Step | Hyp | Ref
| Expression |
1 | | eqid 2758 |
. . . 4
⊢
(Base‘𝐺) =
(Base‘𝐺) |
2 | | eqid 2758 |
. . . 4
⊢
(Base‘𝐻) =
(Base‘𝐻) |
3 | 1, 2 | mhmf 18027 |
. . 3
⊢ (𝐹 ∈ (𝐺 MndHom 𝐻) → 𝐹:(Base‘𝐺)⟶(Base‘𝐻)) |
4 | | cntzmhm.z |
. . . . 5
⊢ 𝑍 = (Cntz‘𝐺) |
5 | 1, 4 | cntzssv 18525 |
. . . 4
⊢ (𝑍‘𝑆) ⊆ (Base‘𝐺) |
6 | 5 | sseli 3888 |
. . 3
⊢ (𝐴 ∈ (𝑍‘𝑆) → 𝐴 ∈ (Base‘𝐺)) |
7 | | ffvelrn 6840 |
. . 3
⊢ ((𝐹:(Base‘𝐺)⟶(Base‘𝐻) ∧ 𝐴 ∈ (Base‘𝐺)) → (𝐹‘𝐴) ∈ (Base‘𝐻)) |
8 | 3, 6, 7 | syl2an 598 |
. 2
⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍‘𝑆)) → (𝐹‘𝐴) ∈ (Base‘𝐻)) |
9 | | eqid 2758 |
. . . . . . . 8
⊢
(+g‘𝐺) = (+g‘𝐺) |
10 | 9, 4 | cntzi 18526 |
. . . . . . 7
⊢ ((𝐴 ∈ (𝑍‘𝑆) ∧ 𝑥 ∈ 𝑆) → (𝐴(+g‘𝐺)𝑥) = (𝑥(+g‘𝐺)𝐴)) |
11 | 10 | adantll 713 |
. . . . . 6
⊢ (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍‘𝑆)) ∧ 𝑥 ∈ 𝑆) → (𝐴(+g‘𝐺)𝑥) = (𝑥(+g‘𝐺)𝐴)) |
12 | 11 | fveq2d 6662 |
. . . . 5
⊢ (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍‘𝑆)) ∧ 𝑥 ∈ 𝑆) → (𝐹‘(𝐴(+g‘𝐺)𝑥)) = (𝐹‘(𝑥(+g‘𝐺)𝐴))) |
13 | | simpll 766 |
. . . . . 6
⊢ (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍‘𝑆)) ∧ 𝑥 ∈ 𝑆) → 𝐹 ∈ (𝐺 MndHom 𝐻)) |
14 | 6 | ad2antlr 726 |
. . . . . 6
⊢ (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍‘𝑆)) ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ (Base‘𝐺)) |
15 | 1, 4 | cntzrcl 18524 |
. . . . . . . . 9
⊢ (𝐴 ∈ (𝑍‘𝑆) → (𝐺 ∈ V ∧ 𝑆 ⊆ (Base‘𝐺))) |
16 | 15 | adantl 485 |
. . . . . . . 8
⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍‘𝑆)) → (𝐺 ∈ V ∧ 𝑆 ⊆ (Base‘𝐺))) |
17 | 16 | simprd 499 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍‘𝑆)) → 𝑆 ⊆ (Base‘𝐺)) |
18 | 17 | sselda 3892 |
. . . . . 6
⊢ (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍‘𝑆)) ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ (Base‘𝐺)) |
19 | | eqid 2758 |
. . . . . . 7
⊢
(+g‘𝐻) = (+g‘𝐻) |
20 | 1, 9, 19 | mhmlin 18029 |
. . . . . 6
⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (Base‘𝐺) ∧ 𝑥 ∈ (Base‘𝐺)) → (𝐹‘(𝐴(+g‘𝐺)𝑥)) = ((𝐹‘𝐴)(+g‘𝐻)(𝐹‘𝑥))) |
21 | 13, 14, 18, 20 | syl3anc 1368 |
. . . . 5
⊢ (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍‘𝑆)) ∧ 𝑥 ∈ 𝑆) → (𝐹‘(𝐴(+g‘𝐺)𝑥)) = ((𝐹‘𝐴)(+g‘𝐻)(𝐹‘𝑥))) |
22 | 1, 9, 19 | mhmlin 18029 |
. . . . . 6
⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝐴 ∈ (Base‘𝐺)) → (𝐹‘(𝑥(+g‘𝐺)𝐴)) = ((𝐹‘𝑥)(+g‘𝐻)(𝐹‘𝐴))) |
