Step | Hyp | Ref
| Expression |
1 | | gsumzsplit.b |
. . 3
⊢ 𝐵 = (Base‘𝐺) |
2 | | gsumzsplit.0 |
. . 3
⊢ 0 =
(0g‘𝐺) |
3 | | gsumzsplit.p |
. . 3
⊢ + =
(+g‘𝐺) |
4 | | gsumzsplit.z |
. . 3
⊢ 𝑍 = (Cntz‘𝐺) |
5 | | gsumzsplit.g |
. . 3
⊢ (𝜑 → 𝐺 ∈ Mnd) |
6 | | gsumzsplit.a |
. . 3
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
7 | | gsumzsplit.f |
. . . 4
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
8 | 2 | fvexi 6676 |
. . . . 5
⊢ 0 ∈
V |
9 | 8 | a1i 11 |
. . . 4
⊢ (𝜑 → 0 ∈ V) |
10 | | gsumzsplit.w |
. . . 4
⊢ (𝜑 → 𝐹 finSupp 0 ) |
11 | 7, 6, 9, 10 | fsuppmptif 8901 |
. . 3
⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐶, (𝐹‘𝑘), 0 )) finSupp 0
) |
12 | 7, 6, 9, 10 | fsuppmptif 8901 |
. . 3
⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 0 )) finSupp 0
) |
13 | 1 | submacs 18062 |
. . . . 5
⊢ (𝐺 ∈ Mnd →
(SubMnd‘𝐺) ∈
(ACS‘𝐵)) |
14 | | acsmre 16986 |
. . . . 5
⊢
((SubMnd‘𝐺)
∈ (ACS‘𝐵) →
(SubMnd‘𝐺) ∈
(Moore‘𝐵)) |
15 | 5, 13, 14 | 3syl 18 |
. . . 4
⊢ (𝜑 → (SubMnd‘𝐺) ∈ (Moore‘𝐵)) |
16 | 7 | frnd 6509 |
. . . 4
⊢ (𝜑 → ran 𝐹 ⊆ 𝐵) |
17 | | eqid 2758 |
. . . . 5
⊢
(mrCls‘(SubMnd‘𝐺)) = (mrCls‘(SubMnd‘𝐺)) |
18 | 17 | mrccl 16945 |
. . . 4
⊢
(((SubMnd‘𝐺)
∈ (Moore‘𝐵)
∧ ran 𝐹 ⊆ 𝐵) →
((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ∈ (SubMnd‘𝐺)) |
19 | 15, 16, 18 | syl2anc 587 |
. . 3
⊢ (𝜑 →
((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ∈ (SubMnd‘𝐺)) |
20 | | gsumzsplit.c |
. . . . 5
⊢ (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹)) |
21 | | eqid 2758 |
. . . . . 6
⊢ (𝐺 ↾s
((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) = (𝐺 ↾s
((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) |
22 | 4, 17, 21 | cntzspan 19037 |
. . . . 5
⊢ ((𝐺 ∈ Mnd ∧ ran 𝐹 ⊆ (𝑍‘ran 𝐹)) → (𝐺 ↾s
((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) ∈ CMnd) |
23 | 5, 20, 22 | syl2anc 587 |
. . . 4
⊢ (𝜑 → (𝐺 ↾s
((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) ∈ CMnd) |
24 | 21, 4 | submcmn2 19032 |
. . . . 5
⊢
(((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ∈ (SubMnd‘𝐺) → ((𝐺 ↾s
((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) ∈ CMnd ↔
((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ⊆ (𝑍‘((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)))) |
25 | 19, 24 | syl 17 |
. . . 4
⊢ (𝜑 → ((𝐺 ↾s
((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) ∈ CMnd ↔
((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ⊆ (𝑍‘((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)))) |
26 | 23, 25 | mpbid 235 |
. . 3
⊢ (𝜑 →
((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ⊆ (𝑍‘((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))) |
27 | 15, 17, 16 | mrcssidd 16959 |
. . . . . . 7
⊢ (𝜑 → ran 𝐹 ⊆ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) |
28 | 27 | adantr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ran 𝐹 ⊆ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) |
