MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cntzidss Structured version   Visualization version   GIF version

Theorem cntzidss 18859
Description: If the elements of 𝑆 commute, the elements of a subset 𝑇 also commute. (Contributed by Mario Carneiro, 25-Apr-2016.)
Hypothesis
Ref Expression
cntzmhm.z 𝑍 = (Cntz‘𝐺)
Assertion
Ref Expression
cntzidss ((𝑆 ⊆ (𝑍𝑆) ∧ 𝑇𝑆) → 𝑇 ⊆ (𝑍𝑇))

Proof of Theorem cntzidss
StepHypRef Expression
1 simpr 484 . 2 ((𝑆 ⊆ (𝑍𝑆) ∧ 𝑇𝑆) → 𝑇𝑆)
2 simpl 482 . . 3 ((𝑆 ⊆ (𝑍𝑆) ∧ 𝑇𝑆) → 𝑆 ⊆ (𝑍𝑆))
3 eqid 2738 . . . . . 6 (Base‘𝐺) = (Base‘𝐺)
4 cntzmhm.z . . . . . 6 𝑍 = (Cntz‘𝐺)
53, 4cntzssv 18849 . . . . 5 (𝑍𝑆) ⊆ (Base‘𝐺)
62, 5sstrdi 3929 . . . 4 ((𝑆 ⊆ (𝑍𝑆) ∧ 𝑇𝑆) → 𝑆 ⊆ (Base‘𝐺))
73, 4cntz2ss 18854 . . . 4 ((𝑆 ⊆ (Base‘𝐺) ∧ 𝑇𝑆) → (𝑍𝑆) ⊆ (𝑍𝑇))
86, 7sylancom 587 . . 3 ((𝑆 ⊆ (𝑍𝑆) ∧ 𝑇𝑆) → (𝑍𝑆) ⊆ (𝑍𝑇))
92, 8sstrd 3927 . 2 ((𝑆 ⊆ (𝑍𝑆) ∧ 𝑇𝑆) → 𝑆 ⊆ (𝑍𝑇))
101, 9sstrd 3927 1 ((𝑆 ⊆ (𝑍𝑆) ∧ 𝑇𝑆) → 𝑇 ⊆ (𝑍𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wss 3883  cfv 6418  Basecbs 16840  Cntzccntz 18836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-cntz 18838
This theorem is referenced by:  gsumzres  19425  gsumzf1o  19428  gsumzaddlem  19437  gsumzadd  19438  gsumzsplit  19443  gsumconst  19450  gsumpt  19478  dprdfadd  19538
  Copyright terms: Public domain W3C validator