| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cofu2 | Structured version Visualization version GIF version | ||
| Description: Value of the morphism part of the functor composition. (Contributed by Mario Carneiro, 28-Jan-2017.) |
| Ref | Expression |
|---|---|
| cofuval.b | ⊢ 𝐵 = (Base‘𝐶) |
| cofuval.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
| cofuval.g | ⊢ (𝜑 → 𝐺 ∈ (𝐷 Func 𝐸)) |
| cofu2nd.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| cofu2nd.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| cofu2.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| cofu2.y | ⊢ (𝜑 → 𝑅 ∈ (𝑋𝐻𝑌)) |
| Ref | Expression |
|---|---|
| cofu2 | ⊢ (𝜑 → ((𝑋(2nd ‘(𝐺 ∘func 𝐹))𝑌)‘𝑅) = ((((1st ‘𝐹)‘𝑋)(2nd ‘𝐺)((1st ‘𝐹)‘𝑌))‘((𝑋(2nd ‘𝐹)𝑌)‘𝑅))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cofuval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
| 2 | cofuval.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) | |
| 3 | cofuval.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (𝐷 Func 𝐸)) | |
| 4 | cofu2nd.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 5 | cofu2nd.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 6 | 1, 2, 3, 4, 5 | cofu2nd 17901 | . . 3 ⊢ (𝜑 → (𝑋(2nd ‘(𝐺 ∘func 𝐹))𝑌) = ((((1st ‘𝐹)‘𝑋)(2nd ‘𝐺)((1st ‘𝐹)‘𝑌)) ∘ (𝑋(2nd ‘𝐹)𝑌))) |
| 7 | 6 | fveq1d 6888 | . 2 ⊢ (𝜑 → ((𝑋(2nd ‘(𝐺 ∘func 𝐹))𝑌)‘𝑅) = (((((1st ‘𝐹)‘𝑋)(2nd ‘𝐺)((1st ‘𝐹)‘𝑌)) ∘ (𝑋(2nd ‘𝐹)𝑌))‘𝑅)) |
| 8 | cofu2.h | . . . 4 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 9 | eqid 2734 | . . . 4 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
| 10 | relfunc 17878 | . . . . 5 ⊢ Rel (𝐶 Func 𝐷) | |
| 11 | 1st2ndbr 8049 | . . . . 5 ⊢ ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) | |
| 12 | 10, 2, 11 | sylancr 587 | . . . 4 ⊢ (𝜑 → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) |
| 13 | 1, 8, 9, 12, 4, 5 | funcf2 17884 | . . 3 ⊢ (𝜑 → (𝑋(2nd ‘𝐹)𝑌):(𝑋𝐻𝑌)⟶(((1st ‘𝐹)‘𝑋)(Hom ‘𝐷)((1st ‘𝐹)‘𝑌))) |
| 14 | cofu2.y | . . 3 ⊢ (𝜑 → 𝑅 ∈ (𝑋𝐻𝑌)) | |
| 15 | fvco3 6988 | . . 3 ⊢ (((𝑋(2nd ‘𝐹)𝑌):(𝑋𝐻𝑌)⟶(((1st ‘𝐹)‘𝑋)(Hom ‘𝐷)((1st ‘𝐹)‘𝑌)) ∧ 𝑅 ∈ (𝑋𝐻𝑌)) → (((((1st ‘𝐹)‘𝑋)(2nd ‘𝐺)((1st ‘𝐹)‘𝑌)) ∘ (𝑋(2nd ‘𝐹)𝑌))‘𝑅) = ((((1st ‘𝐹)‘𝑋)(2nd ‘𝐺)((1st ‘𝐹)‘𝑌))‘((𝑋(2nd ‘𝐹)𝑌)‘𝑅))) | |
| 16 | 13, 14, 15 | syl2anc 584 | . 2 ⊢ (𝜑 → (((((1st ‘𝐹)‘𝑋)(2nd ‘𝐺)((1st ‘𝐹)‘𝑌)) ∘ (𝑋(2nd ‘𝐹)𝑌))‘𝑅) = ((((1st ‘𝐹)‘𝑋)(2nd ‘𝐺)((1st ‘𝐹)‘𝑌))‘((𝑋(2nd ‘𝐹)𝑌)‘𝑅))) |
| 17 | 7, 16 | eqtrd 2769 | 1 ⊢ (𝜑 → ((𝑋(2nd ‘(𝐺 ∘func 𝐹))𝑌)‘𝑅) = ((((1st ‘𝐹)‘𝑋)(2nd ‘𝐺)((1st ‘𝐹)‘𝑌))‘((𝑋(2nd ‘𝐹)𝑌)‘𝑅))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 class class class wbr 5123 ∘ ccom 5669 Rel wrel 5670 ⟶wf 6537 ‘cfv 6541 (class class class)co 7413 1st c1st 7994 2nd c2nd 7995 Basecbs 17229 Hom chom 17284 Func cfunc 17870 ∘func ccofu 17872 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7416 df-oprab 7417 df-mpo 7418 df-1st 7996 df-2nd 7997 df-map 8850 df-ixp 8920 df-func 17874 df-cofu 17876 |
| This theorem is referenced by: cofucl 17904 1st2ndprf 18221 uncf2 18252 yonedalem22 18293 cofuswapf2 48966 |
| Copyright terms: Public domain | W3C validator |