MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumzsplit Structured version   Visualization version   GIF version

Theorem gsumzsplit 19945
Description: Split a group sum into two parts. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 5-Jun-2019.)
Hypotheses
Ref Expression
gsumzsplit.b 𝐵 = (Base‘𝐺)
gsumzsplit.0 0 = (0g𝐺)
gsumzsplit.p + = (+g𝐺)
gsumzsplit.z 𝑍 = (Cntz‘𝐺)
gsumzsplit.g (𝜑𝐺 ∈ Mnd)
gsumzsplit.a (𝜑𝐴𝑉)
gsumzsplit.f (𝜑𝐹:𝐴𝐵)
gsumzsplit.c (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
gsumzsplit.w (𝜑𝐹 finSupp 0 )
gsumzsplit.i (𝜑 → (𝐶𝐷) = ∅)
gsumzsplit.u (𝜑𝐴 = (𝐶𝐷))
Assertion
Ref Expression
gsumzsplit (𝜑 → (𝐺 Σg 𝐹) = ((𝐺 Σg (𝐹𝐶)) + (𝐺 Σg (𝐹𝐷))))

Proof of Theorem gsumzsplit
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 gsumzsplit.b . . 3 𝐵 = (Base‘𝐺)
2 gsumzsplit.0 . . 3 0 = (0g𝐺)
3 gsumzsplit.p . . 3 + = (+g𝐺)
4 gsumzsplit.z . . 3 𝑍 = (Cntz‘𝐺)
5 gsumzsplit.g . . 3 (𝜑𝐺 ∈ Mnd)
6 gsumzsplit.a . . 3 (𝜑𝐴𝑉)
7 gsumzsplit.f . . . 4 (𝜑𝐹:𝐴𝐵)
82fvexi 6920 . . . . 5 0 ∈ V
98a1i 11 . . . 4 (𝜑0 ∈ V)
10 gsumzsplit.w . . . 4 (𝜑𝐹 finSupp 0 )
117, 6, 9, 10fsuppmptif 9439 . . 3 (𝜑 → (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )) finSupp 0 )
127, 6, 9, 10fsuppmptif 9439 . . 3 (𝜑 → (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )) finSupp 0 )
131submacs 18840 . . . . 5 (𝐺 ∈ Mnd → (SubMnd‘𝐺) ∈ (ACS‘𝐵))
14 acsmre 17695 . . . . 5 ((SubMnd‘𝐺) ∈ (ACS‘𝐵) → (SubMnd‘𝐺) ∈ (Moore‘𝐵))
155, 13, 143syl 18 . . . 4 (𝜑 → (SubMnd‘𝐺) ∈ (Moore‘𝐵))
167frnd 6744 . . . 4 (𝜑 → ran 𝐹𝐵)
17 eqid 2737 . . . . 5 (mrCls‘(SubMnd‘𝐺)) = (mrCls‘(SubMnd‘𝐺))
1817mrccl 17654 . . . 4 (((SubMnd‘𝐺) ∈ (Moore‘𝐵) ∧ ran 𝐹𝐵) → ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ∈ (SubMnd‘𝐺))
1915, 16, 18syl2anc 584 . . 3 (𝜑 → ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ∈ (SubMnd‘𝐺))
20 gsumzsplit.c . . . . 5 (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
21 eqid 2737 . . . . . 6 (𝐺s ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) = (𝐺s ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))
224, 17, 21cntzspan 19862 . . . . 5 ((𝐺 ∈ Mnd ∧ ran 𝐹 ⊆ (𝑍‘ran 𝐹)) → (𝐺s ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) ∈ CMnd)
235, 20, 22syl2anc 584 . . . 4 (𝜑 → (𝐺s ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) ∈ CMnd)
2421, 4submcmn2 19857 . . . . 5 (((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ∈ (SubMnd‘𝐺) → ((𝐺s ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) ∈ CMnd ↔ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ⊆ (𝑍‘((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))))
2519, 24syl 17 . . . 4 (𝜑 → ((𝐺s ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) ∈ CMnd ↔ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ⊆ (𝑍‘((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))))
2623, 25mpbid 232 . . 3 (𝜑 → ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ⊆ (𝑍‘((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)))
