MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumzsplit Structured version   Visualization version   GIF version

Theorem gsumzsplit 19837
Description: Split a group sum into two parts. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 5-Jun-2019.)
Hypotheses
Ref Expression
gsumzsplit.b 𝐵 = (Base‘𝐺)
gsumzsplit.0 0 = (0g𝐺)
gsumzsplit.p + = (+g𝐺)
gsumzsplit.z 𝑍 = (Cntz‘𝐺)
gsumzsplit.g (𝜑𝐺 ∈ Mnd)
gsumzsplit.a (𝜑𝐴𝑉)
gsumzsplit.f (𝜑𝐹:𝐴𝐵)
gsumzsplit.c (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
gsumzsplit.w (𝜑𝐹 finSupp 0 )
gsumzsplit.i (𝜑 → (𝐶𝐷) = ∅)
gsumzsplit.u (𝜑𝐴 = (𝐶𝐷))
Assertion
Ref Expression
gsumzsplit (𝜑 → (𝐺 Σg 𝐹) = ((𝐺 Σg (𝐹𝐶)) + (𝐺 Σg (𝐹𝐷))))

Proof of Theorem gsumzsplit
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 gsumzsplit.b . . 3 𝐵 = (Base‘𝐺)
2 gsumzsplit.0 . . 3 0 = (0g𝐺)
3 gsumzsplit.p . . 3 + = (+g𝐺)
4 gsumzsplit.z . . 3 𝑍 = (Cntz‘𝐺)
5 gsumzsplit.g . . 3 (𝜑𝐺 ∈ Mnd)
6 gsumzsplit.a . . 3 (𝜑𝐴𝑉)
7 gsumzsplit.f . . . 4 (𝜑𝐹:𝐴𝐵)
82fvexi 6836 . . . . 5 0 ∈ V
98a1i 11 . . . 4 (𝜑0 ∈ V)
10 gsumzsplit.w . . . 4 (𝜑𝐹 finSupp 0 )
117, 6, 9, 10fsuppmptif 9283 . . 3 (𝜑 → (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )) finSupp 0 )
127, 6, 9, 10fsuppmptif 9283 . . 3 (𝜑 → (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )) finSupp 0 )
131submacs 18732 . . . . 5 (𝐺 ∈ Mnd → (SubMnd‘𝐺) ∈ (ACS‘𝐵))
14 acsmre 17555 . . . . 5 ((SubMnd‘𝐺) ∈ (ACS‘𝐵) → (SubMnd‘𝐺) ∈ (Moore‘𝐵))
155, 13, 143syl 18 . . . 4 (𝜑 → (SubMnd‘𝐺) ∈ (Moore‘𝐵))
167frnd 6659 . . . 4 (𝜑 → ran 𝐹𝐵)
17 eqid 2731 . . . . 5 (mrCls‘(SubMnd‘𝐺)) = (mrCls‘(SubMnd‘𝐺))
1817mrccl 17514 . . . 4 (((SubMnd‘𝐺) ∈ (Moore‘𝐵) ∧ ran 𝐹𝐵) → ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ∈ (SubMnd‘𝐺))
1915, 16, 18syl2anc 584 . . 3 (𝜑 → ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ∈ (SubMnd‘𝐺))
20 gsumzsplit.c . . . . 5 (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
21 eqid 2731 . . . . . 6 (𝐺s ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) = (𝐺s ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))
224, 17, 21cntzspan 19754 . . . . 5 ((𝐺 ∈ Mnd ∧ ran 𝐹 ⊆ (𝑍‘ran 𝐹)) → (𝐺s ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) ∈ CMnd)
235, 20, 22syl2anc 584 . . . 4 (𝜑 → (𝐺s ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) ∈ CMnd)
2421, 4submcmn2 19749 . . . . 5 (((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ∈ (SubMnd‘𝐺) → ((𝐺s ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) ∈ CMnd ↔ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ⊆ (𝑍‘((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))))
2519, 24syl 17 . . . 4 (𝜑 → ((𝐺s ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) ∈ CMnd ↔ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ⊆ (𝑍‘((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))))
2623, 25mpbid 232 . . 3 (𝜑 → ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ⊆ (𝑍‘((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)))