23 | 13, 18, 14, 22 | syl3anc 1368 |
. . . . 5
⊢ (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍‘𝑆)) ∧ 𝑥 ∈ 𝑆) → (𝐹‘(𝑥(+g‘𝐺)𝐴)) = ((𝐹‘𝑥)(+g‘𝐻)(𝐹‘𝐴))) |
24 | 12, 21, 23 | 3eqtr3d 2801 |
. . . 4
⊢ (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍‘𝑆)) ∧ 𝑥 ∈ 𝑆) → ((𝐹‘𝐴)(+g‘𝐻)(𝐹‘𝑥)) = ((𝐹‘𝑥)(+g‘𝐻)(𝐹‘𝐴))) |
25 | 24 | ralrimiva 3113 |
. . 3
⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍‘𝑆)) → ∀𝑥 ∈ 𝑆 ((𝐹‘𝐴)(+g‘𝐻)(𝐹‘𝑥)) = ((𝐹‘𝑥)(+g‘𝐻)(𝐹‘𝐴))) |
26 | 3 | adantr 484 |
. . . . 5
⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍‘𝑆)) → 𝐹:(Base‘𝐺)⟶(Base‘𝐻)) |
27 | 26 | ffnd 6499 |
. . . 4
⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍‘𝑆)) → 𝐹 Fn (Base‘𝐺)) |
28 | | oveq2 7158 |
. . . . . 6
⊢ (𝑦 = (𝐹‘𝑥) → ((𝐹‘𝐴)(+g‘𝐻)𝑦) = ((𝐹‘𝐴)(+g‘𝐻)(𝐹‘𝑥))) |
29 | | oveq1 7157 |
. . . . . 6
⊢ (𝑦 = (𝐹‘𝑥) → (𝑦(+g‘𝐻)(𝐹‘𝐴)) = ((𝐹‘𝑥)(+g‘𝐻)(𝐹‘𝐴))) |
30 | 28, 29 | eqeq12d 2774 |
. . . . 5
⊢ (𝑦 = (𝐹‘𝑥) → (((𝐹‘𝐴)(+g‘𝐻)𝑦) = (𝑦(+g‘𝐻)(𝐹‘𝐴)) ↔ ((𝐹‘𝐴)(+g‘𝐻)(𝐹‘𝑥)) = ((𝐹‘𝑥)(+g‘𝐻)(𝐹‘𝐴)))) |
31 | 30 | ralima 6992 |
. . . 4
⊢ ((𝐹 Fn (Base‘𝐺) ∧ 𝑆 ⊆ (Base‘𝐺)) → (∀𝑦 ∈ (𝐹 “ 𝑆)((𝐹‘𝐴)(+g‘𝐻)𝑦) = (𝑦(+g‘𝐻)(𝐹‘𝐴)) ↔ ∀𝑥 ∈ 𝑆 ((𝐹‘𝐴)(+g‘𝐻)(𝐹‘𝑥)) = ((𝐹‘𝑥)(+g‘𝐻)(𝐹‘𝐴)))) |
32 | 27, 17, 31 | syl2anc 587 |
. . 3
⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍‘𝑆)) → (∀𝑦 ∈ (𝐹 “ 𝑆)((𝐹‘𝐴)(+g‘𝐻)𝑦) = (𝑦(+g‘𝐻)(𝐹‘𝐴)) ↔ ∀𝑥 ∈ 𝑆 ((𝐹‘𝐴)(+g‘𝐻)(𝐹‘𝑥)) = ((𝐹‘𝑥)(+g‘𝐻)(𝐹‘𝐴)))) |
33 | 25, 32 | mpbird 260 |
. 2
⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍‘𝑆)) → ∀𝑦 ∈ (𝐹 “ 𝑆)((𝐹‘𝐴)(+g‘𝐻)𝑦) = (𝑦(+g‘𝐻)(𝐹‘𝐴))) |
34 | | imassrn 5912 |
. . . 4
⊢ (𝐹 “ 𝑆) ⊆ ran 𝐹 |
35 | 26 | frnd 6505 |
. . . 4
⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍‘𝑆)) → ran 𝐹 ⊆ (Base‘𝐻)) |
36 | 34, 35 | sstrid 3903 |
. . 3
⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍‘𝑆)) → (𝐹 “ 𝑆) ⊆ (Base‘𝐻)) |
37 | | cntzmhm.y |
. . . 4
⊢ 𝑌 = (Cntz‘𝐻) |
38 | 2, 19, 37 | elcntz 18519 |
. . 3
⊢ ((𝐹 “ 𝑆) ⊆ (Base‘𝐻) → ((𝐹‘𝐴) ∈ (𝑌‘(𝐹 “ 𝑆)) ↔ ((𝐹‘𝐴) ∈ (Base‘𝐻) ∧ ∀𝑦 ∈ (𝐹 “ 𝑆)((𝐹‘𝐴)(+g‘𝐻)𝑦) = (𝑦(+g‘𝐻)(𝐹‘𝐴))))) |
39 | 36, 38 | syl 17 |
. 2
⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍‘𝑆)) → ((𝐹‘𝐴) ∈ (𝑌‘(𝐹 “ 𝑆)) ↔ ((𝐹‘𝐴) ∈ (Base‘𝐻) ∧ ∀𝑦 ∈ (𝐹 “ 𝑆)((𝐹‘𝐴)(+g‘𝐻)𝑦) = (𝑦(+g‘𝐻)(𝐹‘𝐴))))) |
40 | 8, 33, 39 | mpbir2and 712 |
1
⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍‘𝑆)) → (𝐹‘𝐴) ∈ (𝑌‘(𝐹 “ 𝑆))) |