¦ β (Baseβπ )) β ((πΌβπ¦) + π¦) = 0 ) |
25 | 17, 24 | sylan 580 | . 2 β’ ((π β§ π¦ β (Baseβπ )) β ((πΌβπ¦) + π¦) = 0 ) |
26 | 3, 10, 13, 20, 22, 25 | caofinvl 7699 | 1 β’ (π β (π βf + πΊ) = (π Γ { 0 })) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1541 β wcel 2106 Vcvv 3474 {csn 4628 β¦ cmpt 5231 Γ cxp 5674 βΆwf 6539 β1-1-ontoβwf1o 6542 βcfv 6543 (class class class)co 7408 βf cof 7667 Basecbs 17143 +gcplusg 17196 Scalarcsca 17199 0gc0g 17384 Grpcgrp 18818 invgcminusg 18819 Ringcrg 20055 LModclmod 20470 LFnlclfn 37922 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-of 7669 df-map 8821 df-0g 17386 df-mgm 18560 df-sgrp 18609 df-mnd 18625 df-grp 18821 df-minusg 18822 df-ring 20057 df-lmod 20472 df-lfl 37923 |
This theorem is referenced by: ldualgrplem 38010 |
Copyright terms: Public domain | W3C validator |