MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumzsplit Structured version   Visualization version   GIF version

Theorem gsumzsplit 18969
Description: Split a group sum into two parts. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 5-Jun-2019.)
Hypotheses
Ref Expression
gsumzsplit.b 𝐵 = (Base‘𝐺)
gsumzsplit.0 0 = (0g𝐺)
gsumzsplit.p + = (+g𝐺)
gsumzsplit.z 𝑍 = (Cntz‘𝐺)
gsumzsplit.g (𝜑𝐺 ∈ Mnd)
gsumzsplit.a (𝜑𝐴𝑉)
gsumzsplit.f (𝜑𝐹:𝐴𝐵)
gsumzsplit.c (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
gsumzsplit.w (𝜑𝐹 finSupp 0 )
gsumzsplit.i (𝜑 → (𝐶𝐷) = ∅)
gsumzsplit.u (𝜑𝐴 = (𝐶𝐷))
Assertion
Ref Expression
gsumzsplit (𝜑 → (𝐺 Σg 𝐹) = ((𝐺 Σg (𝐹𝐶)) + (𝐺 Σg (𝐹𝐷))))

Proof of Theorem gsumzsplit
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 gsumzsplit.b . . 3 𝐵 = (Base‘𝐺)
2 gsumzsplit.0 . . 3 0 = (0g𝐺)
3 gsumzsplit.p . . 3 + = (+g𝐺)
4 gsumzsplit.z . . 3 𝑍 = (Cntz‘𝐺)
5 gsumzsplit.g . . 3 (𝜑𝐺 ∈ Mnd)
6 gsumzsplit.a . . 3 (𝜑𝐴𝑉)
7 gsumzsplit.f . . . 4 (𝜑𝐹:𝐴𝐵)
82fvexi 6680 . . . . 5 0 ∈ V
98a1i 11 . . . 4 (𝜑0 ∈ V)
10 gsumzsplit.w . . . 4 (𝜑𝐹 finSupp 0 )
117, 6, 9, 10fsuppmptif 8855 . . 3 (𝜑 → (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )) finSupp 0 )
127, 6, 9, 10fsuppmptif 8855 . . 3 (𝜑 → (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )) finSupp 0 )
131submacs 17976 . . . . 5 (𝐺 ∈ Mnd → (SubMnd‘𝐺) ∈ (ACS‘𝐵))
14 acsmre 16915 . . . . 5 ((SubMnd‘𝐺) ∈ (ACS‘𝐵) → (SubMnd‘𝐺) ∈ (Moore‘𝐵))
155, 13, 143syl 18 . . . 4 (𝜑 → (SubMnd‘𝐺) ∈ (Moore‘𝐵))
167frnd 6517 . . . 4 (𝜑 → ran 𝐹𝐵)
17 eqid 2824 . . . . 5 (mrCls‘(SubMnd‘𝐺)) = (mrCls‘(SubMnd‘𝐺))
1817mrccl 16874 . . . 4 (((SubMnd‘𝐺) ∈ (Moore‘𝐵) ∧ ran 𝐹𝐵) → ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ∈ (SubMnd‘𝐺))
1915, 16, 18syl2anc 584 . . 3 (𝜑 → ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ∈ (SubMnd‘𝐺))
20 gsumzsplit.c . . . . 5 (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
21 eqid 2824 . . . . . 6 (𝐺s ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) = (𝐺s ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))
224, 17, 21cntzspan 18886 . . . . 5 ((𝐺 ∈ Mnd ∧ ran 𝐹 ⊆ (𝑍‘ran 𝐹)) → (𝐺s ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) ∈ CMnd)
235, 20, 22syl2anc 584 . . . 4 (𝜑 → (𝐺s ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) ∈ CMnd)
2421, 4submcmn2 18881 . . . . 5 (((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ∈ (SubMnd‘𝐺) → ((𝐺s ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) ∈ CMnd ↔ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ⊆ (𝑍‘((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))))
