MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cntzmhm Structured version   Visualization version   GIF version

Theorem cntzmhm 19372
Description: Centralizers in a monoid are preserved by monoid homomorphisms. (Contributed by Mario Carneiro, 24-Apr-2016.)
Hypotheses
Ref Expression
cntzmhm.z 𝑍 = (Cntz‘𝐺)
cntzmhm.y 𝑌 = (Cntz‘𝐻)
Assertion
Ref Expression
cntzmhm ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍𝑆)) → (𝐹𝐴) ∈ (𝑌‘(𝐹𝑆)))

Proof of Theorem cntzmhm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2735 . . . 4 (Base‘𝐺) = (Base‘𝐺)
2 eqid 2735 . . . 4 (Base‘𝐻) = (Base‘𝐻)
31, 2mhmf 18815 . . 3 (𝐹 ∈ (𝐺 MndHom 𝐻) → 𝐹:(Base‘𝐺)⟶(Base‘𝐻))
4 cntzmhm.z . . . . 5 𝑍 = (Cntz‘𝐺)
51, 4cntzssv 19359 . . . 4 (𝑍𝑆) ⊆ (Base‘𝐺)
65sseli 3991 . . 3 (𝐴 ∈ (𝑍𝑆) → 𝐴 ∈ (Base‘𝐺))
7 ffvelcdm 7101 . . 3 ((𝐹:(Base‘𝐺)⟶(Base‘𝐻) ∧ 𝐴 ∈ (Base‘𝐺)) → (𝐹𝐴) ∈ (Base‘𝐻))
83, 6, 7syl2an 596 . 2 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍𝑆)) → (𝐹𝐴) ∈ (Base‘𝐻))
9 eqid 2735 . . . . . . . 8 (+g𝐺) = (+g𝐺)
109, 4cntzi 19360 . . . . . . 7 ((𝐴 ∈ (𝑍𝑆) ∧ 𝑥𝑆) → (𝐴(+g𝐺)𝑥) = (𝑥(+g𝐺)𝐴))
1110adantll 714 . . . . . 6 (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍𝑆)) ∧ 𝑥𝑆) → (𝐴(+g𝐺)𝑥) = (𝑥(+g𝐺)𝐴))
1211fveq2d 6911 . . . . 5 (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍𝑆)) ∧ 𝑥𝑆) → (𝐹‘(𝐴(+g𝐺)𝑥)) = (𝐹‘(𝑥(+g𝐺)𝐴)))
13 simpll 767 . . . . . 6 (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍𝑆)) ∧ 𝑥𝑆) → 𝐹 ∈ (𝐺 MndHom 𝐻))
146ad2antlr 727 . . . . . 6 (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍𝑆)) ∧ 𝑥𝑆) → 𝐴 ∈ (Base‘𝐺))
151, 4cntzrcl 19358 . . . . . . . . 9 (𝐴 ∈ (𝑍𝑆) → (𝐺 ∈ V ∧ 𝑆 ⊆ (Base‘𝐺)))
1615adantl 481 . . . . . . . 8 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍𝑆)) → (𝐺 ∈ V ∧ 𝑆 ⊆ (Base‘𝐺)))
1716simprd 495 . . . . . . 7 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍𝑆)) → 𝑆 ⊆ (Base‘𝐺))
1817sselda 3995 . . . . . 6 (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍𝑆)) ∧ 𝑥𝑆) → 𝑥 ∈ (Base‘𝐺))
19 eqid 2735 . . . . . . 7 (+g𝐻) = (+g𝐻)
201, 9, 19mhmlin 18819 . . . . . 6 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (Base‘𝐺) ∧ 𝑥 ∈ (Base‘𝐺)) → (𝐹‘(𝐴(+g𝐺)𝑥)) = ((𝐹𝐴)(+g𝐻)(𝐹𝑥)))
2113, 14, 18, 20syl3anc 1370 . . . . 5 (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍𝑆)) ∧ 𝑥𝑆) → (𝐹‘(𝐴(+g𝐺)𝑥)) = ((𝐹𝐴)(+g𝐻)(𝐹𝑥)))
221, 9, 19mhmlin 18819 . . . . . 6 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝐴 ∈ (Base‘𝐺)) → (𝐹‘(𝑥(+g𝐺)𝐴)) = ((𝐹𝑥)(+g𝐻)(𝐹𝐴)))
