Step | Hyp | Ref
| Expression |
1 | | gsumzsplit.b |
. . 3
⊢ 𝐵 = (Base‘𝐺) |
2 | | gsumzsplit.0 |
. . 3
⊢ 0 =
(0g‘𝐺) |
3 | | gsumzsplit.p |
. . 3
⊢ + =
(+g‘𝐺) |
4 | | gsumzsplit.z |
. . 3
⊢ 𝑍 = (Cntz‘𝐺) |
5 | | gsumzsplit.g |
. . 3
⊢ (𝜑 → 𝐺 ∈ Mnd) |
6 | | gsumzsplit.a |
. . 3
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
7 | | gsumzsplit.f |
. . . 4
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
8 | 2 | fvexi 6426 |
. . . . 5
⊢ 0 ∈
V |
9 | 8 | a1i 11 |
. . . 4
⊢ (𝜑 → 0 ∈ V) |
10 | | gsumzsplit.w |
. . . 4
⊢ (𝜑 → 𝐹 finSupp 0 ) |
11 | 7, 6, 9, 10 | fsuppmptif 8548 |
. . 3
⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐶, (𝐹‘𝑘), 0 )) finSupp 0
) |
12 | 7, 6, 9, 10 | fsuppmptif 8548 |
. . 3
⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 0 )) finSupp 0
) |
13 | 1 | submacs 17679 |
. . . . 5
⊢ (𝐺 ∈ Mnd →
(SubMnd‘𝐺) ∈
(ACS‘𝐵)) |
14 | | acsmre 16626 |
. . . . 5
⊢
((SubMnd‘𝐺)
∈ (ACS‘𝐵) →
(SubMnd‘𝐺) ∈
(Moore‘𝐵)) |
15 | 5, 13, 14 | 3syl 18 |
. . . 4
⊢ (𝜑 → (SubMnd‘𝐺) ∈ (Moore‘𝐵)) |
16 | 7 | frnd 6264 |
. . . 4
⊢ (𝜑 → ran 𝐹 ⊆ 𝐵) |
17 | | eqid 2800 |
. . . . 5
⊢
(mrCls‘(SubMnd‘𝐺)) = (mrCls‘(SubMnd‘𝐺)) |
18 | 17 | mrccl 16585 |
. . . 4
⊢
(((SubMnd‘𝐺)
∈ (Moore‘𝐵)
∧ ran 𝐹 ⊆ 𝐵) →
((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ∈ (SubMnd‘𝐺)) |
19 | 15, 16, 18 | syl2anc 580 |
. . 3
⊢ (𝜑 →
((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ∈ (SubMnd‘𝐺)) |
20 | | gsumzsplit.c |
. . . . 5
⊢ (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹)) |
21 | | eqid 2800 |
. . . . . 6
⊢ (𝐺 ↾s
((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) = (𝐺 ↾s
((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) |
22 | 4, 17, 21 | cntzspan 18561 |
. . . . 5
⊢ ((𝐺 ∈ Mnd ∧ ran 𝐹 ⊆ (𝑍‘ran 𝐹)) → (𝐺 ↾s
((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) ∈ CMnd) |
23 | 5, 20, 22 | syl2anc 580 |
. . . 4
⊢ (𝜑 → (𝐺 ↾s
((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) ∈ CMnd) |
24 | 21, 4 | submcmn2 18558 |
. . . . 5
⊢
(((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ∈ (SubMnd‘𝐺) → ((𝐺 ↾s
((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) ∈ CMnd ↔
((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ⊆ (𝑍‘((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)))) |
25 | 19, 24 | syl 17 |
. . . 4
⊢ (𝜑 → ((𝐺 ↾s
((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) ∈ CMnd ↔
((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ⊆ (𝑍‘((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)))) |
26 | 23, 25 | mpbid 224 |
. . 3
⊢ (𝜑 →
((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ⊆ (𝑍‘((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))) |
27 | 15, 17, 16 | mrcssidd 16599 |
. . . . . . 7
⊢ (𝜑 → ran 𝐹 ⊆ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) |
28 | 27 | adantr 473 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ran 𝐹 ⊆ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) |
