MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumzsplit Structured version   Visualization version   GIF version

Theorem gsumzsplit 19704
Description: Split a group sum into two parts. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 5-Jun-2019.)
Hypotheses
Ref Expression
gsumzsplit.b 𝐵 = (Base‘𝐺)
gsumzsplit.0 0 = (0g𝐺)
gsumzsplit.p + = (+g𝐺)
gsumzsplit.z 𝑍 = (Cntz‘𝐺)
gsumzsplit.g (𝜑𝐺 ∈ Mnd)
gsumzsplit.a (𝜑𝐴𝑉)
gsumzsplit.f (𝜑𝐹:𝐴𝐵)
gsumzsplit.c (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
gsumzsplit.w (𝜑𝐹 finSupp 0 )
gsumzsplit.i (𝜑 → (𝐶𝐷) = ∅)
gsumzsplit.u (𝜑𝐴 = (𝐶𝐷))
Assertion
Ref Expression
gsumzsplit (𝜑 → (𝐺 Σg 𝐹) = ((𝐺 Σg (𝐹𝐶)) + (𝐺 Σg (𝐹𝐷))))

Proof of Theorem gsumzsplit
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 gsumzsplit.b . . 3 𝐵 = (Base‘𝐺)
2 gsumzsplit.0 . . 3 0 = (0g𝐺)
3 gsumzsplit.p . . 3 + = (+g𝐺)
4 gsumzsplit.z . . 3 𝑍 = (Cntz‘𝐺)
5 gsumzsplit.g . . 3 (𝜑𝐺 ∈ Mnd)
6 gsumzsplit.a . . 3 (𝜑𝐴𝑉)
7 gsumzsplit.f . . . 4 (𝜑𝐹:𝐴𝐵)
82fvexi 6856 . . . . 5 0 ∈ V
98a1i 11 . . . 4 (𝜑0 ∈ V)
10 gsumzsplit.w . . . 4 (𝜑𝐹 finSupp 0 )
117, 6, 9, 10fsuppmptif 9335 . . 3 (𝜑 → (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )) finSupp 0 )
127, 6, 9, 10fsuppmptif 9335 . . 3 (𝜑 → (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )) finSupp 0 )
131submacs 18637 . . . . 5 (𝐺 ∈ Mnd → (SubMnd‘𝐺) ∈ (ACS‘𝐵))
14 acsmre 17532 . . . . 5 ((SubMnd‘𝐺) ∈ (ACS‘𝐵) → (SubMnd‘𝐺) ∈ (Moore‘𝐵))
155, 13, 143syl 18 . . . 4 (𝜑 → (SubMnd‘𝐺) ∈ (Moore‘𝐵))
167frnd 6676 . . . 4 (𝜑 → ran 𝐹𝐵)
17 eqid 2736 . . . . 5 (mrCls‘(SubMnd‘𝐺)) = (mrCls‘(SubMnd‘𝐺))
1817mrccl 17491 . . . 4 (((SubMnd‘𝐺) ∈ (Moore‘𝐵) ∧ ran 𝐹𝐵) → ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ∈ (SubMnd‘𝐺))
1915, 16, 18syl2anc 584 . . 3 (𝜑 → ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ∈ (SubMnd‘𝐺))
20 gsumzsplit.c . . . . 5 (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
21 eqid 2736 . . . . . 6 (𝐺s ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) = (𝐺s ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))
224, 17, 21cntzspan 19622 . . . . 5 ((𝐺 ∈ Mnd ∧ ran 𝐹 ⊆ (𝑍‘ran 𝐹)) → (𝐺s ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) ∈ CMnd)
235, 20, 22syl2anc 584 . . . 4 (𝜑 → (𝐺s ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) ∈ CMnd)
2421, 4submcmn2 19617 . . . . 5 (((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ∈ (SubMnd‘𝐺) → ((𝐺s ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) ∈ CMnd ↔ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ⊆ (𝑍‘((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))))
2519, 24syl 17 . . . 4 (𝜑 → ((𝐺s ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) ∈ CMnd ↔ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ⊆ (𝑍‘((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))))
2623, 25mpbid 231 . . 3 (𝜑 → ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ⊆ (𝑍‘((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)))
