MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumzsplit Structured version   Visualization version   GIF version

Theorem gsumzsplit 19969
Description: Split a group sum into two parts. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 5-Jun-2019.)
Hypotheses
Ref Expression
gsumzsplit.b 𝐵 = (Base‘𝐺)
gsumzsplit.0 0 = (0g𝐺)
gsumzsplit.p + = (+g𝐺)
gsumzsplit.z 𝑍 = (Cntz‘𝐺)
gsumzsplit.g (𝜑𝐺 ∈ Mnd)
gsumzsplit.a (𝜑𝐴𝑉)
gsumzsplit.f (𝜑𝐹:𝐴𝐵)
gsumzsplit.c (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
gsumzsplit.w (𝜑𝐹 finSupp 0 )
gsumzsplit.i (𝜑 → (𝐶𝐷) = ∅)
gsumzsplit.u (𝜑𝐴 = (𝐶𝐷))
Assertion
Ref Expression
gsumzsplit (𝜑 → (𝐺 Σg 𝐹) = ((𝐺 Σg (𝐹𝐶)) + (𝐺 Σg (𝐹𝐷))))

Proof of Theorem gsumzsplit
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 gsumzsplit.b . . 3 𝐵 = (Base‘𝐺)
2 gsumzsplit.0 . . 3 0 = (0g𝐺)
3 gsumzsplit.p . . 3 + = (+g𝐺)
4 gsumzsplit.z . . 3 𝑍 = (Cntz‘𝐺)
5 gsumzsplit.g . . 3 (𝜑𝐺 ∈ Mnd)
6 gsumzsplit.a . . 3 (𝜑𝐴𝑉)
7 gsumzsplit.f . . . 4 (𝜑𝐹:𝐴𝐵)
82fvexi 6934 . . . . 5 0 ∈ V
98a1i 11 . . . 4 (𝜑0 ∈ V)
10 gsumzsplit.w . . . 4 (𝜑𝐹 finSupp 0 )
117, 6, 9, 10fsuppmptif 9468 . . 3 (𝜑 → (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )) finSupp 0 )
127, 6, 9, 10fsuppmptif 9468 . . 3 (𝜑 → (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )) finSupp 0 )
131submacs 18862 . . . . 5 (𝐺 ∈ Mnd → (SubMnd‘𝐺) ∈ (ACS‘𝐵))
14 acsmre 17710 . . . . 5 ((SubMnd‘𝐺) ∈ (ACS‘𝐵) → (SubMnd‘𝐺) ∈ (Moore‘𝐵))
155, 13, 143syl 18 . . . 4 (𝜑 → (SubMnd‘𝐺) ∈ (Moore‘𝐵))
167frnd 6755 . . . 4 (𝜑 → ran 𝐹𝐵)
17 eqid 2740 . . . . 5 (mrCls‘(SubMnd‘𝐺)) = (mrCls‘(SubMnd‘𝐺))
1817mrccl 17669 . . . 4 (((SubMnd‘𝐺) ∈ (Moore‘𝐵) ∧ ran 𝐹𝐵) → ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ∈ (SubMnd‘𝐺))
1915, 16, 18syl2anc 583 . . 3 (𝜑 → ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ∈ (SubMnd‘𝐺))
20 gsumzsplit.c . . . . 5 (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
21 eqid 2740 . . . . . 6 (𝐺s ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) = (𝐺s ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))
224, 17, 21cntzspan 19886 . . . . 5 ((𝐺 ∈ Mnd ∧ ran 𝐹 ⊆ (𝑍‘ran 𝐹)) → (𝐺s ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) ∈ CMnd)
235, 20, 22syl2anc 583 . . . 4 (𝜑 → (𝐺s ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) ∈ CMnd)
2421, 4submcmn2 19881 . . . . 5 (((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ∈ (SubMnd‘𝐺) → ((𝐺s ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) ∈ CMnd ↔ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ⊆ (𝑍‘((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))))
2519, 24syl 17 . . . 4 (𝜑 → ((𝐺s ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) ∈ CMnd ↔ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ⊆ (𝑍‘((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))))
2623, 25mpbid 232 . . 3 (𝜑 → ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ⊆ (𝑍‘((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)))
