| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | eqid 2737 | . . . 4
⊢
(Base‘𝐺) =
(Base‘𝐺) | 
| 2 |  | eqid 2737 | . . . 4
⊢
(Base‘𝐻) =
(Base‘𝐻) | 
| 3 | 1, 2 | mhmf 18802 | . . 3
⊢ (𝐹 ∈ (𝐺 MndHom 𝐻) → 𝐹:(Base‘𝐺)⟶(Base‘𝐻)) | 
| 4 |  | cntzmhm.z | . . . . 5
⊢ 𝑍 = (Cntz‘𝐺) | 
| 5 | 1, 4 | cntzssv 19346 | . . . 4
⊢ (𝑍‘𝑆) ⊆ (Base‘𝐺) | 
| 6 | 5 | sseli 3979 | . . 3
⊢ (𝐴 ∈ (𝑍‘𝑆) → 𝐴 ∈ (Base‘𝐺)) | 
| 7 |  | ffvelcdm 7101 | . . 3
⊢ ((𝐹:(Base‘𝐺)⟶(Base‘𝐻) ∧ 𝐴 ∈ (Base‘𝐺)) → (𝐹‘𝐴) ∈ (Base‘𝐻)) | 
| 8 | 3, 6, 7 | syl2an 596 | . 2
⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍‘𝑆)) → (𝐹‘𝐴) ∈ (Base‘𝐻)) | 
| 9 |  | eqid 2737 | . . . . . . . 8
⊢
(+g‘𝐺) = (+g‘𝐺) | 
| 10 | 9, 4 | cntzi 19347 | . . . . . . 7
⊢ ((𝐴 ∈ (𝑍‘𝑆) ∧ 𝑥 ∈ 𝑆) → (𝐴(+g‘𝐺)𝑥) = (𝑥(+g‘𝐺)𝐴)) | 
| 11 | 10 | adantll 714 | . . . . . 6
⊢ (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍‘𝑆)) ∧ 𝑥 ∈ 𝑆) → (𝐴(+g‘𝐺)𝑥) = (𝑥(+g‘𝐺)𝐴)) | 
| 12 | 11 | fveq2d 6910 | . . . . 5
⊢ (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍‘𝑆)) ∧ 𝑥 ∈ 𝑆) → (𝐹‘(𝐴(+g‘𝐺)𝑥)) = (𝐹‘(𝑥(+g‘𝐺)𝐴))) | 
| 13 |  | simpll 767 | . . . . . 6
⊢ (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍‘𝑆)) ∧ 𝑥 ∈ 𝑆) → 𝐹 ∈ (𝐺 MndHom 𝐻)) | 
| 14 | 6 | ad2antlr 727 | . . . . . 6
⊢ (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍‘𝑆)) ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ (Base‘𝐺)) | 
| 15 | 1, 4 | cntzrcl 19345 | . . . . . . . . 9
⊢ (𝐴 ∈ (𝑍‘𝑆) → (𝐺 ∈ V ∧ 𝑆 ⊆ (Base‘𝐺))) | 
| 16 | 15 | adantl 481 | . . . . . . . 8
⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍‘𝑆)) → (𝐺 ∈ V ∧ 𝑆 ⊆ (Base‘𝐺))) | 
| 17 | 16 | simprd 495 | . . . . . . 7
⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍‘𝑆)) → 𝑆 ⊆ (Base‘𝐺)) | 
| 18 | 17 | sselda 3983 | . . . . . 6
⊢ (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍‘𝑆)) ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ (Base‘𝐺)) | 
| 19 |  | eqid 2737 | . . . . . . 7
⊢
(+g‘𝐻) = (+g‘𝐻) | 
| 20 | 1, 9, 19 | mhmlin 18806 | . . . . . 6
⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (Base‘𝐺) ∧ 𝑥 ∈ (Base‘𝐺)) → (𝐹‘(𝐴(+g‘𝐺)𝑥)) = ((𝐹‘𝐴)(+g‘𝐻)(𝐹‘𝑥))) | 
| 21 | 13, 14, 18, 20 | syl3anc 1373 | . . . . 5
⊢ (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍‘𝑆)) ∧ 𝑥 ∈ 𝑆) → (𝐹‘(𝐴(+g‘𝐺)𝑥)) = ((𝐹‘𝐴)(+g‘𝐻)(𝐹‘𝑥))) | 
| 22 | 1, 9, 19 | mhmlin 18806 | . . . . . 6
⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝐴 ∈ (Base‘𝐺)) → (𝐹‘(𝑥(+g‘𝐺)𝐴)) = ((𝐹‘𝑥)(+g‘𝐻)(𝐹‘𝐴))) | 