2715, 17, 16mrcssidd 17668 . . . . . . 7 (𝜑 → ran 𝐹 ⊆ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))
2827adantr 480 . . . . . 6 ((𝜑𝑘𝐴) → ran 𝐹 ⊆ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))
297ffnd 6737 . . . . . . 7 (𝜑𝐹 Fn 𝐴)
30 fnfvelrn 7100 . . . . . . 7 ((𝐹 Fn 𝐴𝑘𝐴) → (𝐹𝑘) ∈ ran 𝐹)
3129, 30sylan 580 . . . . . 6 ((𝜑𝑘𝐴) → (𝐹𝑘) ∈ ran 𝐹)
3228, 31sseldd 3984 . . . . 5 ((𝜑𝑘𝐴) → (𝐹𝑘) ∈ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))
332subm0cl 18824 . . . . . . 7 (((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ∈ (SubMnd‘𝐺) → 0 ∈ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))
3419, 33syl 17 . . . . . 6 (𝜑0 ∈ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))
3534adantr 480 . . . . 5 ((𝜑𝑘𝐴) → 0 ∈ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))
3632, 35ifcld 4572 . . . 4 ((𝜑𝑘𝐴) → if(𝑘𝐶, (𝐹𝑘), 0 ) ∈ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))
3736fmpttd 7135 . . 3 (𝜑 → (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )):𝐴⟶((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))
3832, 35ifcld 4572 . . . 4 ((𝜑𝑘𝐴) → if(𝑘𝐷, (𝐹𝑘), 0 ) ∈ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))
3938fmpttd 7135 . . 3 (𝜑 → (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )):𝐴⟶((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))
401, 2, 3, 4, 5, 6, 11, 12, 19, 26, 37, 39gsumzadd 19940 . 2 (𝜑 → (𝐺 Σg ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )) ∘f + (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )))) = ((𝐺 Σg (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 ))) + (𝐺 Σg (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )))))
417feqmptd 6977 . . . . 5 (𝜑𝐹 = (𝑘𝐴 ↦ (𝐹𝑘)))
42 iftrue 4531 . . . . . . . . . 10 (𝑘𝐶 → if(𝑘𝐶, (𝐹𝑘), 0 ) = (𝐹𝑘))
4342adantl 481 . . . . . . . . 9 (((𝜑𝑘𝐴) ∧ 𝑘𝐶) → if(𝑘𝐶, (𝐹𝑘), 0 ) = (𝐹𝑘))
44 gsumzsplit.i . . . . . . . . . . . . . . 15 (𝜑 → (𝐶𝐷) = ∅)
45 noel 4338 . . . . . . . . . . . . . . . 16 ¬ 𝑘 ∈ ∅
46 eleq2 2830 . . . . . . . . . . . . . . . 16 ((𝐶𝐷) = ∅ → (𝑘 ∈ (𝐶𝐷) ↔ 𝑘 ∈ ∅))
4745, 46mtbiri 327 . . . . . . . . . . . . . . 15 ((𝐶𝐷) = ∅ → ¬ 𝑘 ∈ (𝐶𝐷))
4844, 47syl 17 . . . . . . . . . . . . . 14 (𝜑 → ¬ 𝑘 ∈ (𝐶𝐷))
4948adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑘𝐴) → ¬ 𝑘 ∈ (𝐶𝐷))
50 elin 3967 . . . . . . . . . . . . 13 (𝑘 ∈ (𝐶𝐷) ↔ (𝑘𝐶𝑘𝐷))
5149, 50sylnib 328 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → ¬ (𝑘𝐶𝑘𝐷))
52 imnan 399 . . . . . . . . . . . 12 ((𝑘𝐶 → ¬ 𝑘𝐷) ↔ ¬ (𝑘𝐶𝑘𝐷))
5351, 52sylibr 234 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → (𝑘𝐶 → ¬ 𝑘𝐷))
5453imp 406 . . . . . . . . . 10 (((𝜑𝑘𝐴) ∧ 𝑘𝐶) → ¬ 𝑘𝐷)
5554iffalsed 4536 . . . . . . . . 9 (((𝜑𝑘𝐴) ∧ 𝑘𝐶) → if(𝑘𝐷, (𝐹𝑘), 0 ) = 0 )
5643, 55oveq12d 7449 . . . . . . . 8 (((𝜑𝑘𝐴) ∧ 𝑘𝐶) → (if(𝑘𝐶, (𝐹𝑘), 0 ) + if(𝑘𝐷, (𝐹𝑘), 0 )) = ((𝐹𝑘) + 0 ))
577ffvelcdmda 7104 . . . . . . . . . 10 ((𝜑𝑘𝐴) → (𝐹𝑘) ∈ 𝐵)