2715, 17, 16mrcssidd 17683 . . . . . . 7 (𝜑 → ran 𝐹 ⊆ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))
2827adantr 480 . . . . . 6 ((𝜑𝑘𝐴) → ran 𝐹 ⊆ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))
297ffnd 6748 . . . . . . 7 (𝜑𝐹 Fn 𝐴)
30 fnfvelrn 7114 . . . . . . 7 ((𝐹 Fn 𝐴𝑘𝐴) → (𝐹𝑘) ∈ ran 𝐹)
3129, 30sylan 579 . . . . . 6 ((𝜑𝑘𝐴) → (𝐹𝑘) ∈ ran 𝐹)
3228, 31sseldd 4009 . . . . 5 ((𝜑𝑘𝐴) → (𝐹𝑘) ∈ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))
332subm0cl 18846 . . . . . . 7 (((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ∈ (SubMnd‘𝐺) → 0 ∈ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))
3419, 33syl 17 . . . . . 6 (𝜑0 ∈ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))
3534adantr 480 . . . . 5 ((𝜑𝑘𝐴) → 0 ∈ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))
3632, 35ifcld 4594 . . . 4 ((𝜑𝑘𝐴) → if(𝑘𝐶, (𝐹𝑘), 0 ) ∈ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))
3736fmpttd 7149 . . 3 (𝜑 → (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )):𝐴⟶((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))
3832, 35ifcld 4594 . . . 4 ((𝜑𝑘𝐴) → if(𝑘𝐷, (𝐹𝑘), 0 ) ∈ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))
3938fmpttd 7149 . . 3 (𝜑 → (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )):𝐴⟶((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))
401, 2, 3, 4, 5, 6, 11, 12, 19, 26, 37, 39gsumzadd 19964 . 2 (𝜑 → (𝐺 Σg ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )) ∘f + (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )))) = ((𝐺 Σg (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 ))) + (𝐺 Σg (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )))))
417feqmptd 6990 . . . . 5 (𝜑𝐹 = (𝑘𝐴 ↦ (𝐹𝑘)))
42 iftrue 4554 . . . . . . . . . 10 (𝑘𝐶 → if(𝑘𝐶, (𝐹𝑘), 0 ) = (𝐹𝑘))
4342adantl 481 . . . . . . . . 9 (((𝜑𝑘𝐴) ∧ 𝑘𝐶) → if(𝑘𝐶, (𝐹𝑘), 0 ) = (𝐹𝑘))
44 gsumzsplit.i . . . . . . . . . . . . . . 15 (𝜑 → (𝐶𝐷) = ∅)
45 noel 4360 . . . . . . . . . . . . . . . 16 ¬ 𝑘 ∈ ∅
46 eleq2 2833 . . . . . . . . . . . . . . . 16 ((𝐶𝐷) = ∅ → (𝑘 ∈ (𝐶𝐷) ↔ 𝑘 ∈ ∅))
4745, 46mtbiri 327 . . . . . . . . . . . . . . 15 ((𝐶𝐷) = ∅ → ¬ 𝑘 ∈ (𝐶𝐷))
4844, 47syl 17 . . . . . . . . . . . . . 14 (𝜑 → ¬ 𝑘 ∈ (𝐶𝐷))
4948adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑘𝐴) → ¬ 𝑘 ∈ (𝐶𝐷))
50 elin 3992 . . . . . . . . . . . . 13 (𝑘 ∈ (𝐶𝐷) ↔ (𝑘𝐶𝑘𝐷))
5149, 50sylnib 328 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → ¬ (𝑘𝐶𝑘𝐷))
52 imnan 399 . . . . . . . . . . . 12 ((𝑘𝐶 → ¬ 𝑘𝐷) ↔ ¬ (𝑘𝐶𝑘𝐷))
5351, 52sylibr 234 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → (𝑘𝐶 → ¬ 𝑘𝐷))
5453imp 406 . . . . . . . . . 10 (((𝜑𝑘𝐴) ∧ 𝑘𝐶) → ¬ 𝑘𝐷)
5554iffalsed 4559 . . . . . . . . 9 (((𝜑𝑘𝐴) ∧ 𝑘𝐶) → if(𝑘𝐷, (𝐹𝑘), 0 ) = 0 )
5643, 55oveq12d 7466 . . . . . . . 8 (((𝜑𝑘𝐴) ∧ 𝑘𝐶) → (if(𝑘𝐶, (𝐹𝑘), 0 ) + if(𝑘𝐷, (𝐹𝑘), 0 )) = ((𝐹𝑘) + 0 ))
577ffvelcdmda 7118 . . . . . . . . . 10 ((𝜑𝑘𝐴) → (𝐹𝑘) ∈ 𝐵)