2715, 17, 16mrcssidd 17505 . . . . . . 7 (𝜑 → ran 𝐹 ⊆ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))
2827adantr 481 . . . . . 6 ((𝜑𝑘𝐴) → ran 𝐹 ⊆ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))
297ffnd 6669 . . . . . . 7 (𝜑𝐹 Fn 𝐴)
30 fnfvelrn 7031 . . . . . . 7 ((𝐹 Fn 𝐴𝑘𝐴) → (𝐹𝑘) ∈ ran 𝐹)
3129, 30sylan 580 . . . . . 6 ((𝜑𝑘𝐴) → (𝐹𝑘) ∈ ran 𝐹)
3228, 31sseldd 3945 . . . . 5 ((𝜑𝑘𝐴) → (𝐹𝑘) ∈ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))
332subm0cl 18622 . . . . . . 7 (((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ∈ (SubMnd‘𝐺) → 0 ∈ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))
3419, 33syl 17 . . . . . 6 (𝜑0 ∈ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))
3534adantr 481 . . . . 5 ((𝜑𝑘𝐴) → 0 ∈ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))
3632, 35ifcld 4532 . . . 4 ((𝜑𝑘𝐴) → if(𝑘𝐶, (𝐹𝑘), 0 ) ∈ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))
3736fmpttd 7063 . . 3 (𝜑 → (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )):𝐴⟶((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))
3832, 35ifcld 4532 . . . 4 ((𝜑𝑘𝐴) → if(𝑘𝐷, (𝐹𝑘), 0 ) ∈ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))
3938fmpttd 7063 . . 3 (𝜑 → (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )):𝐴⟶((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))
401, 2, 3, 4, 5, 6, 11, 12, 19, 26, 37, 39gsumzadd 19699 . 2 (𝜑 → (𝐺 Σg ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )) ∘f + (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )))) = ((𝐺 Σg (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 ))) + (𝐺 Σg (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )))))
417feqmptd 6910 . . . . 5 (𝜑𝐹 = (𝑘𝐴 ↦ (𝐹𝑘)))
42 iftrue 4492 . . . . . . . . . 10 (𝑘𝐶 → if(𝑘𝐶, (𝐹𝑘), 0 ) = (𝐹𝑘))
4342adantl 482 . . . . . . . . 9 (((𝜑𝑘𝐴) ∧ 𝑘𝐶) → if(𝑘𝐶, (𝐹𝑘), 0 ) = (𝐹𝑘))
44 gsumzsplit.i . . . . . . . . . . . . . . 15 (𝜑 → (𝐶𝐷) = ∅)
45 noel 4290 . . . . . . . . . . . . . . . 16 ¬ 𝑘 ∈ ∅
46 eleq2 2826 . . . . . . . . . . . . . . . 16 ((𝐶𝐷) = ∅ → (𝑘 ∈ (𝐶𝐷) ↔ 𝑘 ∈ ∅))
4745, 46mtbiri 326 . . . . . . . . . . . . . . 15 ((𝐶𝐷) = ∅ → ¬ 𝑘 ∈ (𝐶𝐷))
4844, 47syl 17 . . . . . . . . . . . . . 14 (𝜑 → ¬ 𝑘 ∈ (𝐶𝐷))
4948adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑘𝐴) → ¬ 𝑘 ∈ (𝐶𝐷))
50 elin 3926 . . . . . . . . . . . . 13 (𝑘 ∈ (𝐶𝐷) ↔ (𝑘𝐶𝑘𝐷))
5149, 50sylnib 327 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → ¬ (𝑘𝐶𝑘𝐷))
52 imnan 400 . . . . . . . . . . . 12 ((𝑘𝐶 → ¬ 𝑘𝐷) ↔ ¬ (𝑘𝐶𝑘𝐷))
5351, 52sylibr 233 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → (𝑘𝐶 → ¬ 𝑘𝐷))
5453imp 407 . . . . . . . . . 10 (((𝜑𝑘𝐴) ∧ 𝑘𝐶) → ¬ 𝑘𝐷)
5554iffalsed 4497 . . . . . . . . 9 (((𝜑𝑘𝐴) ∧ 𝑘𝐶) → if(𝑘𝐷, (𝐹𝑘), 0 ) = 0 )
5643, 55oveq12d 7375 . . . . . . . 8 (((𝜑𝑘𝐴) ∧ 𝑘𝐶) → (if(𝑘𝐶, (𝐹𝑘), 0 ) + if(𝑘𝐷, (𝐹𝑘), 0 )) = ((𝐹𝑘) + 0 ))