29 | 7 | ffnd 6258 |
. . . . . . 7
⊢ (𝜑 → 𝐹 Fn 𝐴) |
30 | | fnfvelrn 6583 |
. . . . . . 7
⊢ ((𝐹 Fn 𝐴 ∧ 𝑘 ∈ 𝐴) → (𝐹‘𝑘) ∈ ran 𝐹) |
31 | 29, 30 | sylan 576 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐹‘𝑘) ∈ ran 𝐹) |
32 | 28, 31 | sseldd 3800 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐹‘𝑘) ∈ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) |
33 | 2 | subm0cl 17666 |
. . . . . . 7
⊢
(((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ∈ (SubMnd‘𝐺) → 0 ∈
((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) |
34 | 19, 33 | syl 17 |
. . . . . 6
⊢ (𝜑 → 0 ∈
((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) |
35 | 34 | adantr 473 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 0 ∈
((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) |
36 | 32, 35 | ifcld 4323 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → if(𝑘 ∈ 𝐶, (𝐹‘𝑘), 0 ) ∈
((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) |
37 | 36 | fmpttd 6612 |
. . 3
⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐶, (𝐹‘𝑘), 0 )):𝐴⟶((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) |
38 | 32, 35 | ifcld 4323 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 0 ) ∈
((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) |
39 | 38 | fmpttd 6612 |
. . 3
⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 0 )):𝐴⟶((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) |
40 | 1, 2, 3, 4, 5, 6, 11, 12, 19, 26, 37, 39 | gsumzadd 18636 |
. 2
⊢ (𝜑 → (𝐺 Σg ((𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐶, (𝐹‘𝑘), 0 ))
∘𝑓 + (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 0 )))) = ((𝐺 Σg (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐶, (𝐹‘𝑘), 0 ))) + (𝐺 Σg (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 0 ))))) |
41 | 7 | feqmptd 6475 |
. . . . 5
⊢ (𝜑 → 𝐹 = (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘))) |
42 | | iftrue 4284 |
. . . . . . . . . 10
⊢ (𝑘 ∈ 𝐶 → if(𝑘 ∈ 𝐶, (𝐹‘𝑘), 0 ) = (𝐹‘𝑘)) |
43 | 42 | adantl 474 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ 𝑘 ∈ 𝐶) → if(𝑘 ∈ 𝐶, (𝐹‘𝑘), 0 ) = (𝐹‘𝑘)) |
44 | | gsumzsplit.i |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐶 ∩ 𝐷) = ∅) |
45 | | noel 4120 |
. . . . . . . . . . . . . . . 16
⊢ ¬
𝑘 ∈
∅ |
46 | | eleq2 2868 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐶 ∩ 𝐷) = ∅ → (𝑘 ∈ (𝐶 ∩ 𝐷) ↔ 𝑘 ∈ ∅)) |
47 | 45, 46 | mtbiri 319 |
. . . . . . . . . . . . . . 15
⊢ ((𝐶 ∩ 𝐷) = ∅ → ¬ 𝑘 ∈ (𝐶 ∩ 𝐷)) |
48 | 44, 47 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ¬ 𝑘 ∈ (𝐶 ∩ 𝐷)) |
49 | 48 | adantr 473 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ¬ 𝑘 ∈ (𝐶 ∩ 𝐷)) |
50 | | elin 3995 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ (𝐶 ∩ 𝐷) ↔ (𝑘 ∈ 𝐶 ∧ 𝑘 ∈ 𝐷)) |
51 | 49, 50 | sylnib 320 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ¬ (𝑘 ∈ 𝐶 ∧ 𝑘 ∈ 𝐷)) |
52 | | imnan 389 |
. . . . . . . . . . . 12