581, 3, 2mndrid 18793 . . . . . . . . . 10 ((𝐺 ∈ Mnd ∧ (𝐹𝑘) ∈ 𝐵) → ((𝐹𝑘) + 0 ) = (𝐹𝑘))
595, 57, 58syl2an2r 684 . . . . . . . . 9 ((𝜑𝑘𝐴) → ((𝐹𝑘) + 0 ) = (𝐹𝑘))
6059adantr 480 . . . . . . . 8 (((𝜑𝑘𝐴) ∧ 𝑘𝐶) → ((𝐹𝑘) + 0 ) = (𝐹𝑘))
6156, 60eqtrd 2780 . . . . . . 7 (((𝜑𝑘𝐴) ∧ 𝑘𝐶) → (if(𝑘𝐶, (𝐹𝑘), 0 ) + if(𝑘𝐷, (𝐹𝑘), 0 )) = (𝐹𝑘))
6253con2d 134 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → (𝑘𝐷 → ¬ 𝑘𝐶))
6362imp 406 . . . . . . . . . 10 (((𝜑𝑘𝐴) ∧ 𝑘𝐷) → ¬ 𝑘𝐶)
6463iffalsed 4559 . . . . . . . . 9 (((𝜑𝑘𝐴) ∧ 𝑘𝐷) → if(𝑘𝐶, (𝐹𝑘), 0 ) = 0 )
65 iftrue 4554 . . . . . . . . . 10 (𝑘𝐷 → if(𝑘𝐷, (𝐹𝑘), 0 ) = (𝐹𝑘))
6665adantl 481 . . . . . . . . 9 (((𝜑𝑘𝐴) ∧ 𝑘𝐷) → if(𝑘𝐷, (𝐹𝑘), 0 ) = (𝐹𝑘))
6764, 66oveq12d 7466 . . . . . . . 8 (((𝜑𝑘𝐴) ∧ 𝑘𝐷) → (if(𝑘𝐶, (𝐹𝑘), 0 ) + if(𝑘𝐷, (𝐹𝑘), 0 )) = ( 0 + (𝐹𝑘)))
681, 3, 2mndlid 18792 . . . . . . . . . 10 ((𝐺 ∈ Mnd ∧ (𝐹𝑘) ∈ 𝐵) → ( 0 + (𝐹𝑘)) = (𝐹𝑘))
695, 57, 68syl2an2r 684 . . . . . . . . 9 ((𝜑𝑘𝐴) → ( 0 + (𝐹𝑘)) = (𝐹𝑘))
7069adantr 480 . . . . . . . 8 (((𝜑𝑘𝐴) ∧ 𝑘𝐷) → ( 0 + (𝐹𝑘)) = (𝐹𝑘))
7167, 70eqtrd 2780 . . . . . . 7 (((𝜑𝑘𝐴) ∧ 𝑘𝐷) → (if(𝑘𝐶, (𝐹𝑘), 0 ) + if(𝑘𝐷, (𝐹𝑘), 0 )) = (𝐹𝑘))
72 gsumzsplit.u . . . . . . . . . 10 (𝜑𝐴 = (𝐶𝐷))
7372eleq2d 2830 . . . . . . . . 9 (𝜑 → (𝑘𝐴𝑘 ∈ (𝐶𝐷)))
74 elun 4176 . . . . . . . . 9 (𝑘 ∈ (𝐶𝐷) ↔ (𝑘𝐶𝑘𝐷))
7573, 74bitrdi 287 . . . . . . . 8 (𝜑 → (𝑘𝐴 ↔ (𝑘𝐶𝑘𝐷)))
7675biimpa 476 . . . . . . 7 ((𝜑𝑘𝐴) → (𝑘𝐶𝑘𝐷))
7761, 71, 76mpjaodan 959 . . . . . 6 ((𝜑𝑘𝐴) → (if(𝑘𝐶, (𝐹𝑘), 0 ) + if(𝑘𝐷, (𝐹𝑘), 0 )) = (𝐹𝑘))
7877mpteq2dva 5266 . . . . 5 (𝜑 → (𝑘𝐴 ↦ (if(𝑘𝐶, (𝐹𝑘), 0 ) + if(𝑘𝐷, (𝐹𝑘), 0 ))) = (𝑘𝐴 ↦ (𝐹𝑘)))
7941, 78eqtr4d 2783 . . . 4 (𝜑𝐹 = (𝑘𝐴 ↦ (if(𝑘𝐶, (𝐹𝑘), 0 ) + if(𝑘𝐷, (𝐹𝑘), 0 ))))
801, 2mndidcl 18787 . . . . . . . 8 (𝐺 ∈ Mnd → 0𝐵)
815, 80syl 17 . . . . . . 7 (𝜑0𝐵)
8281adantr 480 . . . . . 6 ((𝜑𝑘𝐴) → 0𝐵)
8357, 82ifcld 4594 . . . . 5 ((𝜑𝑘𝐴) → if(𝑘𝐶, (𝐹𝑘), 0 ) ∈ 𝐵)
8457, 82ifcld 4594 . . . . 5 ((𝜑𝑘𝐴) → if(𝑘𝐷, (𝐹𝑘), 0 ) ∈ 𝐵)
85 eqidd 2741 . . . . 5 (𝜑 → (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )) = (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )))
86 eqidd 2741 . . . . 5 (𝜑 → (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )) = (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )))
876, 83, 84, 85, 86offval2 7734 . . . 4 (𝜑 → ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )) ∘f + (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 ))) = (𝑘𝐴 ↦ (if(𝑘𝐶, (𝐹𝑘), 0 ) + if(𝑘𝐷, (𝐹𝑘), 0 ))))
8879, 87eqtr4d 2783 . . 3 (𝜑𝐹 = ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )) ∘f + (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 ))))
8988oveq2d 7464 . 2 (𝜑 → (𝐺 Σg 𝐹) = (𝐺 Σg ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )) ∘f + (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )))))
9041reseq1d 6008 . . . . . 6 (𝜑 → (𝐹𝐶) = ((𝑘𝐴 ↦ (𝐹𝑘)) ↾ 𝐶))
91 ssun1 4201 . . . . . . . 8 𝐶 ⊆ (𝐶𝐷)
9291, 72sseqtrrid 4062 . . . . . . 7 (𝜑𝐶𝐴)