577ffvelcdmda 7035 . . . . . . . . . 10 ((𝜑𝑘𝐴) → (𝐹𝑘) ∈ 𝐵)
581, 3, 2mndrid 18577 . . . . . . . . . 10 ((𝐺 ∈ Mnd ∧ (𝐹𝑘) ∈ 𝐵) → ((𝐹𝑘) + 0 ) = (𝐹𝑘))
595, 57, 58syl2an2r 683 . . . . . . . . 9 ((𝜑𝑘𝐴) → ((𝐹𝑘) + 0 ) = (𝐹𝑘))
6059adantr 481 . . . . . . . 8 (((𝜑𝑘𝐴) ∧ 𝑘𝐶) → ((𝐹𝑘) + 0 ) = (𝐹𝑘))
6156, 60eqtrd 2776 . . . . . . 7 (((𝜑𝑘𝐴) ∧ 𝑘𝐶) → (if(𝑘𝐶, (𝐹𝑘), 0 ) + if(𝑘𝐷, (𝐹𝑘), 0 )) = (𝐹𝑘))
6253con2d 134 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → (𝑘𝐷 → ¬ 𝑘𝐶))
6362imp 407 . . . . . . . . . 10 (((𝜑𝑘𝐴) ∧ 𝑘𝐷) → ¬ 𝑘𝐶)
6463iffalsed 4497 . . . . . . . . 9 (((𝜑𝑘𝐴) ∧ 𝑘𝐷) → if(𝑘𝐶, (𝐹𝑘), 0 ) = 0 )
65 iftrue 4492 . . . . . . . . . 10 (𝑘𝐷 → if(𝑘𝐷, (𝐹𝑘), 0 ) = (𝐹𝑘))
6665adantl 482 . . . . . . . . 9 (((𝜑𝑘𝐴) ∧ 𝑘𝐷) → if(𝑘𝐷, (𝐹𝑘), 0 ) = (𝐹𝑘))
6764, 66oveq12d 7375 . . . . . . . 8 (((𝜑𝑘𝐴) ∧ 𝑘𝐷) → (if(𝑘𝐶, (𝐹𝑘), 0 ) + if(𝑘𝐷, (𝐹𝑘), 0 )) = ( 0 + (𝐹𝑘)))
681, 3, 2mndlid 18576 . . . . . . . . . 10 ((𝐺 ∈ Mnd ∧ (𝐹𝑘) ∈ 𝐵) → ( 0 + (𝐹𝑘)) = (𝐹𝑘))
695, 57, 68syl2an2r 683 . . . . . . . . 9 ((𝜑𝑘𝐴) → ( 0 + (𝐹𝑘)) = (𝐹𝑘))
7069adantr 481 . . . . . . . 8 (((𝜑𝑘𝐴) ∧ 𝑘𝐷) → ( 0 + (𝐹𝑘)) = (𝐹𝑘))
7167, 70eqtrd 2776 . . . . . . 7 (((𝜑𝑘𝐴) ∧ 𝑘𝐷) → (if(𝑘𝐶, (𝐹𝑘), 0 ) + if(𝑘𝐷, (𝐹𝑘), 0 )) = (𝐹𝑘))
72 gsumzsplit.u . . . . . . . . . 10 (𝜑𝐴 = (𝐶𝐷))
7372eleq2d 2823 . . . . . . . . 9 (𝜑 → (𝑘𝐴𝑘 ∈ (𝐶𝐷)))
74 elun 4108 . . . . . . . . 9 (𝑘 ∈ (𝐶𝐷) ↔ (𝑘𝐶𝑘𝐷))
7573, 74bitrdi 286 . . . . . . . 8 (𝜑 → (𝑘𝐴 ↔ (𝑘𝐶𝑘𝐷)))
7675biimpa 477 . . . . . . 7 ((𝜑𝑘𝐴) → (𝑘𝐶𝑘𝐷))
7761, 71, 76mpjaodan 957 . . . . . 6 ((𝜑𝑘𝐴) → (if(𝑘𝐶, (𝐹𝑘), 0 ) + if(𝑘𝐷, (𝐹𝑘), 0 )) = (𝐹𝑘))
7877mpteq2dva 5205 . . . . 5 (𝜑 → (𝑘𝐴 ↦ (if(𝑘𝐶, (𝐹𝑘), 0 ) + if(𝑘𝐷, (𝐹𝑘), 0 ))) = (𝑘𝐴 ↦ (𝐹𝑘)))
7941, 78eqtr4d 2779 . . . 4 (𝜑𝐹 = (𝑘𝐴 ↦ (if(𝑘𝐶, (𝐹𝑘), 0 ) + if(𝑘𝐷, (𝐹𝑘), 0 ))))
801, 2mndidcl 18571 . . . . . . . 8 (𝐺 ∈ Mnd → 0𝐵)
815, 80syl 17 . . . . . . 7 (𝜑0𝐵)
8281adantr 481 . . . . . 6 ((𝜑𝑘𝐴) → 0𝐵)
8357, 82ifcld 4532 . . . . 5 ((𝜑𝑘𝐴) → if(𝑘𝐶, (𝐹𝑘), 0 ) ∈ 𝐵)
8457, 82ifcld 4532 . . . . 5 ((𝜑𝑘𝐴) → if(𝑘𝐷, (𝐹𝑘), 0 ) ∈ 𝐵)
85 eqidd 2737 . . . . 5 (𝜑 → (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )) = (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )))
86 eqidd 2737 . . . . 5 (𝜑 → (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )) = (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )))
876, 83, 84, 85, 86offval2 7637 . . . 4 (𝜑 → ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )) ∘f + (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 ))) = (𝑘𝐴 ↦ (if(𝑘𝐶, (𝐹𝑘), 0 ) + if(𝑘𝐷, (𝐹𝑘), 0 ))))
8879, 87eqtr4d 2779 . . 3 (𝜑𝐹 = ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )) ∘f + (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 ))))
8988oveq2d 7373 . 2 (𝜑 → (𝐺 Σg 𝐹) = (𝐺 Σg ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )) ∘f + (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )))))
9041reseq1d 5936 . . . . . 6 (𝜑 → (𝐹𝐶) = ((𝑘𝐴 ↦ (𝐹𝑘)) ↾ 𝐶))
91 ssun1 4132 . . . . . . . 8 𝐶 ⊆ (𝐶𝐷)
9291, 72sseqtrrid 3997 . . . . . . 7 (𝜑𝐶𝐴)