2519, 24syl 17 . . . 4 (𝜑 → ((𝐺s ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) ∈ CMnd ↔ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ⊆ (𝑍‘((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))))
2623, 25mpbid 233 . . 3 (𝜑 → ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ⊆ (𝑍‘((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)))
2715, 17, 16mrcssidd 16888 . . . . . . 7 (𝜑 → ran 𝐹 ⊆ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))
2827adantr 481 . . . . . 6 ((𝜑𝑘𝐴) → ran 𝐹 ⊆ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))
297ffnd 6511 . . . . . . 7 (𝜑𝐹 Fn 𝐴)
30 fnfvelrn 6843 . . . . . . 7 ((𝐹 Fn 𝐴𝑘𝐴) → (𝐹𝑘) ∈ ran 𝐹)
3129, 30sylan 580 . . . . . 6 ((𝜑𝑘𝐴) → (𝐹𝑘) ∈ ran 𝐹)
3228, 31sseldd 3971 . . . . 5 ((𝜑𝑘𝐴) → (𝐹𝑘) ∈ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))
332subm0cl 17963 . . . . . . 7 (((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ∈ (SubMnd‘𝐺) → 0 ∈ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))
3419, 33syl 17 . . . . . 6 (𝜑0 ∈ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))
3534adantr 481 . . . . 5 ((𝜑𝑘𝐴) → 0 ∈ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))
3632, 35ifcld 4514 . . . 4 ((𝜑𝑘𝐴) → if(𝑘𝐶, (𝐹𝑘), 0 ) ∈ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))
3736fmpttd 6874 . . 3 (𝜑 → (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )):𝐴⟶((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))
3832, 35ifcld 4514 . . . 4 ((𝜑𝑘𝐴) → if(𝑘𝐷, (𝐹𝑘), 0 ) ∈ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))
3938fmpttd 6874 . . 3 (𝜑 → (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )):𝐴⟶((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))
401, 2, 3, 4, 5, 6, 11, 12, 19, 26, 37, 39gsumzadd 18964 . 2 (𝜑 → (𝐺 Σg ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )) ∘f + (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )))) = ((𝐺 Σg (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 ))) + (𝐺 Σg (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )))))
417feqmptd 6729 . . . . 5 (𝜑𝐹 = (𝑘𝐴 ↦ (𝐹𝑘)))
42 iftrue 4475 . . . . . . . . . 10 (𝑘𝐶 → if(𝑘𝐶, (𝐹𝑘), 0 ) = (𝐹𝑘))
4342adantl 482 . . . . . . . . 9 (((𝜑𝑘𝐴) ∧ 𝑘𝐶) → if(𝑘𝐶, (𝐹𝑘), 0 ) = (𝐹𝑘))
44 gsumzsplit.i . . . . . . . . . . . . . . 15 (𝜑 → (𝐶𝐷) = ∅)
45 noel 4299 . . . . . . . . . . . . . . . 16 ¬ 𝑘 ∈ ∅
46 eleq2 2905 . . . . . . . . . . . . . . . 16 ((𝐶𝐷) = ∅ → (𝑘 ∈ (𝐶𝐷) ↔ 𝑘 ∈ ∅))
4745, 46mtbiri 328 . . . . . . . . . . . . . . 15 ((𝐶𝐷) = ∅ → ¬ 𝑘 ∈ (𝐶𝐷))