| 23 | 13, 18, 14, 22 | syl3anc 1373 | . . . . 5
⊢ (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍‘𝑆)) ∧ 𝑥 ∈ 𝑆) → (𝐹‘(𝑥(+g‘𝐺)𝐴)) = ((𝐹‘𝑥)(+g‘𝐻)(𝐹‘𝐴))) | 
| 24 | 12, 21, 23 | 3eqtr3d 2785 | . . . 4
⊢ (((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍‘𝑆)) ∧ 𝑥 ∈ 𝑆) → ((𝐹‘𝐴)(+g‘𝐻)(𝐹‘𝑥)) = ((𝐹‘𝑥)(+g‘𝐻)(𝐹‘𝐴))) | 
| 25 | 24 | ralrimiva 3146 | . . 3
⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍‘𝑆)) → ∀𝑥 ∈ 𝑆 ((𝐹‘𝐴)(+g‘𝐻)(𝐹‘𝑥)) = ((𝐹‘𝑥)(+g‘𝐻)(𝐹‘𝐴))) | 
| 26 | 3 | adantr 480 | . . . . 5
⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍‘𝑆)) → 𝐹:(Base‘𝐺)⟶(Base‘𝐻)) | 
| 27 | 26 | ffnd 6737 | . . . 4
⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍‘𝑆)) → 𝐹 Fn (Base‘𝐺)) | 
| 28 |  | oveq2 7439 | . . . . . 6
⊢ (𝑦 = (𝐹‘𝑥) → ((𝐹‘𝐴)(+g‘𝐻)𝑦) = ((𝐹‘𝐴)(+g‘𝐻)(𝐹‘𝑥))) | 
| 29 |  | oveq1 7438 | . . . . . 6
⊢ (𝑦 = (𝐹‘𝑥) → (𝑦(+g‘𝐻)(𝐹‘𝐴)) = ((𝐹‘𝑥)(+g‘𝐻)(𝐹‘𝐴))) | 
| 30 | 28, 29 | eqeq12d 2753 | . . . . 5
⊢ (𝑦 = (𝐹‘𝑥) → (((𝐹‘𝐴)(+g‘𝐻)𝑦) = (𝑦(+g‘𝐻)(𝐹‘𝐴)) ↔ ((𝐹‘𝐴)(+g‘𝐻)(𝐹‘𝑥)) = ((𝐹‘𝑥)(+g‘𝐻)(𝐹‘𝐴)))) | 
| 31 | 30 | ralima 7257 | . . . 4
⊢ ((𝐹 Fn (Base‘𝐺) ∧ 𝑆 ⊆ (Base‘𝐺)) → (∀𝑦 ∈ (𝐹 “ 𝑆)((𝐹‘𝐴)(+g‘𝐻)𝑦) = (𝑦(+g‘𝐻)(𝐹‘𝐴)) ↔ ∀𝑥 ∈ 𝑆 ((𝐹‘𝐴)(+g‘𝐻)(𝐹‘𝑥)) = ((𝐹‘𝑥)(+g‘𝐻)(𝐹‘𝐴)))) | 
| 32 | 27, 17, 31 | syl2anc 584 | . . 3
⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍‘𝑆)) → (∀𝑦 ∈ (𝐹 “ 𝑆)((𝐹‘𝐴)(+g‘𝐻)𝑦) = (𝑦(+g‘𝐻)(𝐹‘𝐴)) ↔ ∀𝑥 ∈ 𝑆 ((𝐹‘𝐴)(+g‘𝐻)(𝐹‘𝑥)) = ((𝐹‘𝑥)(+g‘𝐻)(𝐹‘𝐴)))) | 
| 33 | 25, 32 | mpbird 257 | . 2
⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍‘𝑆)) → ∀𝑦 ∈ (𝐹 “ 𝑆)((𝐹‘𝐴)(+g‘𝐻)𝑦) = (𝑦(+g‘𝐻)(𝐹‘𝐴))) | 
| 34 |  | imassrn 6089 | . . . 4
⊢ (𝐹 “ 𝑆) ⊆ ran 𝐹 | 
| 35 | 26 | frnd 6744 | . . . 4
⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍‘𝑆)) → ran 𝐹 ⊆ (Base‘𝐻)) | 
| 36 | 34, 35 | sstrid 3995 | . . 3
⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍‘𝑆)) → (𝐹 “ 𝑆) ⊆ (Base‘𝐻)) | 
| 37 |  | cntzmhm.y | . . . 4
⊢ 𝑌 = (Cntz‘𝐻) | 
| 38 | 2, 19, 37 | elcntz 19340 | . . 3
⊢ ((𝐹 “ 𝑆) ⊆ (Base‘𝐻) → ((𝐹‘𝐴) ∈ (𝑌‘(𝐹 “ 𝑆)) ↔ ((𝐹‘𝐴) ∈ (Base‘𝐻) ∧ ∀𝑦 ∈ (𝐹 “ 𝑆)((𝐹‘𝐴)(+g‘𝐻)𝑦) = (𝑦(+g‘𝐻)(𝐹‘𝐴))))) | 
| 39 | 36, 38 | syl 17 | . 2
⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍‘𝑆)) → ((𝐹‘𝐴) ∈ (𝑌‘(𝐹 “ 𝑆)) ↔ ((𝐹‘𝐴) ∈ (Base‘𝐻) ∧ ∀𝑦 ∈ (𝐹 “ 𝑆)((𝐹‘𝐴)(+g‘𝐻)𝑦) = (𝑦(+g‘𝐻)(𝐹‘𝐴))))) | 
| 40 | 8, 33, 39 | mpbir2and 713 | 1
⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍‘𝑆)) → (𝐹‘𝐴) ∈ (𝑌‘(𝐹 “ 𝑆))) |