⊢ ((𝑘 ∈ 𝐶 → ¬ 𝑘 ∈ 𝐷) ↔ ¬ (𝑘 ∈ 𝐶 ∧ 𝑘 ∈ 𝐷)) |
53 | 51, 52 | sylibr 226 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑘 ∈ 𝐶 → ¬ 𝑘 ∈ 𝐷)) |
54 | 53 | imp 396 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ 𝑘 ∈ 𝐶) → ¬ 𝑘 ∈ 𝐷) |
55 | 54 | iffalsed 4289 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ 𝑘 ∈ 𝐶) → if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 0 ) = 0 ) |
56 | 43, 55 | oveq12d 6897 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ 𝑘 ∈ 𝐶) → (if(𝑘 ∈ 𝐶, (𝐹‘𝑘), 0 ) + if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 0 )) = ((𝐹‘𝑘) + 0 )) |
57 | 7 | ffvelrnda 6586 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐹‘𝑘) ∈ 𝐵) |
58 | 1, 3, 2 | mndrid 17626 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ Mnd ∧ (𝐹‘𝑘) ∈ 𝐵) → ((𝐹‘𝑘) + 0 ) = (𝐹‘𝑘)) |
59 | 5, 58 | sylan 576 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐹‘𝑘) ∈ 𝐵) → ((𝐹‘𝑘) + 0 ) = (𝐹‘𝑘)) |
60 | 57, 59 | syldan 586 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ((𝐹‘𝑘) + 0 ) = (𝐹‘𝑘)) |
61 | 60 | adantr 473 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ 𝑘 ∈ 𝐶) → ((𝐹‘𝑘) + 0 ) = (𝐹‘𝑘)) |
62 | 56, 61 | eqtrd 2834 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ 𝑘 ∈ 𝐶) → (if(𝑘 ∈ 𝐶, (𝐹‘𝑘), 0 ) + if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 0 )) = (𝐹‘𝑘)) |
63 | 53 | con2d 132 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑘 ∈ 𝐷 → ¬ 𝑘 ∈ 𝐶)) |
64 | 63 | imp 396 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ 𝑘 ∈ 𝐷) → ¬ 𝑘 ∈ 𝐶) |
65 | 64 | iffalsed 4289 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ 𝑘 ∈ 𝐷) → if(𝑘 ∈ 𝐶, (𝐹‘𝑘), 0 ) = 0 ) |
66 | | iftrue 4284 |
. . . . . . . . . 10
⊢ (𝑘 ∈ 𝐷 → if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 0 ) = (𝐹‘𝑘)) |
67 | 66 | adantl 474 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ 𝑘 ∈ 𝐷) → if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 0 ) = (𝐹‘𝑘)) |
68 | 65, 67 | oveq12d 6897 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ 𝑘 ∈ 𝐷) → (if(𝑘 ∈ 𝐶, (𝐹‘𝑘), 0 ) + if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 0 )) = ( 0 + (𝐹‘𝑘))) |
69 | 1, 3, 2 | mndlid 17625 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ Mnd ∧ (𝐹‘𝑘) ∈ 𝐵) → ( 0 + (𝐹‘𝑘)) = (𝐹‘𝑘)) |
70 | 5, 69 | sylan 576 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐹‘𝑘) ∈ 𝐵) → ( 0 + (𝐹‘𝑘)) = (𝐹‘𝑘)) |
71 | 57, 70 | syldan 586 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ( 0 + (𝐹‘𝑘)) = (𝐹‘𝑘)) |
72 | 71 | adantr 473 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ 𝑘 ∈ 𝐷) → ( 0 + (𝐹‘𝑘)) = (𝐹‘𝑘)) |
73 | 68, 72 | eqtrd 2834 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ 𝑘 ∈ 𝐷) → (if(𝑘 ∈ 𝐶, (𝐹‘𝑘), 0 ) + if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 0 )) = (𝐹‘𝑘)) |
74 | | gsumzsplit.u |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 = (𝐶 ∪ 𝐷)) |
75 | 74 | eleq2d 2865 |
. . . . . . . . 9
⊢ (𝜑 → (𝑘 ∈ 𝐴 ↔ 𝑘 ∈ (𝐶 ∪ 𝐷))) |