29 | 7 | ffnd 6503 |
. . . . . . 7
⊢ (𝜑 → 𝐹 Fn 𝐴) |
30 | | fnfvelrn 6844 |
. . . . . . 7
⊢ ((𝐹 Fn 𝐴 ∧ 𝑘 ∈ 𝐴) → (𝐹‘𝑘) ∈ ran 𝐹) |
31 | 29, 30 | sylan 583 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐹‘𝑘) ∈ ran 𝐹) |
32 | 28, 31 | sseldd 3895 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐹‘𝑘) ∈ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) |
33 | 2 | subm0cl 18047 |
. . . . . . 7
⊢
(((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ∈ (SubMnd‘𝐺) → 0 ∈
((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) |
34 | 19, 33 | syl 17 |
. . . . . 6
⊢ (𝜑 → 0 ∈
((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) |
35 | 34 | adantr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 0 ∈
((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) |
36 | 32, 35 | ifcld 4469 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → if(𝑘 ∈ 𝐶, (𝐹‘𝑘), 0 ) ∈
((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) |
37 | 36 | fmpttd 6875 |
. . 3
⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐶, (𝐹‘𝑘), 0 )):𝐴⟶((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) |
38 | 32, 35 | ifcld 4469 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 0 ) ∈
((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) |
39 | 38 | fmpttd 6875 |
. . 3
⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 0 )):𝐴⟶((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) |
40 | 1, 2, 3, 4, 5, 6, 11, 12, 19, 26, 37, 39 | gsumzadd 19115 |
. 2
⊢ (𝜑 → (𝐺 Σg ((𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐶, (𝐹‘𝑘), 0 )) ∘f
+ (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 0 )))) = ((𝐺 Σg (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐶, (𝐹‘𝑘), 0 ))) + (𝐺 Σg (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 0 ))))) |
41 | 7 | feqmptd 6725 |
. . . . 5
⊢ (𝜑 → 𝐹 = (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘))) |
42 | | iftrue 4429 |
. . . . . . . . . 10
⊢ (𝑘 ∈ 𝐶 → if(𝑘 ∈ 𝐶, (𝐹‘𝑘), 0 ) = (𝐹‘𝑘)) |
43 | 42 | adantl 485 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ 𝑘 ∈ 𝐶) → if(𝑘 ∈ 𝐶, (𝐹‘𝑘), 0 ) = (𝐹‘𝑘)) |
44 | | gsumzsplit.i |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐶 ∩ 𝐷) = ∅) |
45 | | noel 4232 |
. . . . . . . . . . . . . . . 16
⊢ ¬
𝑘 ∈
∅ |
46 | | eleq2 2840 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐶 ∩ 𝐷) = ∅ → (𝑘 ∈ (𝐶 ∩ 𝐷) ↔ 𝑘 ∈ ∅)) |
47 | 45, 46 | mtbiri 330 |
. . . . . . . . . . . . . . 15
⊢ ((𝐶 ∩ 𝐷) = ∅ → ¬ 𝑘 ∈ (𝐶 ∩ 𝐷)) |
48 | 44, 47 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ¬ 𝑘 ∈ (𝐶 ∩ 𝐷)) |
49 | 48 | adantr 484 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ¬ 𝑘 ∈ (𝐶 ∩ 𝐷)) |
50 | | elin 3876 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ (𝐶 ∩ 𝐷) ↔ (𝑘 ∈ 𝐶 ∧ 𝑘 ∈ 𝐷)) |
51 | 49, 50 | sylnib 331 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ¬ (𝑘 ∈ 𝐶 ∧ 𝑘 ∈ 𝐷)) |
