![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cntzidss | Structured version Visualization version GIF version |
Description: If the elements of 𝑆 commute, the elements of a subset 𝑇 also commute. (Contributed by Mario Carneiro, 25-Apr-2016.) |
Ref | Expression |
---|---|
cntzmhm.z | ⊢ 𝑍 = (Cntz‘𝐺) |
Ref | Expression |
---|---|
cntzidss | ⊢ ((𝑆 ⊆ (𝑍‘𝑆) ∧ 𝑇 ⊆ 𝑆) → 𝑇 ⊆ (𝑍‘𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . 2 ⊢ ((𝑆 ⊆ (𝑍‘𝑆) ∧ 𝑇 ⊆ 𝑆) → 𝑇 ⊆ 𝑆) | |
2 | simpl 482 | . . 3 ⊢ ((𝑆 ⊆ (𝑍‘𝑆) ∧ 𝑇 ⊆ 𝑆) → 𝑆 ⊆ (𝑍‘𝑆)) | |
3 | eqid 2740 | . . . . . 6 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
4 | cntzmhm.z | . . . . . 6 ⊢ 𝑍 = (Cntz‘𝐺) | |
5 | 3, 4 | cntzssv 19370 | . . . . 5 ⊢ (𝑍‘𝑆) ⊆ (Base‘𝐺) |
6 | 2, 5 | sstrdi 4021 | . . . 4 ⊢ ((𝑆 ⊆ (𝑍‘𝑆) ∧ 𝑇 ⊆ 𝑆) → 𝑆 ⊆ (Base‘𝐺)) |
7 | 3, 4 | cntz2ss 19377 | . . . 4 ⊢ ((𝑆 ⊆ (Base‘𝐺) ∧ 𝑇 ⊆ 𝑆) → (𝑍‘𝑆) ⊆ (𝑍‘𝑇)) |
8 | 6, 7 | sylancom 587 | . . 3 ⊢ ((𝑆 ⊆ (𝑍‘𝑆) ∧ 𝑇 ⊆ 𝑆) → (𝑍‘𝑆) ⊆ (𝑍‘𝑇)) |
9 | 2, 8 | sstrd 4019 | . 2 ⊢ ((𝑆 ⊆ (𝑍‘𝑆) ∧ 𝑇 ⊆ 𝑆) → 𝑆 ⊆ (𝑍‘𝑇)) |
10 | 1, 9 | sstrd 4019 | 1 ⊢ ((𝑆 ⊆ (𝑍‘𝑆) ∧ 𝑇 ⊆ 𝑆) → 𝑇 ⊆ (𝑍‘𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ⊆ wss 3976 ‘cfv 6575 Basecbs 17260 Cntzccntz 19357 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-fo 6581 df-f1o 6582 df-fv 6583 df-ov 7453 df-cntz 19359 |
This theorem is referenced by: gsumzres 19953 gsumzf1o 19956 gsumzaddlem 19965 gsumzadd 19966 gsumzsplit 19971 gsumconst 19978 gsumpt 20006 dprdfadd 20066 |
Copyright terms: Public domain | W3C validator |