MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cofu2 Structured version   Visualization version   GIF version

Theorem cofu2 17788
Description: Value of the morphism part of the functor composition. (Contributed by Mario Carneiro, 28-Jan-2017.)
Hypotheses
Ref Expression
cofuval.b 𝐵 = (Base‘𝐶)
cofuval.f (𝜑𝐹 ∈ (𝐶 Func 𝐷))
cofuval.g (𝜑𝐺 ∈ (𝐷 Func 𝐸))
cofu2nd.x (𝜑𝑋𝐵)
cofu2nd.y (𝜑𝑌𝐵)
cofu2.h 𝐻 = (Hom ‘𝐶)
cofu2.y (𝜑𝑅 ∈ (𝑋𝐻𝑌))
Assertion
Ref Expression
cofu2 (𝜑 → ((𝑋(2nd ‘(𝐺func 𝐹))𝑌)‘𝑅) = ((((1st𝐹)‘𝑋)(2nd𝐺)((1st𝐹)‘𝑌))‘((𝑋(2nd𝐹)𝑌)‘𝑅)))

Proof of Theorem cofu2
StepHypRef Expression
1 cofuval.b . . . 4 𝐵 = (Base‘𝐶)
2 cofuval.f . . . 4 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
3 cofuval.g . . . 4 (𝜑𝐺 ∈ (𝐷 Func 𝐸))
4 cofu2nd.x . . . 4 (𝜑𝑋𝐵)
5 cofu2nd.y . . . 4 (𝜑𝑌𝐵)
61, 2, 3, 4, 5cofu2nd 17787 . . 3 (𝜑 → (𝑋(2nd ‘(𝐺func 𝐹))𝑌) = ((((1st𝐹)‘𝑋)(2nd𝐺)((1st𝐹)‘𝑌)) ∘ (𝑋(2nd𝐹)𝑌)))
76fveq1d 6819 . 2 (𝜑 → ((𝑋(2nd ‘(𝐺func 𝐹))𝑌)‘𝑅) = (((((1st𝐹)‘𝑋)(2nd𝐺)((1st𝐹)‘𝑌)) ∘ (𝑋(2nd𝐹)𝑌))‘𝑅))
8 cofu2.h . . . 4 𝐻 = (Hom ‘𝐶)
9 eqid 2731 . . . 4 (Hom ‘𝐷) = (Hom ‘𝐷)
10 relfunc 17764 . . . . 5 Rel (𝐶 Func 𝐷)
11 1st2ndbr 7969 . . . . 5 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
1210, 2, 11sylancr 587 . . . 4 (𝜑 → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
131, 8, 9, 12, 4, 5funcf2 17770 . . 3 (𝜑 → (𝑋(2nd𝐹)𝑌):(𝑋𝐻𝑌)⟶(((1st𝐹)‘𝑋)(Hom ‘𝐷)((1st𝐹)‘𝑌)))
14 cofu2.y . . 3 (𝜑𝑅 ∈ (𝑋𝐻𝑌))
15 fvco3 6916 . . 3 (((𝑋(2nd𝐹)𝑌):(𝑋𝐻𝑌)⟶(((1st𝐹)‘𝑋)(Hom ‘𝐷)((1st𝐹)‘𝑌)) ∧ 𝑅 ∈ (𝑋𝐻𝑌)) → (((((1st𝐹)‘𝑋)(2nd𝐺)((1st𝐹)‘𝑌)) ∘ (𝑋(2nd𝐹)𝑌))‘𝑅) = ((((1st𝐹)‘𝑋)(2nd𝐺)((1st𝐹)‘𝑌))‘((𝑋(2nd𝐹)𝑌)‘𝑅)))
1613, 14, 15syl2anc 584 . 2 (𝜑 → (((((1st𝐹)‘𝑋)(2nd𝐺)((1st𝐹)‘𝑌)) ∘ (𝑋(2nd𝐹)𝑌))‘𝑅) = ((((1st𝐹)‘𝑋)(2nd𝐺)((1st𝐹)‘𝑌))‘((𝑋(2nd𝐹)𝑌)‘𝑅)))
177, 16eqtrd 2766 1 (𝜑 → ((𝑋(2nd ‘(𝐺func 𝐹))𝑌)‘𝑅) = ((((1st𝐹)‘𝑋)(2nd𝐺)((1st𝐹)‘𝑌))‘((𝑋(2nd𝐹)𝑌)‘𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111   class class class wbr 5086  ccom 5615  Rel wrel 5616  wf 6472  cfv 6476  (class class class)co 7341  1st c1st 7914  2nd c2nd 7915  Basecbs 17115  Hom chom 17167   Func cfunc 17756  func ccofu 17758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-ov 7344  df-oprab 7345  df-mpo 7346  df-1st 7916  df-2nd 7917  df-map 8747  df-ixp 8817  df-func 17760  df-cofu 17762
This theorem is referenced by:  cofucl  17790  1st2ndprf  18107  uncf2  18138  yonedalem22  18179  cofu2a  49127  cofid2a  49145  cofuswapf2  49327  prcofdiag1  49425  prcofdiag  49426  oppfdiag  49448
  Copyright terms: Public domain W3C validator