2313, 18, 14, 22syl3anc 1370 . . . . 5 (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍𝑆)) ∧ 𝑥𝑆) → (𝐹‘(𝑥(+g𝐺)𝐴)) = ((𝐹𝑥)(+g𝐻)(𝐹𝐴)))
2412, 21, 233eqtr3d 2783 . . . 4 (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍𝑆)) ∧ 𝑥𝑆) → ((𝐹𝐴)(+g𝐻)(𝐹𝑥)) = ((𝐹𝑥)(+g𝐻)(𝐹𝐴)))
2524ralrimiva 3144 . . 3 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍𝑆)) → ∀𝑥𝑆 ((𝐹𝐴)(+g𝐻)(𝐹𝑥)) = ((𝐹𝑥)(+g𝐻)(𝐹𝐴)))
263adantr 480 . . . . 5 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍𝑆)) → 𝐹:(Base‘𝐺)⟶(Base‘𝐻))
2726ffnd 6738 . . . 4 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍𝑆)) → 𝐹 Fn (Base‘𝐺))
28 oveq2 7439 . . . . . 6 (𝑦 = (𝐹𝑥) → ((𝐹𝐴)(+g𝐻)𝑦) = ((𝐹𝐴)(+g𝐻)(𝐹𝑥)))
29 oveq1 7438 . . . . . 6 (𝑦 = (𝐹𝑥) → (𝑦(+g𝐻)(𝐹𝐴)) = ((𝐹𝑥)(+g𝐻)(𝐹𝐴)))
3028, 29eqeq12d 2751 . . . . 5 (𝑦 = (𝐹𝑥) → (((𝐹𝐴)(+g𝐻)𝑦) = (𝑦(+g𝐻)(𝐹𝐴)) ↔ ((𝐹𝐴)(+g𝐻)(𝐹𝑥)) = ((𝐹𝑥)(+g𝐻)(𝐹𝐴))))
3130ralima 7257 . . . 4 ((𝐹 Fn (Base‘𝐺) ∧ 𝑆 ⊆ (Base‘𝐺)) → (∀𝑦 ∈ (𝐹𝑆)((𝐹𝐴)(+g𝐻)𝑦) = (𝑦(+g𝐻)(𝐹𝐴)) ↔ ∀𝑥𝑆 ((𝐹𝐴)(+g𝐻)(𝐹𝑥)) = ((𝐹𝑥)(+g𝐻)(𝐹𝐴))))
3227, 17, 31syl2anc 584 . . 3 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍𝑆)) → (∀𝑦 ∈ (𝐹𝑆)((𝐹𝐴)(+g𝐻)𝑦) = (𝑦(+g𝐻)(𝐹𝐴)) ↔ ∀𝑥𝑆 ((𝐹𝐴)(+g𝐻)(𝐹𝑥)) = ((𝐹𝑥)(+g𝐻)(𝐹𝐴))))
3325, 32mpbird 257 . 2 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍𝑆)) → ∀𝑦 ∈ (𝐹𝑆)((𝐹𝐴)(+g𝐻)𝑦) = (𝑦(+g𝐻)(𝐹𝐴)))
34 imassrn 6091 . . . 4 (𝐹𝑆) ⊆ ran 𝐹
3526frnd 6745 . . . 4 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍𝑆)) → ran 𝐹 ⊆ (Base‘𝐻))
3634, 35sstrid 4007 . . 3 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍𝑆)) → (𝐹𝑆) ⊆ (Base‘𝐻))
37 cntzmhm.y . . . 4 𝑌 = (Cntz‘𝐻)
382, 19, 37elcntz 19353 . . 3 ((𝐹𝑆) ⊆ (Base‘𝐻) → ((𝐹𝐴) ∈ (𝑌‘(𝐹𝑆)) ↔ ((𝐹𝐴) ∈ (Base‘𝐻) ∧ ∀𝑦 ∈ (𝐹𝑆)((𝐹𝐴)(+g𝐻)𝑦) = (𝑦(+g𝐻)(𝐹𝐴)))))
3936, 38syl 17 . 2 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍𝑆)) → ((𝐹𝐴) ∈ (𝑌‘(𝐹𝑆)) ↔ ((𝐹𝐴) ∈ (Base‘𝐻) ∧ ∀𝑦 ∈ (𝐹𝑆)((𝐹𝐴)(+g𝐻)𝑦) = (𝑦(+g𝐻)(𝐹𝐴)))))
408, 33, 39mpbir2and 713 1 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍𝑆)) → (𝐹𝐴) ∈ (𝑌‘(𝐹𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wral 3059  Vcvv 3478  wss 3963  ran crn 5690  cima 5692   Fn wfn 6558  wf 6559  cfv 6563  (class class class)co 7431  Basecbs 17245  +gcplusg 17298   MndHom cmhm 18807  Cntzccntz 19346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-map 8867  df-mhm 18809  df-cntz 19348
This theorem is referenced by:  cntzmhm2  19373
  Copyright terms: Public domain W3C validator