9342mpteq2ia 5208 . . . . . . . 8 (𝑘𝐶 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )) = (𝑘𝐶 ↦ (𝐹𝑘))
94 resmpt 5991 . . . . . . . 8 (𝐶𝐴 → ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )) ↾ 𝐶) = (𝑘𝐶 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )))
95 resmpt 5991 . . . . . . . 8 (𝐶𝐴 → ((𝑘𝐴 ↦ (𝐹𝑘)) ↾ 𝐶) = (𝑘𝐶 ↦ (𝐹𝑘)))
9693, 94, 953eqtr4a 2802 . . . . . . 7 (𝐶𝐴 → ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )) ↾ 𝐶) = ((𝑘𝐴 ↦ (𝐹𝑘)) ↾ 𝐶))
9792, 96syl 17 . . . . . 6 (𝜑 → ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )) ↾ 𝐶) = ((𝑘𝐴 ↦ (𝐹𝑘)) ↾ 𝐶))
9890, 97eqtr4d 2779 . . . . 5 (𝜑 → (𝐹𝐶) = ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )) ↾ 𝐶))
9998oveq2d 7373 . . . 4 (𝜑 → (𝐺 Σg (𝐹𝐶)) = (𝐺 Σg ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )) ↾ 𝐶)))
10083fmpttd 7063 . . . . 5 (𝜑 → (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )):𝐴𝐵)
10137frnd 6676 . . . . . 6 (𝜑 → ran (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )) ⊆ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))
1024cntzidss 19118 . . . . . 6 ((((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ⊆ (𝑍‘((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) ∧ ran (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )) ⊆ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) → ran (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )) ⊆ (𝑍‘ran (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 ))))
10326, 101, 102syl2anc 584 . . . . 5 (𝜑 → ran (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )) ⊆ (𝑍‘ran (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 ))))
104 eldifn 4087 . . . . . . . 8 (𝑘 ∈ (𝐴𝐶) → ¬ 𝑘𝐶)
105104adantl 482 . . . . . . 7 ((𝜑𝑘 ∈ (𝐴𝐶)) → ¬ 𝑘𝐶)
106105iffalsed 4497 . . . . . 6 ((𝜑𝑘 ∈ (𝐴𝐶)) → if(𝑘𝐶, (𝐹𝑘), 0 ) = 0 )
107106, 6suppss2 8131 . . . . 5 (𝜑 → ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )) supp 0 ) ⊆ 𝐶)
1081, 2, 4, 5, 6, 100, 103, 107, 11gsumzres 19686 . . . 4 (𝜑 → (𝐺 Σg ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 )) ↾ 𝐶)) = (𝐺 Σg (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 ))))
10999, 108eqtrd 2776 . . 3 (𝜑 → (𝐺 Σg (𝐹𝐶)) = (𝐺 Σg (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 ))))
11041reseq1d 5936 . . . . . 6 (𝜑 → (𝐹𝐷) = ((𝑘𝐴 ↦ (𝐹𝑘)) ↾ 𝐷))
111 ssun2 4133 . . . . . . . 8 𝐷 ⊆ (𝐶𝐷)
112111, 72sseqtrrid 3997 . . . . . . 7 (𝜑𝐷𝐴)
11365mpteq2ia 5208 . . . . . . . 8 (𝑘𝐷 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )) = (𝑘𝐷 ↦ (𝐹𝑘))
114 resmpt 5991 . . . . . . . 8 (𝐷𝐴 → ((𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )) ↾ 𝐷) = (𝑘𝐷 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )))
115 resmpt 5991 . . . . . . . 8 (𝐷𝐴 → ((𝑘𝐴 ↦ (𝐹𝑘)) ↾ 𝐷) = (𝑘𝐷 ↦ (𝐹𝑘)))
116113, 114, 1153eqtr4a 2802 . . . . . . 7 (𝐷𝐴 → ((𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )) ↾ 𝐷) = ((𝑘𝐴 ↦ (𝐹𝑘)) ↾ 𝐷))
