| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cntzidss | Structured version Visualization version GIF version | ||
| Description: If the elements of 𝑆 commute, the elements of a subset 𝑇 also commute. (Contributed by Mario Carneiro, 25-Apr-2016.) |
| Ref | Expression |
|---|---|
| cntzmhm.z | ⊢ 𝑍 = (Cntz‘𝐺) |
| Ref | Expression |
|---|---|
| cntzidss | ⊢ ((𝑆 ⊆ (𝑍‘𝑆) ∧ 𝑇 ⊆ 𝑆) → 𝑇 ⊆ (𝑍‘𝑇)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . 2 ⊢ ((𝑆 ⊆ (𝑍‘𝑆) ∧ 𝑇 ⊆ 𝑆) → 𝑇 ⊆ 𝑆) | |
| 2 | simpl 482 | . . 3 ⊢ ((𝑆 ⊆ (𝑍‘𝑆) ∧ 𝑇 ⊆ 𝑆) → 𝑆 ⊆ (𝑍‘𝑆)) | |
| 3 | eqid 2730 | . . . . . 6 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 4 | cntzmhm.z | . . . . . 6 ⊢ 𝑍 = (Cntz‘𝐺) | |
| 5 | 3, 4 | cntzssv 19266 | . . . . 5 ⊢ (𝑍‘𝑆) ⊆ (Base‘𝐺) |
| 6 | 2, 5 | sstrdi 3961 | . . . 4 ⊢ ((𝑆 ⊆ (𝑍‘𝑆) ∧ 𝑇 ⊆ 𝑆) → 𝑆 ⊆ (Base‘𝐺)) |
| 7 | 3, 4 | cntz2ss 19273 | . . . 4 ⊢ ((𝑆 ⊆ (Base‘𝐺) ∧ 𝑇 ⊆ 𝑆) → (𝑍‘𝑆) ⊆ (𝑍‘𝑇)) |
| 8 | 6, 7 | sylancom 588 | . . 3 ⊢ ((𝑆 ⊆ (𝑍‘𝑆) ∧ 𝑇 ⊆ 𝑆) → (𝑍‘𝑆) ⊆ (𝑍‘𝑇)) |
| 9 | 2, 8 | sstrd 3959 | . 2 ⊢ ((𝑆 ⊆ (𝑍‘𝑆) ∧ 𝑇 ⊆ 𝑆) → 𝑆 ⊆ (𝑍‘𝑇)) |
| 10 | 1, 9 | sstrd 3959 | 1 ⊢ ((𝑆 ⊆ (𝑍‘𝑆) ∧ 𝑇 ⊆ 𝑆) → 𝑇 ⊆ (𝑍‘𝑇)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ⊆ wss 3916 ‘cfv 6513 Basecbs 17185 Cntzccntz 19253 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-ov 7392 df-cntz 19255 |
| This theorem is referenced by: gsumzres 19845 gsumzf1o 19848 gsumzaddlem 19857 gsumzadd 19858 gsumzsplit 19863 gsumconst 19870 gsumpt 19898 dprdfadd 19958 |
| Copyright terms: Public domain | W3C validator |