![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cntzidss | Structured version Visualization version GIF version |
Description: If the elements of ๐ commute, the elements of a subset ๐ also commute. (Contributed by Mario Carneiro, 25-Apr-2016.) |
Ref | Expression |
---|---|
cntzmhm.z | โข ๐ = (Cntzโ๐บ) |
Ref | Expression |
---|---|
cntzidss | โข ((๐ โ (๐โ๐) โง ๐ โ ๐) โ ๐ โ (๐โ๐)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 485 | . 2 โข ((๐ โ (๐โ๐) โง ๐ โ ๐) โ ๐ โ ๐) | |
2 | simpl 483 | . . 3 โข ((๐ โ (๐โ๐) โง ๐ โ ๐) โ ๐ โ (๐โ๐)) | |
3 | eqid 2732 | . . . . . 6 โข (Baseโ๐บ) = (Baseโ๐บ) | |
4 | cntzmhm.z | . . . . . 6 โข ๐ = (Cntzโ๐บ) | |
5 | 3, 4 | cntzssv 19233 | . . . . 5 โข (๐โ๐) โ (Baseโ๐บ) |
6 | 2, 5 | sstrdi 3994 | . . . 4 โข ((๐ โ (๐โ๐) โง ๐ โ ๐) โ ๐ โ (Baseโ๐บ)) |
7 | 3, 4 | cntz2ss 19240 | . . . 4 โข ((๐ โ (Baseโ๐บ) โง ๐ โ ๐) โ (๐โ๐) โ (๐โ๐)) |
8 | 6, 7 | sylancom 588 | . . 3 โข ((๐ โ (๐โ๐) โง ๐ โ ๐) โ (๐โ๐) โ (๐โ๐)) |
9 | 2, 8 | sstrd 3992 | . 2 โข ((๐ โ (๐โ๐) โง ๐ โ ๐) โ ๐ โ (๐โ๐)) |
10 | 1, 9 | sstrd 3992 | 1 โข ((๐ โ (๐โ๐) โง ๐ โ ๐) โ ๐ โ (๐โ๐)) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 โง wa 396 = wceq 1541 โ wss 3948 โcfv 6543 Basecbs 17148 Cntzccntz 19220 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7414 df-cntz 19222 |
This theorem is referenced by: gsumzres 19818 gsumzf1o 19821 gsumzaddlem 19830 gsumzadd 19831 gsumzsplit 19836 gsumconst 19843 gsumpt 19871 dprdfadd 19931 |
Copyright terms: Public domain | W3C validator |