4844, 47syl 17 . . . . . . . . . . . . . 14 (𝜑 → ¬ 𝑘 ∈ (𝐶𝐷))
4948adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑘𝐴) → ¬ 𝑘 ∈ (𝐶𝐷))
50 elin 4172 . . . . . . . . . . . . 13 (𝑘 ∈ (𝐶𝐷) ↔ (𝑘𝐶𝑘𝐷))
5149, 50sylnib 329 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → ¬ (𝑘𝐶𝑘𝐷))
52 imnan 400 . . . . . . . . . . . 12 ((𝑘𝐶 → ¬ 𝑘𝐷) ↔ ¬ (𝑘𝐶𝑘𝐷))
5351, 52sylibr 235 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → (𝑘𝐶 → ¬ 𝑘𝐷))
5453imp 407 . . . . . . . . . 10 (((𝜑𝑘𝐴) ∧ 𝑘𝐶) → ¬ 𝑘𝐷)
5554iffalsed 4480 . . . . . . . . 9 (((𝜑𝑘𝐴) ∧ 𝑘𝐶) → if(𝑘𝐷, (𝐹𝑘), 0 ) = 0 )
5643, 55oveq12d 7169 . . . . . . . 8 (((𝜑𝑘𝐴) ∧ 𝑘𝐶) → (if(𝑘𝐶, (𝐹𝑘), 0 ) + if(𝑘𝐷, (𝐹𝑘), 0 )) = ((𝐹𝑘) + 0 ))
577ffvelrnda 6846 . . . . . . . . . 10 ((𝜑𝑘𝐴) → (𝐹𝑘) ∈ 𝐵)
581, 3, 2mndrid 17922 . . . . . . . . . 10 ((𝐺 ∈ Mnd ∧ (𝐹𝑘) ∈ 𝐵) → ((𝐹𝑘) + 0 ) = (𝐹𝑘))
595, 57, 58syl2an2r 681 . . . . . . . . 9 ((𝜑𝑘𝐴) → ((𝐹𝑘) + 0 ) = (𝐹𝑘))
6059adantr 481 . . . . . . . 8 (((𝜑𝑘𝐴) ∧ 𝑘𝐶) → ((𝐹𝑘) + 0 ) = (𝐹𝑘))
6156, 60eqtrd 2860 . . . . . . 7 (((𝜑𝑘𝐴) ∧ 𝑘𝐶) → (if(𝑘𝐶, (𝐹𝑘), 0 ) + if(𝑘𝐷, (𝐹𝑘), 0 )) = (𝐹𝑘))
6253con2d 136 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → (𝑘𝐷 → ¬ 𝑘𝐶))
6362imp 407 . . . . . . . . . 10 (((𝜑𝑘𝐴) ∧ 𝑘𝐷) → ¬ 𝑘𝐶)
6463iffalsed 4480 . . . . . . . . 9 (((𝜑𝑘𝐴) ∧ 𝑘𝐷) → if(𝑘𝐶, (𝐹𝑘), 0 ) = 0 )
65 iftrue 4475 . . . . . . . . . 10 (𝑘𝐷 → if(𝑘𝐷, (𝐹𝑘), 0 ) = (𝐹𝑘))
6665adantl 482 . . . . . . . . 9 (((𝜑𝑘𝐴) ∧ 𝑘𝐷) → if(𝑘𝐷, (𝐹𝑘), 0 ) = (𝐹𝑘))
6764, 66oveq12d 7169 . . . . . . . 8 (((𝜑𝑘𝐴) ∧ 𝑘𝐷) → (if(𝑘𝐶, (𝐹𝑘), 0 ) + if(𝑘𝐷, (𝐹𝑘), 0 )) = ( 0 + (𝐹𝑘)))
681, 3, 2mndlid 17921 . . . . . . . . . 10 ((𝐺 ∈ Mnd ∧ (𝐹𝑘) ∈ 𝐵) → ( 0 + (𝐹𝑘)) = (𝐹𝑘))
695, 57, 68syl2an2r 681 . . . . . . . . 9 ((𝜑𝑘𝐴) → ( 0 + (𝐹𝑘)) = (𝐹𝑘))
7069adantr 481 . . . . . . . 8 (((𝜑𝑘𝐴) ∧ 𝑘𝐷) → ( 0 + (𝐹𝑘)) = (𝐹𝑘))
7167, 70eqtrd 2860 . . . . . . 7 (((𝜑𝑘𝐴) ∧ 𝑘𝐷) → (if(𝑘𝐶, (𝐹𝑘), 0 ) + if(𝑘𝐷, (𝐹𝑘), 0 )) = (𝐹𝑘))
72 gsumzsplit.u . . . . . . . . . 10 (𝜑𝐴 = (𝐶𝐷))
7372eleq2d 2902 . . . . . . . . 9 (𝜑 → (𝑘𝐴𝑘 ∈ (𝐶𝐷)))
74 elun 4128 . . . . . . . . 9 (𝑘 ∈ (𝐶𝐷) ↔ (𝑘𝐶𝑘𝐷))
7573, 74syl6bb 288 . . . . . . . 8 (𝜑 → (𝑘𝐴 ↔ (𝑘𝐶𝑘𝐷)))
7675biimpa 477 . . . . . . 7 ((𝜑𝑘𝐴) → (𝑘𝐶𝑘𝐷))
7761, 71, 76mpjaodan 954 . . . . . 6 ((𝜑𝑘𝐴) → (if(𝑘𝐶, (𝐹𝑘), 0 ) + if(𝑘𝐷, (𝐹𝑘), 0 )) = (𝐹𝑘))
7877mpteq2dva 5157 . . . . 5 (𝜑 → (𝑘𝐴 ↦ (if(𝑘𝐶, (𝐹𝑘), 0 ) + if(𝑘𝐷, (𝐹𝑘), 0 ))) = (𝑘𝐴 ↦ (𝐹𝑘)))
7941, 78eqtr4d 2863 . . . 4 (𝜑𝐹 = (𝑘𝐴 ↦ (if(𝑘𝐶, (𝐹𝑘), 0 ) + if(𝑘𝐷, (𝐹𝑘), 0 ))))
801, 2mndidcl 17916 . . . . . . . 8 (𝐺 ∈ Mnd → 0𝐵)
815, 80syl 17 . . . . . . 7 (𝜑0𝐵)
8281adantr 481 . . . . . 6 ((𝜑𝑘𝐴) → 0𝐵)
8357, 82ifcld 4514 . . . . 5 ((𝜑𝑘𝐴) → if(𝑘𝐶, (𝐹𝑘), 0 ) ∈ 𝐵)