2715, 17, 16mrcssidd 17528 . . . . . . 7 (𝜑 → ran 𝐹 ⊆ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))
2827adantr 480 . . . . . 6 ((𝜑𝑘𝐴) → ran 𝐹 ⊆ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))
297ffnd 6652 . . . . . . 7 (𝜑𝐹 Fn 𝐴)
30 fnfvelrn 7013 . . . . . . 7 ((𝐹 Fn 𝐴𝑘𝐴) → (𝐹𝑘) ∈ ran 𝐹)
3129, 30sylan 580 . . . . . 6 ((𝜑𝑘𝐴) → (𝐹𝑘) ∈ ran 𝐹)
3228, 31sseldd 3935 . . . . 5 ((𝜑𝑘𝐴) → (𝐹𝑘) ∈ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))
332subm0cl 18716 . . . . . . 7 (((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ∈ (SubMnd‘𝐺) → 0 ∈ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))
3419, 33syl 17 . . . . . 6 (𝜑0 ∈ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))
3534adantr 480 . . . . 5 ((𝜑𝑘𝐴) → 0 ∈ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))
3632, 35ifcld 4522 . . . 4 ((𝜑𝑘𝐴) → if(𝑘𝐶, (𝐹𝑘), 0 ) ∈ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))
3736fmpttd 7048 . . 3 (𝜑 → (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )):𝐴⟶((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))
3832, 35ifcld 4522 . . . 4 ((𝜑𝑘𝐴) → if(𝑘𝐷, (𝐹𝑘), 0 ) ∈ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))
3938fmpttd 7048 . . 3 (𝜑 → (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )):𝐴⟶((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))
401, 2, 3, 4, 5, 6, 11, 12, 19, 26, 37, 39gsumzadd 19832 . 2 (𝜑 → (𝐺 Σg ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )) ∘f + (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )))) = ((𝐺 Σg (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 ))) + (𝐺 Σg (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )))))
417feqmptd 6890 . . . . 5 (𝜑𝐹 = (𝑘𝐴 ↦ (𝐹𝑘)))
42 iftrue 4481 . . . . . . . . . 10 (𝑘𝐶 → if(𝑘𝐶, (𝐹𝑘), 0 ) = (𝐹𝑘))
4342adantl 481 . . . . . . . . 9 (((𝜑𝑘𝐴) ∧ 𝑘𝐶) → if(𝑘𝐶, (𝐹𝑘), 0 ) = (𝐹𝑘))
44 gsumzsplit.i . . . . . . . . . . . . . . 15 (𝜑 → (𝐶𝐷) = ∅)
45 noel 4288 . . . . . . . . . . . . . . . 16 ¬ 𝑘 ∈ ∅
46 eleq2 2820 . . . . . . . . . . . . . . . 16 ((𝐶𝐷) = ∅ → (𝑘 ∈ (𝐶𝐷) ↔ 𝑘 ∈ ∅))
4745, 46mtbiri 327 . . . . . . . . . . . . . . 15 ((𝐶𝐷) = ∅ → ¬ 𝑘 ∈ (𝐶𝐷))
4844, 47syl 17 . . . . . . . . . . . . . 14 (𝜑 → ¬ 𝑘 ∈ (𝐶𝐷))
4948adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑘𝐴) → ¬ 𝑘 ∈ (𝐶𝐷))
50 elin 3918 . . . . . . . . . . . . 13 (𝑘 ∈ (𝐶𝐷) ↔ (𝑘𝐶𝑘𝐷))
5149, 50sylnib 328 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → ¬ (𝑘𝐶𝑘𝐷))
52 imnan 399 . . . . . . . . . . . 12 ((𝑘𝐶 → ¬ 𝑘𝐷) ↔ ¬ (𝑘𝐶𝑘𝐷))
5351, 52sylibr 234 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → (𝑘𝐶 → ¬ 𝑘𝐷))
5453imp 406 . . . . . . . . . 10 (((𝜑𝑘𝐴) ∧ 𝑘𝐶) → ¬ 𝑘𝐷)
5554iffalsed 4486 . . . . . . . . 9 (((𝜑𝑘𝐴) ∧ 𝑘𝐶) → if(𝑘𝐷, (𝐹𝑘), 0 ) = 0 )
5643, 55oveq12d 7364 . . . . . . . 8 (((𝜑𝑘𝐴) ∧ 𝑘𝐶) → (if(𝑘𝐶, (𝐹𝑘), 0 ) + if(𝑘𝐷, (𝐹𝑘), 0 )) = ((𝐹𝑘) + 0 ))
577ffvelcdmda 7017 . . . . . . . . . 10 ((𝜑𝑘𝐴) → (𝐹𝑘) ∈ 𝐵)
581, 3, 2mndrid 18660 . . . . . . . . . 10 ((𝐺 ∈ Mnd ∧ (𝐹𝑘) ∈ 𝐵) → ((𝐹𝑘) + 0 ) = (𝐹𝑘))
