MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cntzidss Structured version   Visualization version   GIF version

Theorem cntzidss 19382
Description: If the elements of 𝑆 commute, the elements of a subset 𝑇 also commute. (Contributed by Mario Carneiro, 25-Apr-2016.)
Hypothesis
Ref Expression
cntzmhm.z 𝑍 = (Cntz‘𝐺)
Assertion
Ref Expression
cntzidss ((𝑆 ⊆ (𝑍𝑆) ∧ 𝑇𝑆) → 𝑇 ⊆ (𝑍𝑇))

Proof of Theorem cntzidss
StepHypRef Expression
1 simpr 484 . 2 ((𝑆 ⊆ (𝑍𝑆) ∧ 𝑇𝑆) → 𝑇𝑆)
2 simpl 482 . . 3 ((𝑆 ⊆ (𝑍𝑆) ∧ 𝑇𝑆) → 𝑆 ⊆ (𝑍𝑆))
3 eqid 2740 . . . . . 6 (Base‘𝐺) = (Base‘𝐺)
4 cntzmhm.z . . . . . 6 𝑍 = (Cntz‘𝐺)
53, 4cntzssv 19370 . . . . 5 (𝑍𝑆) ⊆ (Base‘𝐺)
62, 5sstrdi 4021 . . . 4 ((𝑆 ⊆ (𝑍𝑆) ∧ 𝑇𝑆) → 𝑆 ⊆ (Base‘𝐺))
73, 4cntz2ss 19377 . . . 4 ((𝑆 ⊆ (Base‘𝐺) ∧ 𝑇𝑆) → (𝑍𝑆) ⊆ (𝑍𝑇))
86, 7sylancom 587 . . 3 ((𝑆 ⊆ (𝑍𝑆) ∧ 𝑇𝑆) → (𝑍𝑆) ⊆ (𝑍𝑇))
92, 8sstrd 4019 . 2 ((𝑆 ⊆ (𝑍𝑆) ∧ 𝑇𝑆) → 𝑆 ⊆ (𝑍𝑇))
101, 9sstrd 4019 1 ((𝑆 ⊆ (𝑍𝑆) ∧ 𝑇𝑆) → 𝑇 ⊆ (𝑍𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wss 3976  cfv 6575  Basecbs 17260  Cntzccntz 19357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6527  df-fun 6577  df-fn 6578  df-f 6579  df-f1 6580  df-fo 6581  df-f1o 6582  df-fv 6583  df-ov 7453  df-cntz 19359
This theorem is referenced by:  gsumzres  19953  gsumzf1o  19956  gsumzaddlem  19965  gsumzadd  19966  gsumzsplit  19971  gsumconst  19978  gsumpt  20006  dprdfadd  20066
  Copyright terms: Public domain W3C validator