8457, 82ifcld 4514 . . . . 5 ((𝜑𝑘𝐴) → if(𝑘𝐷, (𝐹𝑘), 0 ) ∈ 𝐵)
85 eqidd 2825 . . . . 5 (𝜑 → (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )) = (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )))
86 eqidd 2825 . . . . 5 (𝜑 → (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )) = (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )))
876, 83, 84, 85, 86offval2 7419 . . . 4 (𝜑 → ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )) ∘f + (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 ))) = (𝑘𝐴 ↦ (if(𝑘𝐶, (𝐹𝑘), 0 ) + if(𝑘𝐷, (𝐹𝑘), 0 ))))
8879, 87eqtr4d 2863 . . 3 (𝜑𝐹 = ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )) ∘f + (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 ))))
8988oveq2d 7167 . 2 (𝜑 → (𝐺 Σg 𝐹) = (𝐺 Σg ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )) ∘f + (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )))))
9041reseq1d 5850 . . . . . 6 (𝜑 → (𝐹𝐶) = ((𝑘𝐴 ↦ (𝐹𝑘)) ↾ 𝐶))
91 ssun1 4151 . . . . . . . 8 𝐶 ⊆ (𝐶𝐷)
9291, 72sseqtrrid 4023 . . . . . . 7 (𝜑𝐶𝐴)
9342mpteq2ia 5153 . . . . . . . 8 (𝑘𝐶 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )) = (𝑘𝐶 ↦ (𝐹𝑘))
94 resmpt 5903 . . . . . . . 8 (𝐶𝐴 → ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )) ↾ 𝐶) = (𝑘𝐶 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )))
95 resmpt 5903 . . . . . . . 8 (𝐶𝐴 → ((𝑘𝐴 ↦ (𝐹𝑘)) ↾ 𝐶) = (𝑘𝐶 ↦ (𝐹𝑘)))
9693, 94, 953eqtr4a 2886 . . . . . . 7 (𝐶𝐴 → ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )) ↾ 𝐶) = ((𝑘𝐴 ↦ (𝐹𝑘)) ↾ 𝐶))
9792, 96syl 17 . . . . . 6 (𝜑 → ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )) ↾ 𝐶) = ((𝑘𝐴 ↦ (𝐹𝑘)) ↾ 𝐶))
9890, 97eqtr4d 2863 . . . . 5 (𝜑 → (𝐹𝐶) = ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )) ↾ 𝐶))
9998oveq2d 7167 . . . 4 (𝜑 → (𝐺 Σg (𝐹𝐶)) = (𝐺 Σg ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )) ↾ 𝐶)))
10083fmpttd 6874 . . . . 5 (𝜑 → (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )):𝐴𝐵)
10137frnd 6517 . . . . . 6 (𝜑 → ran (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )) ⊆ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))
1024cntzidss 18400 . . . . . 6 ((((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ⊆ (𝑍‘((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) ∧ ran (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )) ⊆ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) → ran (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )) ⊆ (𝑍‘ran (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 ))))