581, 3, 2mndrid 18768 . . . . . . . . . 10 ((𝐺 ∈ Mnd ∧ (𝐹𝑘) ∈ 𝐵) → ((𝐹𝑘) + 0 ) = (𝐹𝑘))
595, 57, 58syl2an2r 685 . . . . . . . . 9 ((𝜑𝑘𝐴) → ((𝐹𝑘) + 0 ) = (𝐹𝑘))
6059adantr 480 . . . . . . . 8 (((𝜑𝑘𝐴) ∧ 𝑘𝐶) → ((𝐹𝑘) + 0 ) = (𝐹𝑘))
6156, 60eqtrd 2777 . . . . . . 7 (((𝜑𝑘𝐴) ∧ 𝑘𝐶) → (if(𝑘𝐶, (𝐹𝑘), 0 ) + if(𝑘𝐷, (𝐹𝑘), 0 )) = (𝐹𝑘))
6253con2d 134 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → (𝑘𝐷 → ¬ 𝑘𝐶))
6362imp 406 . . . . . . . . . 10 (((𝜑𝑘𝐴) ∧ 𝑘𝐷) → ¬ 𝑘𝐶)
6463iffalsed 4536 . . . . . . . . 9 (((𝜑𝑘𝐴) ∧ 𝑘𝐷) → if(𝑘𝐶, (𝐹𝑘), 0 ) = 0 )
65 iftrue 4531 . . . . . . . . . 10 (𝑘𝐷 → if(𝑘𝐷, (𝐹𝑘), 0 ) = (𝐹𝑘))
6665adantl 481 . . . . . . . . 9 (((𝜑𝑘𝐴) ∧ 𝑘𝐷) → if(𝑘𝐷, (𝐹𝑘), 0 ) = (𝐹𝑘))
6764, 66oveq12d 7449 . . . . . . . 8 (((𝜑𝑘𝐴) ∧ 𝑘𝐷) → (if(𝑘𝐶, (𝐹𝑘), 0 ) + if(𝑘𝐷, (𝐹𝑘), 0 )) = ( 0 + (𝐹𝑘)))
681, 3, 2mndlid 18767 . . . . . . . . . 10 ((𝐺 ∈ Mnd ∧ (𝐹𝑘) ∈ 𝐵) → ( 0 + (𝐹𝑘)) = (𝐹𝑘))
695, 57, 68syl2an2r 685 . . . . . . . . 9 ((𝜑𝑘𝐴) → ( 0 + (𝐹𝑘)) = (𝐹𝑘))
7069adantr 480 . . . . . . . 8 (((𝜑𝑘𝐴) ∧ 𝑘𝐷) → ( 0 + (𝐹𝑘)) = (𝐹𝑘))
7167, 70eqtrd 2777 . . . . . . 7 (((𝜑𝑘𝐴) ∧ 𝑘𝐷) → (if(𝑘𝐶, (𝐹𝑘), 0 ) + if(𝑘𝐷, (𝐹𝑘), 0 )) = (𝐹𝑘))
72 gsumzsplit.u . . . . . . . . . 10 (𝜑𝐴 = (𝐶𝐷))
7372eleq2d 2827 . . . . . . . . 9 (𝜑 → (𝑘𝐴𝑘 ∈ (𝐶𝐷)))
74 elun 4153 . . . . . . . . 9 (𝑘 ∈ (𝐶𝐷) ↔ (𝑘𝐶𝑘𝐷))
7573, 74bitrdi 287 . . . . . . . 8 (𝜑 → (𝑘𝐴 ↔ (𝑘𝐶𝑘𝐷)))
7675biimpa 476 . . . . . . 7 ((𝜑𝑘𝐴) → (𝑘𝐶𝑘𝐷))
7761, 71, 76mpjaodan 961 . . . . . 6 ((𝜑𝑘𝐴) → (if(𝑘𝐶, (𝐹𝑘), 0 ) + if(𝑘𝐷, (𝐹𝑘), 0 )) = (𝐹𝑘))
7877mpteq2dva 5242 . . . . 5 (𝜑 → (𝑘𝐴 ↦ (if(𝑘𝐶, (𝐹𝑘), 0 ) + if(𝑘𝐷, (𝐹𝑘), 0 ))) = (𝑘𝐴 ↦ (𝐹𝑘)))
7941, 78eqtr4d 2780 . . . 4 (𝜑𝐹 = (𝑘𝐴 ↦ (if(𝑘𝐶, (𝐹𝑘), 0 ) + if(𝑘𝐷, (𝐹𝑘), 0 ))))
801, 2mndidcl 18762 . . . . . . . 8 (𝐺 ∈ Mnd → 0𝐵)
815, 80syl 17 . . . . . . 7 (𝜑0𝐵)
8281adantr 480 . . . . . 6 ((𝜑𝑘𝐴) → 0𝐵)
8357, 82ifcld 4572 . . . . 5 ((𝜑𝑘𝐴) → if(𝑘𝐶, (𝐹𝑘), 0 ) ∈ 𝐵)
8457, 82ifcld 4572 . . . . 5 ((𝜑𝑘𝐴) → if(𝑘𝐷, (𝐹𝑘), 0 ) ∈ 𝐵)
85 eqidd 2738 . . . . 5 (𝜑 → (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )) = (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )))
86 eqidd 2738 . . . . 5 (𝜑 → (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )) = (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )))
876, 83, 84, 85, 86offval2 7717 . . . 4 (𝜑 → ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )) ∘f + (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 ))) = (𝑘𝐴 ↦ (if(𝑘𝐶, (𝐹𝑘), 0 ) + if(𝑘𝐷, (𝐹𝑘), 0 ))))
8879, 87eqtr4d 2780 . . 3 (𝜑𝐹 = ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )) ∘f + (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 ))))
8988oveq2d 7447 . 2 (𝜑 → (𝐺 Σg 𝐹) = (𝐺 Σg ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )) ∘f + (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )))))
9041reseq1d 5996 . . . . . 6 (𝜑 → (𝐹𝐶) = ((𝑘𝐴 ↦ (𝐹𝑘)) ↾ 𝐶))
91 ssun1 4178 . . . . . . . 8 𝐶 ⊆ (𝐶𝐷)
9291, 72sseqtrrid 4027 . . . . . . 7 (𝜑𝐶𝐴)