76 | | elun 3952 |
. . . . . . . . 9
⊢ (𝑘 ∈ (𝐶 ∪ 𝐷) ↔ (𝑘 ∈ 𝐶 ∨ 𝑘 ∈ 𝐷)) |
77 | 75, 76 | syl6bb 279 |
. . . . . . . 8
⊢ (𝜑 → (𝑘 ∈ 𝐴 ↔ (𝑘 ∈ 𝐶 ∨ 𝑘 ∈ 𝐷))) |
78 | 77 | biimpa 469 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑘 ∈ 𝐶 ∨ 𝑘 ∈ 𝐷)) |
79 | 62, 73, 78 | mpjaodan 982 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (if(𝑘 ∈ 𝐶, (𝐹‘𝑘), 0 ) + if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 0 )) = (𝐹‘𝑘)) |
80 | 79 | mpteq2dva 4938 |
. . . . 5
⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ (if(𝑘 ∈ 𝐶, (𝐹‘𝑘), 0 ) + if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 0 ))) = (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘))) |
81 | 41, 80 | eqtr4d 2837 |
. . . 4
⊢ (𝜑 → 𝐹 = (𝑘 ∈ 𝐴 ↦ (if(𝑘 ∈ 𝐶, (𝐹‘𝑘), 0 ) + if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 0 )))) |
82 | 1, 2 | mndidcl 17622 |
. . . . . . . 8
⊢ (𝐺 ∈ Mnd → 0 ∈ 𝐵) |
83 | 5, 82 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 0 ∈ 𝐵) |
84 | 83 | adantr 473 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 0 ∈ 𝐵) |
85 | 57, 84 | ifcld 4323 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → if(𝑘 ∈ 𝐶, (𝐹‘𝑘), 0 ) ∈ 𝐵) |
86 | 57, 84 | ifcld 4323 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 0 ) ∈ 𝐵) |
87 | | eqidd 2801 |
. . . . 5
⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐶, (𝐹‘𝑘), 0 )) = (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐶, (𝐹‘𝑘), 0 ))) |
88 | | eqidd 2801 |
. . . . 5
⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 0 )) = (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 0 ))) |
89 | 6, 85, 86, 87, 88 | offval2 7149 |
. . . 4
⊢ (𝜑 → ((𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐶, (𝐹‘𝑘), 0 ))
∘𝑓 + (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 0 ))) = (𝑘 ∈ 𝐴 ↦ (if(𝑘 ∈ 𝐶, (𝐹‘𝑘), 0 ) + if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 0 )))) |
90 | 81, 89 | eqtr4d 2837 |
. . 3
⊢ (𝜑 → 𝐹 = ((𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐶, (𝐹‘𝑘), 0 ))
∘𝑓 + (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 0 )))) |
91 | 90 | oveq2d 6895 |
. 2
⊢ (𝜑 → (𝐺 Σg 𝐹) = (𝐺 Σg ((𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐶, (𝐹‘𝑘), 0 ))
∘𝑓 + (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 0 ))))) |
92 | 41 | reseq1d 5600 |
. . . . . 6
⊢ (𝜑 → (𝐹 ↾ 𝐶) = ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘)) ↾ 𝐶)) |
93 | | ssun1 3975 |
. . . . . . . 8
⊢ 𝐶 ⊆ (𝐶 ∪ 𝐷) |
94 | 93, 74 | syl5sseqr 3851 |
. . . . . . 7
⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
95 | 42 | mpteq2ia 4934 |
. . . . . . . 8
⊢ (𝑘 ∈ 𝐶 ↦ if(𝑘 ∈ 𝐶, (𝐹‘𝑘), 0 )) = (𝑘 ∈ 𝐶 ↦ (𝐹‘𝑘)) |
96 | | resmpt 5662 |
. . . . . . . 8
⊢ (𝐶 ⊆ 𝐴 → ((𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐶, (𝐹‘𝑘), 0 )) ↾ 𝐶) = (𝑘 ∈ 𝐶 ↦ if(𝑘 ∈ 𝐶, (𝐹‘𝑘), 0 ))) |
97 | | resmpt 5662 |
. . . . . . . 8
⊢ (𝐶 ⊆ 𝐴 → ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘)) ↾ 𝐶) = (𝑘 ∈ 𝐶 ↦ (𝐹‘𝑘))) |