10326, 101, 102syl2anc 584 . . . . 5 (𝜑 → ran (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )) ⊆ (𝑍‘ran (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 ))))
104 eldifn 4107 . . . . . . . 8 (𝑘 ∈ (𝐴𝐶) → ¬ 𝑘𝐶)
105104adantl 482 . . . . . . 7 ((𝜑𝑘 ∈ (𝐴𝐶)) → ¬ 𝑘𝐶)
106105iffalsed 4480 . . . . . 6 ((𝜑𝑘 ∈ (𝐴𝐶)) → if(𝑘𝐶, (𝐹𝑘), 0 ) = 0 )
107106, 6suppss2 7858 . . . . 5 (𝜑 → ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )) supp 0 ) ⊆ 𝐶)
1081, 2, 4, 5, 6, 100, 103, 107, 11gsumzres 18951 . . . 4 (𝜑 → (𝐺 Σg ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )) ↾ 𝐶)) = (𝐺 Σg (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 ))))
10999, 108eqtrd 2860 . . 3 (𝜑 → (𝐺 Σg (𝐹𝐶)) = (𝐺 Σg (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 ))))
11041reseq1d 5850 . . . . . 6 (𝜑 → (𝐹𝐷) = ((𝑘𝐴 ↦ (𝐹𝑘)) ↾ 𝐷))
111 ssun2 4152 . . . . . . . 8 𝐷 ⊆ (𝐶𝐷)
112111, 72sseqtrrid 4023 . . . . . . 7 (𝜑𝐷𝐴)
11365mpteq2ia 5153 . . . . . . . 8 (𝑘𝐷 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )) = (𝑘𝐷 ↦ (𝐹𝑘))
114 resmpt 5903 . . . . . . . 8 (𝐷𝐴 → ((𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )) ↾ 𝐷) = (𝑘𝐷 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )))
115 resmpt 5903 . . . . . . . 8 (𝐷𝐴 → ((𝑘𝐴 ↦ (𝐹𝑘)) ↾ 𝐷) = (𝑘𝐷 ↦ (𝐹𝑘)))
116113, 114, 1153eqtr4a 2886 . . . . . . 7 (𝐷𝐴 → ((𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )) ↾ 𝐷) = ((𝑘𝐴 ↦ (𝐹𝑘)) ↾ 𝐷))
117112, 116syl 17 . . . . . 6 (𝜑 → ((𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )) ↾ 𝐷) = ((𝑘𝐴 ↦ (𝐹𝑘)) ↾ 𝐷))
118110, 117eqtr4d 2863 . . . . 5 (𝜑 → (𝐹𝐷) = ((𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )) ↾ 𝐷))
119118oveq2d 7167 . . . 4 (𝜑 → (𝐺 Σg (𝐹𝐷)) = (𝐺 Σg ((𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )) ↾ 𝐷)))
12084fmpttd 6874 . . . . 5 (𝜑 → (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )):𝐴𝐵)
12139frnd 6517 . . . . . 6 (𝜑 → ran (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )) ⊆ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))
1224cntzidss 18400 . . . . . 6 ((((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ⊆ (𝑍‘((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) ∧ ran (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )) ⊆ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) → ran (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )) ⊆ (𝑍‘ran (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 ))))
12326, 121, 122syl2anc 584 . . . . 5 (𝜑 → ran (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )) ⊆ (𝑍‘ran (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 ))))