595, 57, 58syl2an2r 685 . . . . . . . . 9 ((𝜑𝑘𝐴) → ((𝐹𝑘) + 0 ) = (𝐹𝑘))
6059adantr 480 . . . . . . . 8 (((𝜑𝑘𝐴) ∧ 𝑘𝐶) → ((𝐹𝑘) + 0 ) = (𝐹𝑘))
6156, 60eqtrd 2766 . . . . . . 7 (((𝜑𝑘𝐴) ∧ 𝑘𝐶) → (if(𝑘𝐶, (𝐹𝑘), 0 ) + if(𝑘𝐷, (𝐹𝑘), 0 )) = (𝐹𝑘))
6253con2d 134 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → (𝑘𝐷 → ¬ 𝑘𝐶))
6362imp 406 . . . . . . . . . 10 (((𝜑𝑘𝐴) ∧ 𝑘𝐷) → ¬ 𝑘𝐶)
6463iffalsed 4486 . . . . . . . . 9 (((𝜑𝑘𝐴) ∧ 𝑘𝐷) → if(𝑘𝐶, (𝐹𝑘), 0 ) = 0 )
65 iftrue 4481 . . . . . . . . . 10 (𝑘𝐷 → if(𝑘𝐷, (𝐹𝑘), 0 ) = (𝐹𝑘))
6665adantl 481 . . . . . . . . 9 (((𝜑𝑘𝐴) ∧ 𝑘𝐷) → if(𝑘𝐷, (𝐹𝑘), 0 ) = (𝐹𝑘))
6764, 66oveq12d 7364 . . . . . . . 8 (((𝜑𝑘𝐴) ∧ 𝑘𝐷) → (if(𝑘𝐶, (𝐹𝑘), 0 ) + if(𝑘𝐷, (𝐹𝑘), 0 )) = ( 0 + (𝐹𝑘)))
681, 3, 2mndlid 18659 . . . . . . . . . 10 ((𝐺 ∈ Mnd ∧ (𝐹𝑘) ∈ 𝐵) → ( 0 + (𝐹𝑘)) = (𝐹𝑘))
695, 57, 68syl2an2r 685 . . . . . . . . 9 ((𝜑𝑘𝐴) → ( 0 + (𝐹𝑘)) = (𝐹𝑘))
7069adantr 480 . . . . . . . 8 (((𝜑𝑘𝐴) ∧ 𝑘𝐷) → ( 0 + (𝐹𝑘)) = (𝐹𝑘))
7167, 70eqtrd 2766 . . . . . . 7 (((𝜑𝑘𝐴) ∧ 𝑘𝐷) → (if(𝑘𝐶, (𝐹𝑘), 0 ) + if(𝑘𝐷, (𝐹𝑘), 0 )) = (𝐹𝑘))
72 gsumzsplit.u . . . . . . . . . 10 (𝜑𝐴 = (𝐶𝐷))
7372eleq2d 2817 . . . . . . . . 9 (𝜑 → (𝑘𝐴𝑘 ∈ (𝐶𝐷)))
74 elun 4103 . . . . . . . . 9 (𝑘 ∈ (𝐶𝐷) ↔ (𝑘𝐶𝑘𝐷))
7573, 74bitrdi 287 . . . . . . . 8 (𝜑 → (𝑘𝐴 ↔ (𝑘𝐶𝑘𝐷)))
7675biimpa 476 . . . . . . 7 ((𝜑𝑘𝐴) → (𝑘𝐶𝑘𝐷))
7761, 71, 76mpjaodan 960 . . . . . 6 ((𝜑𝑘𝐴) → (if(𝑘𝐶, (𝐹𝑘), 0 ) + if(𝑘𝐷, (𝐹𝑘), 0 )) = (𝐹𝑘))
7877mpteq2dva 5184 . . . . 5 (𝜑 → (𝑘𝐴 ↦ (if(𝑘𝐶, (𝐹𝑘), 0 ) + if(𝑘𝐷, (𝐹𝑘), 0 ))) = (𝑘𝐴 ↦ (𝐹𝑘)))
7941, 78eqtr4d 2769 . . . 4 (𝜑𝐹 = (𝑘𝐴 ↦ (if(𝑘𝐶, (𝐹𝑘), 0 ) + if(𝑘𝐷, (𝐹𝑘), 0 ))))
801, 2mndidcl 18654 . . . . . . . 8 (𝐺 ∈ Mnd → 0𝐵)
815, 80syl 17 . . . . . . 7 (𝜑0𝐵)
8281adantr 480 . . . . . 6 ((𝜑𝑘𝐴) → 0𝐵)
8357, 82ifcld 4522 . . . . 5 ((𝜑𝑘𝐴) → if(𝑘𝐶, (𝐹𝑘), 0 ) ∈ 𝐵)
8457, 82ifcld 4522 . . . . 5 ((𝜑𝑘𝐴) → if(𝑘𝐷, (𝐹𝑘), 0 ) ∈ 𝐵)
85 eqidd 2732 . . . . 5 (𝜑 → (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )) = (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )))
86 eqidd 2732 . . . . 5 (𝜑 → (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )) = (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )))
876, 83, 84, 85, 86offval2 7630 . . . 4 (𝜑 → ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )) ∘f + (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 ))) = (𝑘𝐴 ↦ (if(𝑘𝐶, (𝐹𝑘), 0 ) + if(𝑘𝐷, (𝐹𝑘), 0 ))))
8879, 87eqtr4d 2769 . . 3 (𝜑𝐹 = ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )) ∘f + (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 ))))
8988oveq2d 7362 . 2 (𝜑 → (𝐺 Σg 𝐹) = (𝐺 Σg ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )) ∘f + (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )))))
9041reseq1d 5927 . . . . . 6 (𝜑 → (𝐹𝐶) = ((𝑘𝐴 ↦ (𝐹𝑘)) ↾ 𝐶))
91 ssun1 4128 . . . . . . . 8 𝐶 ⊆ (𝐶𝐷)
9291, 72sseqtrrid 3978 . . . . . . 7 (𝜑𝐶𝐴)
9342mpteq2ia 5186 . . . . . . . 8 (𝑘𝐶 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )) = (𝑘𝐶 ↦ (𝐹𝑘))