117112, 116syl 17 . . . . . 6 (𝜑 → ((𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )) ↾ 𝐷) = ((𝑘𝐴 ↦ (𝐹𝑘)) ↾ 𝐷))
118110, 117eqtr4d 2779 . . . . 5 (𝜑 → (𝐹𝐷) = ((𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )) ↾ 𝐷))
119118oveq2d 7373 . . . 4 (𝜑 → (𝐺 Σg (𝐹𝐷)) = (𝐺 Σg ((𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )) ↾ 𝐷)))
12084fmpttd 7063 . . . . 5 (𝜑 → (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )):𝐴𝐵)
12139frnd 6676 . . . . . 6 (𝜑 → ran (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )) ⊆ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹))
1224cntzidss 19118 . . . . . 6 ((((mrCls‘(SubMnd‘𝐺))‘ran 𝐹) ⊆ (𝑍‘((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) ∧ ran (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )) ⊆ ((mrCls‘(SubMnd‘𝐺))‘ran 𝐹)) → ran (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )) ⊆ (𝑍‘ran (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 ))))
12326, 121, 122syl2anc 584 . . . . 5 (𝜑 → ran (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )) ⊆ (𝑍‘ran (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 ))))
124 eldifn 4087 . . . . . . . 8 (𝑘 ∈ (𝐴𝐷) → ¬ 𝑘𝐷)
125124adantl 482 . . . . . . 7 ((𝜑𝑘 ∈ (𝐴𝐷)) → ¬ 𝑘𝐷)
126125iffalsed 4497 . . . . . 6 ((𝜑𝑘 ∈ (𝐴𝐷)) → if(𝑘𝐷, (𝐹𝑘), 0 ) = 0 )
127126, 6suppss2 8131 . . . . 5 (𝜑 → ((𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )) supp 0 ) ⊆ 𝐷)
1281, 2, 4, 5, 6, 120, 123, 127, 12gsumzres 19686 . . . 4 (𝜑 → (𝐺 Σg ((𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )) ↾ 𝐷)) = (𝐺 Σg (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 ))))
129119, 128eqtrd 2776 . . 3 (𝜑 → (𝐺 Σg (𝐹𝐷)) = (𝐺 Σg (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 ))))
130109, 129oveq12d 7375 . 2 (𝜑 → ((𝐺 Σg (𝐹𝐶)) + (𝐺 Σg (𝐹𝐷))) = ((𝐺 Σg (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), 0 ))) + (𝐺 Σg (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 0 )))))
13140, 89, 1303eqtr4d 2786 1 (𝜑 → (𝐺 Σg 𝐹) = ((𝐺 Σg (𝐹𝐶)) + (𝐺 Σg (𝐹𝐷))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845   = wceq 1541  wcel 2106  Vcvv 3445  cdif 3907  cun 3908  cin 3909  wss 3910  c0 4282  ifcif 4486   class class class wbr 5105  cmpt 5188  ran crn 5634  cres 5635   Fn wfn 6491  wf 6492  cfv 6496  (class class class)co 7357  f cof 7615   finSupp cfsupp 9305  Basecbs 17083  s cress 17112  +gcplusg 17133  0gc0g 17321   Σg cgsu 17322  Moorecmre 17462  mrClscmrc 17463  ACScacs 17465  Mndcmnd 18556  SubMndcsubmnd 18600  Cntzccntz 19095  CMndccmn 19562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425  df-fzo 13568  df-seq 13907  df-hash 14231  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-0g 17323  df-gsum 17324  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-cntz 19097  df-cmn 19564
This theorem is referenced by:  gsumsplit  19705  gsumzunsnd  19733  dpjidcl  19837
  Copyright terms: Public domain W3C validator