Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cntzidss | Structured version Visualization version GIF version |
Description: If the elements of 𝑆 commute, the elements of a subset 𝑇 also commute. (Contributed by Mario Carneiro, 25-Apr-2016.) |
Ref | Expression |
---|---|
cntzmhm.z | ⊢ 𝑍 = (Cntz‘𝐺) |
Ref | Expression |
---|---|
cntzidss | ⊢ ((𝑆 ⊆ (𝑍‘𝑆) ∧ 𝑇 ⊆ 𝑆) → 𝑇 ⊆ (𝑍‘𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 488 | . 2 ⊢ ((𝑆 ⊆ (𝑍‘𝑆) ∧ 𝑇 ⊆ 𝑆) → 𝑇 ⊆ 𝑆) | |
2 | simpl 486 | . . 3 ⊢ ((𝑆 ⊆ (𝑍‘𝑆) ∧ 𝑇 ⊆ 𝑆) → 𝑆 ⊆ (𝑍‘𝑆)) | |
3 | eqid 2737 | . . . . . 6 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
4 | cntzmhm.z | . . . . . 6 ⊢ 𝑍 = (Cntz‘𝐺) | |
5 | 3, 4 | cntzssv 18727 | . . . . 5 ⊢ (𝑍‘𝑆) ⊆ (Base‘𝐺) |
6 | 2, 5 | sstrdi 3918 | . . . 4 ⊢ ((𝑆 ⊆ (𝑍‘𝑆) ∧ 𝑇 ⊆ 𝑆) → 𝑆 ⊆ (Base‘𝐺)) |
7 | 3, 4 | cntz2ss 18732 | . . . 4 ⊢ ((𝑆 ⊆ (Base‘𝐺) ∧ 𝑇 ⊆ 𝑆) → (𝑍‘𝑆) ⊆ (𝑍‘𝑇)) |
8 | 6, 7 | sylancom 591 | . . 3 ⊢ ((𝑆 ⊆ (𝑍‘𝑆) ∧ 𝑇 ⊆ 𝑆) → (𝑍‘𝑆) ⊆ (𝑍‘𝑇)) |
9 | 2, 8 | sstrd 3916 | . 2 ⊢ ((𝑆 ⊆ (𝑍‘𝑆) ∧ 𝑇 ⊆ 𝑆) → 𝑆 ⊆ (𝑍‘𝑇)) |
10 | 1, 9 | sstrd 3916 | 1 ⊢ ((𝑆 ⊆ (𝑍‘𝑆) ∧ 𝑇 ⊆ 𝑆) → 𝑇 ⊆ (𝑍‘𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ⊆ wss 3871 ‘cfv 6385 Basecbs 16765 Cntzccntz 18714 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5184 ax-sep 5197 ax-nul 5204 ax-pow 5263 ax-pr 5327 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3415 df-sbc 3700 df-csb 3817 df-dif 3874 df-un 3876 df-in 3878 df-ss 3888 df-nul 4243 df-if 4445 df-pw 4520 df-sn 4547 df-pr 4549 df-op 4553 df-uni 4825 df-iun 4911 df-br 5059 df-opab 5121 df-mpt 5141 df-id 5460 df-xp 5562 df-rel 5563 df-cnv 5564 df-co 5565 df-dm 5566 df-rn 5567 df-res 5568 df-ima 5569 df-iota 6343 df-fun 6387 df-fn 6388 df-f 6389 df-f1 6390 df-fo 6391 df-f1o 6392 df-fv 6393 df-ov 7221 df-cntz 18716 |
This theorem is referenced by: gsumzres 19299 gsumzf1o 19302 gsumzaddlem 19311 gsumzadd 19312 gsumzsplit 19317 gsumconst 19324 gsumpt 19352 dprdfadd 19412 |
Copyright terms: Public domain | W3C validator |