52 | | imnan 403 |
. . . . . . . . . . . 12
⊢ ((𝑘 ∈ 𝐶 → ¬ 𝑘 ∈ 𝐷) ↔ ¬ (𝑘 ∈ 𝐶 ∧ 𝑘 ∈ 𝐷)) |
53 | 51, 52 | sylibr 237 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑘 ∈ 𝐶 → ¬ 𝑘 ∈ 𝐷)) |
54 | 53 | imp 410 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ 𝑘 ∈ 𝐶) → ¬ 𝑘 ∈ 𝐷) |
55 | 54 | iffalsed 4434 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ 𝑘 ∈ 𝐶) → if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 0 ) = 0 ) |
56 | 43, 55 | oveq12d 7173 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ 𝑘 ∈ 𝐶) → (if(𝑘 ∈ 𝐶, (𝐹‘𝑘), 0 ) + if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 0 )) = ((𝐹‘𝑘) + 0 )) |
57 | 7 | ffvelrnda 6847 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐹‘𝑘) ∈ 𝐵) |
58 | 1, 3, 2 | mndrid 18003 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ Mnd ∧ (𝐹‘𝑘) ∈ 𝐵) → ((𝐹‘𝑘) + 0 ) = (𝐹‘𝑘)) |
59 | 5, 57, 58 | syl2an2r 684 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ((𝐹‘𝑘) + 0 ) = (𝐹‘𝑘)) |
60 | 59 | adantr 484 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ 𝑘 ∈ 𝐶) → ((𝐹‘𝑘) + 0 ) = (𝐹‘𝑘)) |
61 | 56, 60 | eqtrd 2793 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ 𝑘 ∈ 𝐶) → (if(𝑘 ∈ 𝐶, (𝐹‘𝑘), 0 ) + if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 0 )) = (𝐹‘𝑘)) |
62 | 53 | con2d 136 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑘 ∈ 𝐷 → ¬ 𝑘 ∈ 𝐶)) |
63 | 62 | imp 410 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ 𝑘 ∈ 𝐷) → ¬ 𝑘 ∈ 𝐶) |
64 | 63 | iffalsed 4434 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ 𝑘 ∈ 𝐷) → if(𝑘 ∈ 𝐶, (𝐹‘𝑘), 0 ) = 0 ) |
65 | | iftrue 4429 |
. . . . . . . . . 10
⊢ (𝑘 ∈ 𝐷 → if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 0 ) = (𝐹‘𝑘)) |
66 | 65 | adantl 485 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ 𝑘 ∈ 𝐷) → if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 0 ) = (𝐹‘𝑘)) |
67 | 64, 66 | oveq12d 7173 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ 𝑘 ∈ 𝐷) → (if(𝑘 ∈ 𝐶, (𝐹‘𝑘), 0 ) + if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 0 )) = ( 0 + (𝐹‘𝑘))) |
68 | 1, 3, 2 | mndlid 18002 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ Mnd ∧ (𝐹‘𝑘) ∈ 𝐵) → ( 0 + (𝐹‘𝑘)) = (𝐹‘𝑘)) |
69 | 5, 57, 68 | syl2an2r 684 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ( 0 + (𝐹‘𝑘)) = (𝐹‘𝑘)) |
70 | 69 | adantr 484 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ 𝑘 ∈ 𝐷) → ( 0 + (𝐹‘𝑘)) = (𝐹‘𝑘)) |
71 | 67, 70 | eqtrd 2793 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ 𝑘 ∈ 𝐷) → (if(𝑘 ∈ 𝐶, (𝐹‘𝑘), 0 ) + if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 0 )) = (𝐹‘𝑘)) |
72 | | gsumzsplit.u |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 = (𝐶 ∪ 𝐷)) |
73 | 72 | eleq2d 2837 |
. . . . . . . . 9
⊢ (𝜑 → (𝑘 ∈ 𝐴 ↔ 𝑘 ∈ (𝐶 ∪ 𝐷))) |
74 | | elun 4056 |
. . . . . . . . 9
⊢ (𝑘 ∈ (𝐶 ∪ 𝐷) ↔ (𝑘 ∈ 𝐶 ∨ 𝑘 ∈ 𝐷)) |
75 | 73, 74 | bitrdi 290 |
. . . . . . . 8
