MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cntzidss Structured version   Visualization version   GIF version

Theorem cntzidss 18153
Description: If the elements of 𝑆 commute, the elements of a subset 𝑇 also commute. (Contributed by Mario Carneiro, 25-Apr-2016.)
Hypothesis
Ref Expression
cntzmhm.z 𝑍 = (Cntz‘𝐺)
Assertion
Ref Expression
cntzidss ((𝑆 ⊆ (𝑍𝑆) ∧ 𝑇𝑆) → 𝑇 ⊆ (𝑍𝑇))

Proof of Theorem cntzidss
StepHypRef Expression
1 simpr 479 . 2 ((𝑆 ⊆ (𝑍𝑆) ∧ 𝑇𝑆) → 𝑇𝑆)
2 simpl 476 . . 3 ((𝑆 ⊆ (𝑍𝑆) ∧ 𝑇𝑆) → 𝑆 ⊆ (𝑍𝑆))
3 eqid 2778 . . . . . 6 (Base‘𝐺) = (Base‘𝐺)
4 cntzmhm.z . . . . . 6 𝑍 = (Cntz‘𝐺)
53, 4cntzssv 18144 . . . . 5 (𝑍𝑆) ⊆ (Base‘𝐺)
62, 5syl6ss 3833 . . . 4 ((𝑆 ⊆ (𝑍𝑆) ∧ 𝑇𝑆) → 𝑆 ⊆ (Base‘𝐺))
73, 4cntz2ss 18148 . . . 4 ((𝑆 ⊆ (Base‘𝐺) ∧ 𝑇𝑆) → (𝑍𝑆) ⊆ (𝑍𝑇))
86, 7sylancom 582 . . 3 ((𝑆 ⊆ (𝑍𝑆) ∧ 𝑇𝑆) → (𝑍𝑆) ⊆ (𝑍𝑇))
92, 8sstrd 3831 . 2 ((𝑆 ⊆ (𝑍𝑆) ∧ 𝑇𝑆) → 𝑆 ⊆ (𝑍𝑇))
101, 9sstrd 3831 1 ((𝑆 ⊆ (𝑍𝑆) ∧ 𝑇𝑆) → 𝑇 ⊆ (𝑍𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1601  wss 3792  cfv 6135  Basecbs 16255  Cntzccntz 18131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-id 5261  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-ov 6925  df-cntz 18133
This theorem is referenced by:  gsumzres  18696  gsumzf1o  18699  gsumzaddlem  18707  gsumzadd  18708  gsumzsplit  18713  gsumconst  18720  gsumpt  18747  dprdfadd  18806
  Copyright terms: Public domain W3C validator