9342mpteq2ia 5245 . . . . . . . 8 (𝑘𝐶 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )) = (𝑘𝐶 ↦ (𝐹𝑘))
94 resmpt 6055 . . . . . . . 8 (𝐶𝐴 → ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )) ↾ 𝐶) = (𝑘𝐶 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )))
95 resmpt 6055 . . . . . . . 8 (𝐶𝐴 → ((𝑘𝐴 ↦ (𝐹𝑘)) ↾ 𝐶) = (𝑘𝐶 ↦ (𝐹𝑘)))
9693, 94, 953eqtr4a 2803 . . . . . . 7 (𝐶𝐴 → ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )) ↾ 𝐶) = ((𝑘𝐴 ↦ (𝐹𝑘)) ↾ 𝐶))
9792, 96syl 17 . . . . . 6 (𝜑 → ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )) ↾ 𝐶) = ((𝑘𝐴 ↦ (𝐹𝑘)) ↾ 𝐶))
9890, 97eqtr4d 2780 . . . . 5 (𝜑 → (𝐹𝐶) = ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )) ↾ 𝐶))
9998oveq2d 7447 . . . 4 (𝜑 → (𝐺 Σg (𝐹𝐶)) = (𝐺 Σg ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )) ↾ 𝐶)))
10083fmpttd 7135 . . . . 5 (𝜑 → (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )):𝐴𝐵)
10137frnd 6744 . . . . . 6 (𝜑 → ran (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )) ⊆ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))
1024cntzidss 19358 . . . . . 6 ((((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ⊆ (𝑍‘((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) ∧ ran (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )) ⊆ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) → ran (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )) ⊆ (𝑍‘ran (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 ))))
10326, 101, 102syl2anc 584 . . . . 5 (𝜑 → ran (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )) ⊆ (𝑍‘ran (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 ))))
104 eldifn 4132 . . . . . . . 8 (𝑘 ∈ (𝐴𝐶) → ¬ 𝑘𝐶)
105104adantl 481 . . . . . . 7 ((𝜑𝑘 ∈ (𝐴𝐶)) → ¬ 𝑘𝐶)
106105iffalsed 4536 . . . . . 6 ((𝜑𝑘 ∈ (𝐴𝐶)) → if(𝑘𝐶, (𝐹𝑘), 0 ) = 0 )
107106, 6suppss2 8225 . . . . 5 (𝜑 → ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )) supp 0 ) ⊆ 𝐶)
1081, 2, 4, 5, 6, 100, 103, 107, 11gsumzres 19927 . . . 4 (𝜑 → (𝐺 Σg ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )) ↾ 𝐶)) = (𝐺 Σg (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 ))))
10999, 108eqtrd 2777 . . 3 (𝜑 → (𝐺 Σg (𝐹𝐶)) = (𝐺 Σg (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 ))))
11041reseq1d 5996 . . . . . 6 (𝜑 → (𝐹𝐷) = ((𝑘𝐴 ↦ (𝐹𝑘)) ↾ 𝐷))
111 ssun2 4179 . . . . . . . 8 𝐷 ⊆ (𝐶𝐷)
112111, 72sseqtrrid 4027 . . . . . . 7 (𝜑𝐷𝐴)
11365mpteq2ia 5245 . . . . . . . 8 (𝑘𝐷 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )) = (𝑘𝐷 ↦ (𝐹𝑘))
114 resmpt 6055 . . . . . . . 8 (𝐷𝐴 → ((𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )) ↾ 𝐷) = (𝑘𝐷 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )))
115 resmpt 6055 . . . . . . . 8 (𝐷𝐴 → ((𝑘𝐴 ↦ (𝐹𝑘)) ↾ 𝐷) = (𝑘𝐷 ↦ (𝐹𝑘)))
116113, 114, 1153eqtr4a 2803 . . . . . . 7 (𝐷𝐴 → ((𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )) ↾ 𝐷) = ((𝑘𝐴 ↦ (𝐹𝑘)) ↾ 𝐷))