⊢ (𝜑 → (𝑘 ∈ 𝐴 ↔ (𝑘 ∈ 𝐶 ∨ 𝑘 ∈ 𝐷))) |
76 | 75 | biimpa 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑘 ∈ 𝐶 ∨ 𝑘 ∈ 𝐷)) |
77 | 61, 71, 76 | mpjaodan 956 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (if(𝑘 ∈ 𝐶, (𝐹‘𝑘), 0 ) + if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 0 )) = (𝐹‘𝑘)) |
78 | 77 | mpteq2dva 5130 |
. . . . 5
⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ (if(𝑘 ∈ 𝐶, (𝐹‘𝑘), 0 ) + if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 0 ))) = (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘))) |
79 | 41, 78 | eqtr4d 2796 |
. . . 4
⊢ (𝜑 → 𝐹 = (𝑘 ∈ 𝐴 ↦ (if(𝑘 ∈ 𝐶, (𝐹‘𝑘), 0 ) + if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 0 )))) |
80 | 1, 2 | mndidcl 17997 |
. . . . . . . 8
⊢ (𝐺 ∈ Mnd → 0 ∈ 𝐵) |
81 | 5, 80 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 0 ∈ 𝐵) |
82 | 81 | adantr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 0 ∈ 𝐵) |
83 | 57, 82 | ifcld 4469 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → if(𝑘 ∈ 𝐶, (𝐹‘𝑘), 0 ) ∈ 𝐵) |
84 | 57, 82 | ifcld 4469 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 0 ) ∈ 𝐵) |
85 | | eqidd 2759 |
. . . . 5
⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐶, (𝐹‘𝑘), 0 )) = (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐶, (𝐹‘𝑘), 0 ))) |
86 | | eqidd 2759 |
. . . . 5
⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 0 )) = (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 0 ))) |
87 | 6, 83, 84, 85, 86 | offval2 7429 |
. . . 4
⊢ (𝜑 → ((𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐶, (𝐹‘𝑘), 0 )) ∘f
+ (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 0 ))) = (𝑘 ∈ 𝐴 ↦ (if(𝑘 ∈ 𝐶, (𝐹‘𝑘), 0 ) + if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 0 )))) |
88 | 79, 87 | eqtr4d 2796 |
. . 3
⊢ (𝜑 → 𝐹 = ((𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐶, (𝐹‘𝑘), 0 )) ∘f
+ (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 0 )))) |
89 | 88 | oveq2d 7171 |
. 2
⊢ (𝜑 → (𝐺 Σg 𝐹) = (𝐺 Σg ((𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐶, (𝐹‘𝑘), 0 )) ∘f
+ (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 0 ))))) |
90 | 41 | reseq1d 5826 |
. . . . . 6
⊢ (𝜑 → (𝐹 ↾ 𝐶) = ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘)) ↾ 𝐶)) |
91 | | ssun1 4079 |
. . . . . . . 8
⊢ 𝐶 ⊆ (𝐶 ∪ 𝐷) |
92 | 91, 72 | sseqtrrid 3947 |
. . . . . . 7
⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
93 | 42 | mpteq2ia 5126 |
. . . . . . . 8
⊢ (𝑘 ∈ 𝐶 ↦ if(𝑘 ∈ 𝐶, (𝐹‘𝑘), 0 )) = (𝑘 ∈ 𝐶 ↦ (𝐹‘𝑘)) |
94 | | resmpt 5881 |
. . . . . . . 8
⊢ (𝐶 ⊆ 𝐴 → ((𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐶, (𝐹‘𝑘), 0 )) ↾ 𝐶) = (𝑘 ∈ 𝐶 ↦ if(𝑘 ∈ 𝐶, (𝐹‘𝑘), 0 ))) |
95 | | resmpt 5881 |
. . . . . . . 8
⊢ (𝐶 ⊆ 𝐴 → ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘)) ↾ 𝐶) = (𝑘 ∈ 𝐶 ↦ (𝐹‘𝑘))) |
96 | 93, 94, 95 | 3eqtr4a 2819 |
. . . . . . 7