9342mpteq2ia 5269 . . . . . . . 8 (𝑘𝐶 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )) = (𝑘𝐶 ↦ (𝐹𝑘))
94 resmpt 6066 . . . . . . . 8 (𝐶𝐴 → ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )) ↾ 𝐶) = (𝑘𝐶 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )))
95 resmpt 6066 . . . . . . . 8 (𝐶𝐴 → ((𝑘𝐴 ↦ (𝐹𝑘)) ↾ 𝐶) = (𝑘𝐶 ↦ (𝐹𝑘)))
9693, 94, 953eqtr4a 2806 . . . . . . 7 (𝐶𝐴 → ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )) ↾ 𝐶) = ((𝑘𝐴 ↦ (𝐹𝑘)) ↾ 𝐶))
9792, 96syl 17 . . . . . 6 (𝜑 → ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )) ↾ 𝐶) = ((𝑘𝐴 ↦ (𝐹𝑘)) ↾ 𝐶))
9890, 97eqtr4d 2783 . . . . 5 (𝜑 → (𝐹𝐶) = ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )) ↾ 𝐶))
9998oveq2d 7464 . . . 4 (𝜑 → (𝐺 Σg (𝐹𝐶)) = (𝐺 Σg ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )) ↾ 𝐶)))
10083fmpttd 7149 . . . . 5 (𝜑 → (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )):𝐴𝐵)
10137frnd 6755 . . . . . 6 (𝜑 → ran (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )) ⊆ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))
1024cntzidss 19380 . . . . . 6 ((((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ⊆ (𝑍‘((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) ∧ ran (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )) ⊆ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) → ran (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )) ⊆ (𝑍‘ran (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 ))))
10326, 101, 102syl2anc 583 . . . . 5 (𝜑 → ran (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )) ⊆ (𝑍‘ran (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 ))))
104 eldifn 4155 . . . . . . . 8 (𝑘 ∈ (𝐴𝐶) → ¬ 𝑘𝐶)
105104adantl 481 . . . . . . 7 ((𝜑𝑘 ∈ (𝐴𝐶)) → ¬ 𝑘𝐶)
106105iffalsed 4559 . . . . . 6 ((𝜑𝑘 ∈ (𝐴𝐶)) → if(𝑘𝐶, (𝐹𝑘), 0 ) = 0 )
107106, 6suppss2 8241 . . . . 5 (𝜑 → ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )) supp 0 ) ⊆ 𝐶)
1081, 2, 4, 5, 6, 100, 103, 107, 11gsumzres 19951 . . . 4 (𝜑 → (𝐺 Σg ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )) ↾ 𝐶)) = (𝐺 Σg (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 ))))
10999, 108eqtrd 2780 . . 3 (𝜑 → (𝐺 Σg (𝐹𝐶)) = (𝐺 Σg (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 ))))
11041reseq1d 6008 . . . . . 6 (𝜑 → (𝐹𝐷) = ((𝑘𝐴 ↦ (𝐹𝑘)) ↾ 𝐷))
111 ssun2 4202 . . . . . . . 8 𝐷 ⊆ (𝐶𝐷)
112111, 72sseqtrrid 4062 . . . . . . 7 (𝜑𝐷𝐴)
11365mpteq2ia 5269 . . . . . . . 8 (𝑘𝐷 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )) = (𝑘𝐷 ↦ (𝐹𝑘))
114 resmpt 6066 . . . . . . . 8 (𝐷𝐴 → ((𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )) ↾ 𝐷) = (𝑘𝐷 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )))
115 resmpt 6066 . . . . . . . 8 (𝐷𝐴 → ((𝑘𝐴 ↦ (𝐹𝑘)) ↾ 𝐷) = (𝑘𝐷 ↦ (𝐹𝑘)))
116113, 114, 1153eqtr4a 2806 . . . . . . 7 (𝐷𝐴 → ((𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )) ↾ 𝐷) = ((𝑘𝐴 ↦ (𝐹𝑘)) ↾ 𝐷))