94 resmpt 5986 . . . . . . . 8 (𝐶𝐴 → ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )) ↾ 𝐶) = (𝑘𝐶 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )))
95 resmpt 5986 . . . . . . . 8 (𝐶𝐴 → ((𝑘𝐴 ↦ (𝐹𝑘)) ↾ 𝐶) = (𝑘𝐶 ↦ (𝐹𝑘)))
9693, 94, 953eqtr4a 2792 . . . . . . 7 (𝐶𝐴 → ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )) ↾ 𝐶) = ((𝑘𝐴 ↦ (𝐹𝑘)) ↾ 𝐶))
9792, 96syl 17 . . . . . 6 (𝜑 → ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )) ↾ 𝐶) = ((𝑘𝐴 ↦ (𝐹𝑘)) ↾ 𝐶))
9890, 97eqtr4d 2769 . . . . 5 (𝜑 → (𝐹𝐶) = ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )) ↾ 𝐶))
9998oveq2d 7362 . . . 4 (𝜑 → (𝐺 Σg (𝐹𝐶)) = (𝐺 Σg ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )) ↾ 𝐶)))
10083fmpttd 7048 . . . . 5 (𝜑 → (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )):𝐴𝐵)
10137frnd 6659 . . . . . 6 (𝜑 → ran (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )) ⊆ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))
1024cntzidss 19250 . . . . . 6 ((((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ⊆ (𝑍‘((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) ∧ ran (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )) ⊆ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) → ran (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )) ⊆ (𝑍‘ran (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 ))))
10326, 101, 102syl2anc 584 . . . . 5 (𝜑 → ran (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )) ⊆ (𝑍‘ran (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 ))))
104 eldifn 4082 . . . . . . . 8 (𝑘 ∈ (𝐴𝐶) → ¬ 𝑘𝐶)
105104adantl 481 . . . . . . 7 ((𝜑𝑘 ∈ (𝐴𝐶)) → ¬ 𝑘𝐶)
106105iffalsed 4486 . . . . . 6 ((𝜑𝑘 ∈ (𝐴𝐶)) → if(𝑘𝐶, (𝐹𝑘), 0 ) = 0 )
107106, 6suppss2 8130 . . . . 5 (𝜑 → ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )) supp 0 ) ⊆ 𝐶)
1081, 2, 4, 5, 6, 100, 103, 107, 11gsumzres 19819 . . . 4 (𝜑 → (𝐺 Σg ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )) ↾ 𝐶)) = (𝐺 Σg (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 ))))
10999, 108eqtrd 2766 . . 3 (𝜑 → (𝐺 Σg (𝐹𝐶)) = (𝐺 Σg (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 ))))
11041reseq1d 5927 . . . . . 6 (𝜑 → (𝐹𝐷) = ((𝑘𝐴 ↦ (𝐹𝑘)) ↾ 𝐷))
111 ssun2 4129 . . . . . . . 8 𝐷 ⊆ (𝐶𝐷)
112111, 72sseqtrrid 3978 . . . . . . 7 (𝜑𝐷𝐴)
11365mpteq2ia 5186 . . . . . . . 8 (𝑘𝐷 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )) = (𝑘𝐷 ↦ (𝐹𝑘))
114 resmpt 5986 . . . . . . . 8 (𝐷𝐴 → ((𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )) ↾ 𝐷) = (𝑘𝐷 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )))
115 resmpt 5986 . . . . . . . 8 (𝐷𝐴 → ((𝑘𝐴 ↦ (𝐹𝑘)) ↾ 𝐷) = (𝑘𝐷 ↦ (𝐹𝑘)))
116113, 114, 1153eqtr4a 2792 . . . . . . 7 (𝐷𝐴 → ((𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )) ↾ 𝐷) = ((𝑘𝐴 ↦ (𝐹𝑘)) ↾ 𝐷))
117112, 116syl 17 . . . . . 6 (𝜑 → ((𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )) ↾ 𝐷) = ((𝑘𝐴 ↦ (𝐹𝑘)) ↾ 𝐷))
118110, 117eqtr4d 2769 . . . . 5 (𝜑 → (𝐹𝐷) = ((𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )) ↾ 𝐷))