124 eldifn 4107 . . . . . . . 8 (𝑘 ∈ (𝐴𝐷) → ¬ 𝑘𝐷)
125124adantl 482 . . . . . . 7 ((𝜑𝑘 ∈ (𝐴𝐷)) → ¬ 𝑘𝐷)
126125iffalsed 4480 . . . . . 6 ((𝜑𝑘 ∈ (𝐴𝐷)) → if(𝑘𝐷, (𝐹𝑘), 0 ) = 0 )
127126, 6suppss2 7858 . . . . 5 (𝜑 → ((𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )) supp 0 ) ⊆ 𝐷)
1281, 2, 4, 5, 6, 120, 123, 127, 12gsumzres 18951 . . . 4 (𝜑 → (𝐺 Σg ((𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )) ↾ 𝐷)) = (𝐺 Σg (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 ))))
129119, 128eqtrd 2860 . . 3 (𝜑 → (𝐺 Σg (𝐹𝐷)) = (𝐺 Σg (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 ))))
130109, 129oveq12d 7169 . 2 (𝜑 → ((𝐺 Σg (𝐹𝐶)) + (𝐺 Σg (𝐹𝐷))) = ((𝐺 Σg (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 ))) + (𝐺 Σg (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )))))
13140, 89, 1303eqtr4d 2870 1 (𝜑 → (𝐺 Σg 𝐹) = ((𝐺 Σg (𝐹𝐶)) + (𝐺 Σg (𝐹𝐷))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  wo 843   = wceq 1530  wcel 2106  Vcvv 3499  cdif 3936  cun 3937  cin 3938  wss 3939  c0 4294  ifcif 4469   class class class wbr 5062  cmpt 5142  ran crn 5554  cres 5555   Fn wfn 6346  wf 6347  cfv 6351  (class class class)co 7151  f cof 7400   finSupp cfsupp 8825  Basecbs 16475  s cress 16476  +gcplusg 16557  0gc0g 16705   Σg cgsu 16706  Moorecmre 16845  mrClscmrc 16846  ACScacs 16848  Mndcmnd 17902  SubMndcsubmnd 17945  Cntzccntz 18377  CMndccmn 18828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2152  ax-12 2167  ax-ext 2796  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2615  df-eu 2649  df-clab 2803  df-cleq 2817  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-int 4874  df-iun 4918  df-iin 4919  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-se 5513  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-isom 6360  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-of 7402  df-om 7572  df-1st 7683  df-2nd 7684  df-supp 7825  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8282  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-fsupp 8826  df-oi 8966  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-n0 11890  df-z 11974  df-uz 12236  df-fz 12886  df-fzo 13027  df-seq 13363  df-hash 13684  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-0g 16707  df-gsum 16708  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17892  df-mnd 17903  df-submnd 17947  df-cntz 18379  df-cmn 18830
This theorem is referenced by:  gsumsplit  18970  gsumzunsnd  18998  dpjidcl  19102
  Copyright terms: Public domain W3C validator