117112, 116syl 17 . . . . . 6 (𝜑 → ((𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )) ↾ 𝐷) = ((𝑘𝐴 ↦ (𝐹𝑘)) ↾ 𝐷))
118110, 117eqtr4d 2783 . . . . 5 (𝜑 → (𝐹𝐷) = ((𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )) ↾ 𝐷))
119118oveq2d 7464 . . . 4 (𝜑 → (𝐺 Σg (𝐹𝐷)) = (𝐺 Σg ((𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )) ↾ 𝐷)))
12084fmpttd 7149 . . . . 5 (𝜑 → (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )):𝐴𝐵)
12139frnd 6755 . . . . . 6 (𝜑 → ran (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )) ⊆ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))
1224cntzidss 19380 . . . . . 6 ((((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ⊆ (𝑍‘((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) ∧ ran (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )) ⊆ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) → ran (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )) ⊆ (𝑍‘ran (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 ))))
12326, 121, 122syl2anc 583 . . . . 5 (𝜑 → ran (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )) ⊆ (𝑍‘ran (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 ))))
124 eldifn 4155 . . . . . . . 8 (𝑘 ∈ (𝐴𝐷) → ¬ 𝑘𝐷)
125124adantl 481 . . . . . . 7 ((𝜑𝑘 ∈ (𝐴𝐷)) → ¬ 𝑘𝐷)
126125iffalsed 4559 . . . . . 6 ((𝜑𝑘 ∈ (𝐴𝐷)) → if(𝑘𝐷, (𝐹𝑘), 0 ) = 0 )
127126, 6suppss2 8241 . . . . 5 (𝜑 → ((𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )) supp 0 ) ⊆ 𝐷)
1281, 2, 4, 5, 6, 120, 123, 127, 12gsumzres 19951 . . . 4 (𝜑 → (𝐺 Σg ((𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )) ↾ 𝐷)) = (𝐺 Σg (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 ))))
129119, 128eqtrd 2780 . . 3 (𝜑 → (𝐺 Σg (𝐹𝐷)) = (𝐺 Σg (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 ))))
130109, 129oveq12d 7466 . 2 (𝜑 → ((𝐺 Σg (𝐹𝐶)) + (𝐺 Σg (𝐹𝐷))) = ((𝐺 Σg (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 ))) + (𝐺 Σg (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )))))
13140, 89, 1303eqtr4d 2790 1 (𝜑 → (𝐺 Σg 𝐹) = ((𝐺 Σg (𝐹𝐶)) + (𝐺 Σg (𝐹𝐷))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846   = wceq 1537  wcel 2108  Vcvv 3488  cdif 3973  cun 3974  cin 3975  wss 3976  c0 4352  ifcif 4548   class class class wbr 5166  cmpt 5249  ran crn 5701  cres 5702   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  f cof 7712   finSupp cfsupp 9431  Basecbs 17258  s cress 17287  +gcplusg 17311  0gc0g 17499   Σg cgsu 17500  Moorecmre 17640  mrClscmrc 17641  ACScacs 17643  Mndcmnd 18772  SubMndcsubmnd 18817  Cntzccntz 19355  CMndccmn 19822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712  df-seq 14053  df-hash 14380  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-0g 17501  df-gsum 17502  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-cntz 19357  df-cmn 19824
This theorem is referenced by:  gsumsplit  19970  gsumzunsnd  19998  dpjidcl  20102
  Copyright terms: Public domain W3C validator