MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cntzmhm Structured version   Visualization version   GIF version

Theorem cntzmhm 19119
Description: Centralizers in a monoid are preserved by monoid homomorphisms. (Contributed by Mario Carneiro, 24-Apr-2016.)
Hypotheses
Ref Expression
cntzmhm.z 𝑍 = (Cntz‘𝐺)
cntzmhm.y 𝑌 = (Cntz‘𝐻)
Assertion
Ref Expression
cntzmhm ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍𝑆)) → (𝐹𝐴) ∈ (𝑌‘(𝐹𝑆)))

Proof of Theorem cntzmhm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . . 4 (Base‘𝐺) = (Base‘𝐺)
2 eqid 2736 . . . 4 (Base‘𝐻) = (Base‘𝐻)
31, 2mhmf 18607 . . 3 (𝐹 ∈ (𝐺 MndHom 𝐻) → 𝐹:(Base‘𝐺)⟶(Base‘𝐻))
4 cntzmhm.z . . . . 5 𝑍 = (Cntz‘𝐺)
51, 4cntzssv 19108 . . . 4 (𝑍𝑆) ⊆ (Base‘𝐺)
65sseli 3940 . . 3 (𝐴 ∈ (𝑍𝑆) → 𝐴 ∈ (Base‘𝐺))
7 ffvelcdm 7032 . . 3 ((𝐹:(Base‘𝐺)⟶(Base‘𝐻) ∧ 𝐴 ∈ (Base‘𝐺)) → (𝐹𝐴) ∈ (Base‘𝐻))
83, 6, 7syl2an 596 . 2 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍𝑆)) → (𝐹𝐴) ∈ (Base‘𝐻))
9 eqid 2736 . . . . . . . 8 (+g𝐺) = (+g𝐺)
109, 4cntzi 19109 . . . . . . 7 ((𝐴 ∈ (𝑍𝑆) ∧ 𝑥𝑆) → (𝐴(+g𝐺)𝑥) = (𝑥(+g𝐺)𝐴))
1110adantll 712 . . . . . 6 (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍𝑆)) ∧ 𝑥𝑆) → (𝐴(+g𝐺)𝑥) = (𝑥(+g𝐺)𝐴))
1211fveq2d 6846 . . . . 5 (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍𝑆)) ∧ 𝑥𝑆) → (𝐹‘(𝐴(+g𝐺)𝑥)) = (𝐹‘(𝑥(+g𝐺)𝐴)))
13 simpll 765 . . . . . 6 (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍𝑆)) ∧ 𝑥𝑆) → 𝐹 ∈ (𝐺 MndHom 𝐻))
146ad2antlr 725 . . . . . 6 (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍𝑆)) ∧ 𝑥𝑆) → 𝐴 ∈ (Base‘𝐺))
151, 4cntzrcl 19107 . . . . . . . . 9 (𝐴 ∈ (𝑍𝑆) → (𝐺 ∈ V ∧ 𝑆 ⊆ (Base‘𝐺)))
1615adantl 482 . . . . . . . 8 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍𝑆)) → (𝐺 ∈ V ∧ 𝑆 ⊆ (Base‘𝐺)))
1716simprd 496 . . . . . . 7 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍𝑆)) → 𝑆 ⊆ (Base‘𝐺))
1817sselda 3944 . . . . . 6 (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍𝑆)) ∧ 𝑥𝑆) → 𝑥 ∈ (Base‘𝐺))
19 eqid 2736 . . . . . . 7 (+g𝐻) = (+g𝐻)
201, 9, 19mhmlin 18609 . . . . . 6 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (Base‘𝐺) ∧ 𝑥 ∈ (Base‘𝐺)) → (𝐹‘(𝐴(+g𝐺)𝑥)) = ((𝐹𝐴)(+g𝐻)(𝐹𝑥)))
2113, 14, 18, 20syl3anc 1371 . . . . 5 (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍𝑆)) ∧ 𝑥𝑆) → (𝐹‘(𝐴(+g𝐺)𝑥)) = ((𝐹𝐴)(+g𝐻)(𝐹𝑥)))
221, 9, 19mhmlin 18609 . . . . . 6 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝐴 ∈ (Base‘𝐺)) → (𝐹‘(𝑥(+g𝐺)𝐴)) = ((𝐹𝑥)(+g𝐻)(𝐹𝐴)))