98 | 95, 96, 97 | 3eqtr4a 2860 |
. . . . . . 7
⊢ (𝐶 ⊆ 𝐴 → ((𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐶, (𝐹‘𝑘), 0 )) ↾ 𝐶) = ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘)) ↾ 𝐶)) |
99 | 94, 98 | syl 17 |
. . . . . 6
⊢ (𝜑 → ((𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐶, (𝐹‘𝑘), 0 )) ↾ 𝐶) = ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘)) ↾ 𝐶)) |
100 | 92, 99 | eqtr4d 2837 |
. . . . 5
⊢ (𝜑 → (𝐹 ↾ 𝐶) = ((𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐶, (𝐹‘𝑘), 0 )) ↾ 𝐶)) |
101 | 100 | oveq2d 6895 |
. . . 4
⊢ (𝜑 → (𝐺 Σg (𝐹 ↾ 𝐶)) = (𝐺 Σg ((𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐶, (𝐹‘𝑘), 0 )) ↾ 𝐶))) |
102 | 85 | fmpttd 6612 |
. . . . 5
⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐶, (𝐹‘𝑘), 0 )):𝐴⟶𝐵) |
103 | 37 | frnd 6264 |
. . . . . 6
⊢ (𝜑 → ran (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐶, (𝐹‘𝑘), 0 )) ⊆
((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) |
104 | 4 | cntzidss 18081 |
. . . . . 6
⊢
((((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ⊆ (𝑍‘((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) ∧ ran (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐶, (𝐹‘𝑘), 0 )) ⊆
((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) → ran (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐶, (𝐹‘𝑘), 0 )) ⊆ (𝑍‘ran (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐶, (𝐹‘𝑘), 0 )))) |
105 | 26, 103, 104 | syl2anc 580 |
. . . . 5
⊢ (𝜑 → ran (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐶, (𝐹‘𝑘), 0 )) ⊆ (𝑍‘ran (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐶, (𝐹‘𝑘), 0 )))) |
106 | | eldifn 3932 |
. . . . . . . 8
⊢ (𝑘 ∈ (𝐴 ∖ 𝐶) → ¬ 𝑘 ∈ 𝐶) |
107 | 106 | adantl 474 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ 𝐶)) → ¬ 𝑘 ∈ 𝐶) |
108 | 107 | iffalsed 4289 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ 𝐶)) → if(𝑘 ∈ 𝐶, (𝐹‘𝑘), 0 ) = 0 ) |
109 | 108, 6 | suppss2 7568 |
. . . . 5
⊢ (𝜑 → ((𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐶, (𝐹‘𝑘), 0 )) supp 0 ) ⊆ 𝐶) |
110 | 1, 2, 4, 5, 6, 102, 105, 109, 11 | gsumzres 18624 |
. . . 4
⊢ (𝜑 → (𝐺 Σg ((𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐶, (𝐹‘𝑘), 0 )) ↾ 𝐶)) = (𝐺 Σg (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐶, (𝐹‘𝑘), 0 )))) |
111 | 101, 110 | eqtrd 2834 |
. . 3
⊢ (𝜑 → (𝐺 Σg (𝐹 ↾ 𝐶)) = (𝐺 Σg (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐶, (𝐹‘𝑘), 0 )))) |
112 | 41 | reseq1d 5600 |
. . . . . 6
⊢ (𝜑 → (𝐹 ↾ 𝐷) = ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘)) ↾ 𝐷)) |
113 | | ssun2 3976 |
. . . . . . . 8
⊢ 𝐷 ⊆ (𝐶 ∪ 𝐷) |
114 | 113, 74 | syl5sseqr 3851 |
. . . . . . 7
⊢ (𝜑 → 𝐷 ⊆ 𝐴) |
115 | 66 | mpteq2ia 4934 |
. . . . . . . 8
⊢ (𝑘 ∈ 𝐷 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 0 )) = (𝑘 ∈ 𝐷 ↦ (𝐹‘𝑘)) |
116 | | resmpt 5662 |
. . . . . . . 8