119118oveq2d 7362 . . . 4 (𝜑 → (𝐺 Σg (𝐹𝐷)) = (𝐺 Σg ((𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )) ↾ 𝐷)))
12084fmpttd 7048 . . . . 5 (𝜑 → (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )):𝐴𝐵)
12139frnd 6659 . . . . . 6 (𝜑 → ran (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )) ⊆ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))
1224cntzidss 19250 . . . . . 6 ((((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ⊆ (𝑍‘((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) ∧ ran (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )) ⊆ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) → ran (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )) ⊆ (𝑍‘ran (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 ))))
12326, 121, 122syl2anc 584 . . . . 5 (𝜑 → ran (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )) ⊆ (𝑍‘ran (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 ))))
124 eldifn 4082 . . . . . . . 8 (𝑘 ∈ (𝐴𝐷) → ¬ 𝑘𝐷)
125124adantl 481 . . . . . . 7 ((𝜑𝑘 ∈ (𝐴𝐷)) → ¬ 𝑘𝐷)
126125iffalsed 4486 . . . . . 6 ((𝜑𝑘 ∈ (𝐴𝐷)) → if(𝑘𝐷, (𝐹𝑘), 0 ) = 0 )
127126, 6suppss2 8130 . . . . 5 (𝜑 → ((𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )) supp 0 ) ⊆ 𝐷)
1281, 2, 4, 5, 6, 120, 123, 127, 12gsumzres 19819 . . . 4 (𝜑 → (𝐺 Σg ((𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )) ↾ 𝐷)) = (𝐺 Σg (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 ))))
129119, 128eqtrd 2766 . . 3 (𝜑 → (𝐺 Σg (𝐹𝐷)) = (𝐺 Σg (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 ))))
130109, 129oveq12d 7364 . 2 (𝜑 → ((𝐺 Σg (𝐹𝐶)) + (𝐺 Σg (𝐹𝐷))) = ((𝐺 Σg (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 ))) + (𝐺 Σg (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )))))
13140, 89, 1303eqtr4d 2776 1 (𝜑 → (𝐺 Σg 𝐹) = ((𝐺 Σg (𝐹𝐶)) + (𝐺 Σg (𝐹𝐷))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2111  Vcvv 3436  cdif 3899  cun 3900  cin 3901  wss 3902  c0 4283  ifcif 4475   class class class wbr 5091  cmpt 5172  ran crn 5617  cres 5618   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346  f cof 7608   finSupp cfsupp 9245  Basecbs 17117  s cress 17138  +gcplusg 17158  0gc0g 17340   Σg cgsu 17341  Moorecmre 17481  mrClscmrc 17482  ACScacs 17484  Mndcmnd 18639  SubMndcsubmnd 18687  Cntzccntz 19225  CMndccmn 19690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-oi 9396  df-card 9829  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-2 12185  df-n0 12379  df-z 12466  df-uz 12730  df-fz 13405  df-fzo 13552  df-seq 13906  df-hash 14235  df-sets 17072  df-slot 17090  df-ndx 17102  df-base 17118  df-ress 17139  df-plusg 17171  df-0g 17342  df-gsum 17343  df-mre 17485  df-mrc 17486  df-acs 17488  df-mgm 18545  df-sgrp 18624  df-mnd 18640  df-submnd 18689  df-cntz 19227  df-cmn 19692
This theorem is referenced by:  gsumsplit  19838  gsumzunsnd  19866  dpjidcl  19970
  Copyright terms: Public domain W3C validator