117112, 116syl 17 . . . . . 6 (𝜑 → ((𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )) ↾ 𝐷) = ((𝑘𝐴 ↦ (𝐹𝑘)) ↾ 𝐷))
118110, 117eqtr4d 2780 . . . . 5 (𝜑 → (𝐹𝐷) = ((𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )) ↾ 𝐷))
119118oveq2d 7447 . . . 4 (𝜑 → (𝐺 Σg (𝐹𝐷)) = (𝐺 Σg ((𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )) ↾ 𝐷)))
12084fmpttd 7135 . . . . 5 (𝜑 → (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )):𝐴𝐵)
12139frnd 6744 . . . . . 6 (𝜑 → ran (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )) ⊆ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))
1224cntzidss 19358 . . . . . 6 ((((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ⊆ (𝑍‘((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) ∧ ran (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )) ⊆ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) → ran (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )) ⊆ (𝑍‘ran (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 ))))
12326, 121, 122syl2anc 584 . . . . 5 (𝜑 → ran (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )) ⊆ (𝑍‘ran (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 ))))
124 eldifn 4132 . . . . . . . 8 (𝑘 ∈ (𝐴𝐷) → ¬ 𝑘𝐷)
125124adantl 481 . . . . . . 7 ((𝜑𝑘 ∈ (𝐴𝐷)) → ¬ 𝑘𝐷)
126125iffalsed 4536 . . . . . 6 ((𝜑𝑘 ∈ (𝐴𝐷)) → if(𝑘𝐷, (𝐹𝑘), 0 ) = 0 )
127126, 6suppss2 8225 . . . . 5 (𝜑 → ((𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )) supp 0 ) ⊆ 𝐷)
1281, 2, 4, 5, 6, 120, 123, 127, 12gsumzres 19927 . . . 4 (𝜑 → (𝐺 Σg ((𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )) ↾ 𝐷)) = (𝐺 Σg (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 ))))
129119, 128eqtrd 2777 . . 3 (𝜑 → (𝐺 Σg (𝐹𝐷)) = (𝐺 Σg (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 ))))
130109, 129oveq12d 7449 . 2 (𝜑 → ((𝐺 Σg (𝐹𝐶)) + (𝐺 Σg (𝐹𝐷))) = ((𝐺 Σg (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 ))) + (𝐺 Σg (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )))))
13140, 89, 1303eqtr4d 2787 1 (𝜑 → (𝐺 Σg 𝐹) = ((𝐺 Σg (𝐹𝐶)) + (𝐺 Σg (𝐹𝐷))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 848   = wceq 1540  wcel 2108  Vcvv 3480  cdif 3948  cun 3949  cin 3950  wss 3951  c0 4333  ifcif 4525   class class class wbr 5143  cmpt 5225  ran crn 5686  cres 5687   Fn wfn 6556  wf 6557  cfv 6561  (class class class)co 7431  f cof 7695   finSupp cfsupp 9401  Basecbs 17247  s cress 17274  +gcplusg 17297  0gc0g 17484   Σg cgsu 17485  Moorecmre 17625  mrClscmrc 17626  ACScacs 17628  Mndcmnd 18747  SubMndcsubmnd 18795  Cntzccntz 19333  CMndccmn 19798
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-fzo 13695  df-seq 14043  df-hash 14370  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-0g 17486  df-gsum 17487  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-cntz 19335  df-cmn 19800
This theorem is referenced by:  gsumsplit  19946  gsumzunsnd  19974  dpjidcl  20078
  Copyright terms: Public domain W3C validator