2313, 18, 14, 22syl3anc 1371 . . . . 5 (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍𝑆)) ∧ 𝑥𝑆) → (𝐹‘(𝑥(+g𝐺)𝐴)) = ((𝐹𝑥)(+g𝐻)(𝐹𝐴)))
2412, 21, 233eqtr3d 2784 . . . 4 (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍𝑆)) ∧ 𝑥𝑆) → ((𝐹𝐴)(+g𝐻)(𝐹𝑥)) = ((𝐹𝑥)(+g𝐻)(𝐹𝐴)))
2524ralrimiva 3143 . . 3 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍𝑆)) → ∀𝑥𝑆 ((𝐹𝐴)(+g𝐻)(𝐹𝑥)) = ((𝐹𝑥)(+g𝐻)(𝐹𝐴)))
263adantr 481 . . . . 5 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍𝑆)) → 𝐹:(Base‘𝐺)⟶(Base‘𝐻))
2726ffnd 6669 . . . 4 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍𝑆)) → 𝐹 Fn (Base‘𝐺))
28 oveq2 7365 . . . . . 6 (𝑦 = (𝐹𝑥) → ((𝐹𝐴)(+g𝐻)𝑦) = ((𝐹𝐴)(+g𝐻)(𝐹𝑥)))
29 oveq1 7364 . . . . . 6 (𝑦 = (𝐹𝑥) → (𝑦(+g𝐻)(𝐹𝐴)) = ((𝐹𝑥)(+g𝐻)(𝐹𝐴)))
3028, 29eqeq12d 2752 . . . . 5 (𝑦 = (𝐹𝑥) → (((𝐹𝐴)(+g𝐻)𝑦) = (𝑦(+g𝐻)(𝐹𝐴)) ↔ ((𝐹𝐴)(+g𝐻)(𝐹𝑥)) = ((𝐹𝑥)(+g𝐻)(𝐹𝐴))))
3130ralima 7188 . . . 4 ((𝐹 Fn (Base‘𝐺) ∧ 𝑆 ⊆ (Base‘𝐺)) → (∀𝑦 ∈ (𝐹𝑆)((𝐹𝐴)(+g𝐻)𝑦) = (𝑦(+g𝐻)(𝐹𝐴)) ↔ ∀𝑥𝑆 ((𝐹𝐴)(+g𝐻)(𝐹𝑥)) = ((𝐹𝑥)(+g𝐻)(𝐹𝐴))))
3227, 17, 31syl2anc 584 . . 3 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍𝑆)) → (∀𝑦 ∈ (𝐹𝑆)((𝐹𝐴)(+g𝐻)𝑦) = (𝑦(+g𝐻)(𝐹𝐴)) ↔ ∀𝑥𝑆 ((𝐹𝐴)(+g𝐻)(𝐹𝑥)) = ((𝐹𝑥)(+g𝐻)(𝐹𝐴))))
3325, 32mpbird 256 . 2 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍𝑆)) → ∀𝑦 ∈ (𝐹𝑆)((𝐹𝐴)(+g𝐻)𝑦) = (𝑦(+g𝐻)(𝐹𝐴)))
34 imassrn 6024 . . . 4 (𝐹𝑆) ⊆ ran 𝐹
3526frnd 6676 . . . 4 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍𝑆)) → ran 𝐹 ⊆ (Base‘𝐻))
3634, 35sstrid 3955 . . 3 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍𝑆)) → (𝐹𝑆) ⊆ (Base‘𝐻))
37 cntzmhm.y . . . 4 𝑌 = (Cntz‘𝐻)
382, 19, 37elcntz 19102 . . 3 ((𝐹𝑆) ⊆ (Base‘𝐻) → ((𝐹𝐴) ∈ (𝑌‘(𝐹𝑆)) ↔ ((𝐹𝐴) ∈ (Base‘𝐻) ∧ ∀𝑦 ∈ (𝐹𝑆)((𝐹𝐴)(+g𝐻)𝑦) = (𝑦(+g𝐻)(𝐹𝐴)))))
3936, 38syl 17 . 2 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍𝑆)) → ((𝐹𝐴) ∈ (𝑌‘(𝐹𝑆)) ↔ ((𝐹𝐴) ∈ (Base‘𝐻) ∧ ∀𝑦 ∈ (𝐹𝑆)((𝐹𝐴)(+g𝐻)𝑦) = (𝑦(+g𝐻)(𝐹𝐴)))))
408, 33, 39mpbir2and 711 1 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍𝑆)) → (𝐹𝐴) ∈ (𝑌‘(𝐹𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3064  Vcvv 3445  wss 3910  ran crn 5634  cima 5636   Fn wfn 6491  wf 6492  cfv 6496  (class class class)co 7357  Basecbs 17083  +gcplusg 17133   MndHom cmhm 18599  Cntzccntz 19095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-ov 7360  df-oprab 7361  df-mpo 7362  df-map 8767  df-mhm 18601  df-cntz 19097
This theorem is referenced by:  cntzmhm2  19120
  Copyright terms: Public domain W3C validator