⊢ (𝐶 ⊆ 𝐴 → ((𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐶, (𝐹‘𝑘), 0 )) ↾ 𝐶) = ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘)) ↾ 𝐶)) |
97 | 92, 96 | syl 17 |
. . . . . 6
⊢ (𝜑 → ((𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐶, (𝐹‘𝑘), 0 )) ↾ 𝐶) = ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘)) ↾ 𝐶)) |
98 | 90, 97 | eqtr4d 2796 |
. . . . 5
⊢ (𝜑 → (𝐹 ↾ 𝐶) = ((𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐶, (𝐹‘𝑘), 0 )) ↾ 𝐶)) |
99 | 98 | oveq2d 7171 |
. . . 4
⊢ (𝜑 → (𝐺 Σg (𝐹 ↾ 𝐶)) = (𝐺 Σg ((𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐶, (𝐹‘𝑘), 0 )) ↾ 𝐶))) |
100 | 83 | fmpttd 6875 |
. . . . 5
⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐶, (𝐹‘𝑘), 0 )):𝐴⟶𝐵) |
101 | 37 | frnd 6509 |
. . . . . 6
⊢ (𝜑 → ran (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐶, (𝐹‘𝑘), 0 )) ⊆
((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) |
102 | 4 | cntzidss 18540 |
. . . . . 6
⊢
((((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ⊆ (𝑍‘((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) ∧ ran (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐶, (𝐹‘𝑘), 0 )) ⊆
((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) → ran (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐶, (𝐹‘𝑘), 0 )) ⊆ (𝑍‘ran (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐶, (𝐹‘𝑘), 0 )))) |
103 | 26, 101, 102 | syl2anc 587 |
. . . . 5
⊢ (𝜑 → ran (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐶, (𝐹‘𝑘), 0 )) ⊆ (𝑍‘ran (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐶, (𝐹‘𝑘), 0 )))) |
104 | | eldifn 4035 |
. . . . . . . 8
⊢ (𝑘 ∈ (𝐴 ∖ 𝐶) → ¬ 𝑘 ∈ 𝐶) |
105 | 104 | adantl 485 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ 𝐶)) → ¬ 𝑘 ∈ 𝐶) |
106 | 105 | iffalsed 4434 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ 𝐶)) → if(𝑘 ∈ 𝐶, (𝐹‘𝑘), 0 ) = 0 ) |
107 | 106, 6 | suppss2 7879 |
. . . . 5
⊢ (𝜑 → ((𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐶, (𝐹‘𝑘), 0 )) supp 0 ) ⊆ 𝐶) |
108 | 1, 2, 4, 5, 6, 100, 103, 107, 11 | gsumzres 19102 |
. . . 4
⊢ (𝜑 → (𝐺 Σg ((𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐶, (𝐹‘𝑘), 0 )) ↾ 𝐶)) = (𝐺 Σg (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐶, (𝐹‘𝑘), 0 )))) |
109 | 99, 108 | eqtrd 2793 |
. . 3
⊢ (𝜑 → (𝐺 Σg (𝐹 ↾ 𝐶)) = (𝐺 Σg (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐶, (𝐹‘𝑘), 0 )))) |
110 | 41 | reseq1d 5826 |
. . . . . 6
⊢ (𝜑 → (𝐹 ↾ 𝐷) = ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘)) ↾ 𝐷)) |
111 | | ssun2 4080 |
. . . . . . . 8
⊢ 𝐷 ⊆ (𝐶 ∪ 𝐷) |
112 | 111, 72 | sseqtrrid 3947 |
. . . . . . 7
⊢ (𝜑 → 𝐷 ⊆ 𝐴) |
113 | 65 | mpteq2ia 5126 |
. . . . . . . 8
⊢ (𝑘 ∈ 𝐷 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 0 )) = (𝑘 ∈ 𝐷 ↦ (𝐹‘𝑘)) |
114 | | resmpt 5881 |
. . . . . . . 8
⊢ (𝐷 ⊆ 𝐴 → ((𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 0 )) ↾ 𝐷) = (𝑘 ∈ 𝐷 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 0 ))) |