⊢ (𝐷 ⊆ 𝐴 → ((𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 0 )) ↾ 𝐷) = (𝑘 ∈ 𝐷 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 0 ))) |
117 | | resmpt 5662 |
. . . . . . . 8
⊢ (𝐷 ⊆ 𝐴 → ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘)) ↾ 𝐷) = (𝑘 ∈ 𝐷 ↦ (𝐹‘𝑘))) |
118 | 115, 116,
117 | 3eqtr4a 2860 |
. . . . . . 7
⊢ (𝐷 ⊆ 𝐴 → ((𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 0 )) ↾ 𝐷) = ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘)) ↾ 𝐷)) |
119 | 114, 118 | syl 17 |
. . . . . 6
⊢ (𝜑 → ((𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 0 )) ↾ 𝐷) = ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘)) ↾ 𝐷)) |
120 | 112, 119 | eqtr4d 2837 |
. . . . 5
⊢ (𝜑 → (𝐹 ↾ 𝐷) = ((𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 0 )) ↾ 𝐷)) |
121 | 120 | oveq2d 6895 |
. . . 4
⊢ (𝜑 → (𝐺 Σg (𝐹 ↾ 𝐷)) = (𝐺 Σg ((𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 0 )) ↾ 𝐷))) |
122 | 86 | fmpttd 6612 |
. . . . 5
⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 0 )):𝐴⟶𝐵) |
123 | 39 | frnd 6264 |
. . . . . 6
⊢ (𝜑 → ran (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 0 )) ⊆
((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) |
124 | 4 | cntzidss 18081 |
. . . . . 6
⊢
((((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ⊆ (𝑍‘((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) ∧ ran (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 0 )) ⊆
((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) → ran (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 0 )) ⊆ (𝑍‘ran (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 0 )))) |
125 | 26, 123, 124 | syl2anc 580 |
. . . . 5
⊢ (𝜑 → ran (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 0 )) ⊆ (𝑍‘ran (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 0 )))) |
126 | | eldifn 3932 |
. . . . . . . 8
⊢ (𝑘 ∈ (𝐴 ∖ 𝐷) → ¬ 𝑘 ∈ 𝐷) |
127 | 126 | adantl 474 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ 𝐷)) → ¬ 𝑘 ∈ 𝐷) |
128 | 127 | iffalsed 4289 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ 𝐷)) → if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 0 ) = 0 ) |
129 | 128, 6 | suppss2 7568 |
. . . . 5
⊢ (𝜑 → ((𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 0 )) supp 0 ) ⊆ 𝐷) |
130 | 1, 2, 4, 5, 6, 122, 125, 129, 12 | gsumzres 18624 |
. . . 4
⊢ (𝜑 → (𝐺 Σg ((𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 0 )) ↾ 𝐷)) = (𝐺 Σg (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 0 )))) |
131 | 121, 130 | eqtrd 2834 |
. . 3
⊢ (𝜑 → (𝐺 Σg (𝐹 ↾ 𝐷)) = (𝐺 Σg (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 0 )))) |
132 | 111, 131 | oveq12d 6897 |
. 2
⊢ (𝜑 → ((𝐺 Σg (𝐹 ↾ 𝐶)) + (𝐺 Σg (𝐹 ↾ 𝐷))) = ((𝐺 Σg (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐶, (𝐹‘𝑘), 0 ))) + (𝐺 Σg (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 0 ))))) |
133 | 40, 91, 132 | 3eqtr4d 2844 |
1
⊢ (𝜑 → (𝐺 Σg 𝐹) = ((𝐺 Σg (𝐹 ↾ 𝐶)) + (𝐺 Σg (𝐹 ↾ 𝐷)))) |