115 | | resmpt 5881 |
. . . . . . . 8
⊢ (𝐷 ⊆ 𝐴 → ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘)) ↾ 𝐷) = (𝑘 ∈ 𝐷 ↦ (𝐹‘𝑘))) |
116 | 113, 114,
115 | 3eqtr4a 2819 |
. . . . . . 7
⊢ (𝐷 ⊆ 𝐴 → ((𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 0 )) ↾ 𝐷) = ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘)) ↾ 𝐷)) |
117 | 112, 116 | syl 17 |
. . . . . 6
⊢ (𝜑 → ((𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 0 )) ↾ 𝐷) = ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘)) ↾ 𝐷)) |
118 | 110, 117 | eqtr4d 2796 |
. . . . 5
⊢ (𝜑 → (𝐹 ↾ 𝐷) = ((𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 0 )) ↾ 𝐷)) |
119 | 118 | oveq2d 7171 |
. . . 4
⊢ (𝜑 → (𝐺 Σg (𝐹 ↾ 𝐷)) = (𝐺 Σg ((𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 0 )) ↾ 𝐷))) |
120 | 84 | fmpttd 6875 |
. . . . 5
⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 0 )):𝐴⟶𝐵) |
121 | 39 | frnd 6509 |
. . . . . 6
⊢ (𝜑 → ran (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 0 )) ⊆
((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) |
122 | 4 | cntzidss 18540 |
. . . . . 6
⊢
((((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ⊆ (𝑍‘((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) ∧ ran (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 0 )) ⊆
((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) → ran (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 0 )) ⊆ (𝑍‘ran (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 0 )))) |
123 | 26, 121, 122 | syl2anc 587 |
. . . . 5
⊢ (𝜑 → ran (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 0 )) ⊆ (𝑍‘ran (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 0 )))) |
124 | | eldifn 4035 |
. . . . . . . 8
⊢ (𝑘 ∈ (𝐴 ∖ 𝐷) → ¬ 𝑘 ∈ 𝐷) |
125 | 124 | adantl 485 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ 𝐷)) → ¬ 𝑘 ∈ 𝐷) |
126 | 125 | iffalsed 4434 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ 𝐷)) → if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 0 ) = 0 ) |
127 | 126, 6 | suppss2 7879 |
. . . . 5
⊢ (𝜑 → ((𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 0 )) supp 0 ) ⊆ 𝐷) |
128 | 1, 2, 4, 5, 6, 120, 123, 127, 12 | gsumzres 19102 |
. . . 4
⊢ (𝜑 → (𝐺 Σg ((𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 0 )) ↾ 𝐷)) = (𝐺 Σg (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 0 )))) |
129 | 119, 128 | eqtrd 2793 |
. . 3
⊢ (𝜑 → (𝐺 Σg (𝐹 ↾ 𝐷)) = (𝐺 Σg (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 0 )))) |
130 | 109, 129 | oveq12d 7173 |
. 2
⊢ (𝜑 → ((𝐺 Σg (𝐹 ↾ 𝐶)) + (𝐺 Σg (𝐹 ↾ 𝐷))) = ((𝐺 Σg (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐶, (𝐹‘𝑘), 0 ))) + (𝐺 Σg (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 0 ))))) |
131 | 40, 89, 130 | 3eqtr4d 2803 |
1
⊢ (𝜑 → (𝐺 Σg 𝐹) = ((𝐺 Σg (𝐹 ↾ 𝐶)) + (𝐺 Σg (𝐹 ↾ 𝐷)))) |