![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cofu2 | Structured version Visualization version GIF version |
Description: Value of the morphism part of the functor composition. (Contributed by Mario Carneiro, 28-Jan-2017.) |
Ref | Expression |
---|---|
cofuval.b | ⊢ 𝐵 = (Base‘𝐶) |
cofuval.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
cofuval.g | ⊢ (𝜑 → 𝐺 ∈ (𝐷 Func 𝐸)) |
cofu2nd.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
cofu2nd.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
cofu2.h | ⊢ 𝐻 = (Hom ‘𝐶) |
cofu2.y | ⊢ (𝜑 → 𝑅 ∈ (𝑋𝐻𝑌)) |
Ref | Expression |
---|---|
cofu2 | ⊢ (𝜑 → ((𝑋(2nd ‘(𝐺 ∘func 𝐹))𝑌)‘𝑅) = ((((1st ‘𝐹)‘𝑋)(2nd ‘𝐺)((1st ‘𝐹)‘𝑌))‘((𝑋(2nd ‘𝐹)𝑌)‘𝑅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cofuval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
2 | cofuval.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) | |
3 | cofuval.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (𝐷 Func 𝐸)) | |
4 | cofu2nd.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
5 | cofu2nd.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
6 | 1, 2, 3, 4, 5 | cofu2nd 17945 | . . 3 ⊢ (𝜑 → (𝑋(2nd ‘(𝐺 ∘func 𝐹))𝑌) = ((((1st ‘𝐹)‘𝑋)(2nd ‘𝐺)((1st ‘𝐹)‘𝑌)) ∘ (𝑋(2nd ‘𝐹)𝑌))) |
7 | 6 | fveq1d 6916 | . 2 ⊢ (𝜑 → ((𝑋(2nd ‘(𝐺 ∘func 𝐹))𝑌)‘𝑅) = (((((1st ‘𝐹)‘𝑋)(2nd ‘𝐺)((1st ‘𝐹)‘𝑌)) ∘ (𝑋(2nd ‘𝐹)𝑌))‘𝑅)) |
8 | cofu2.h | . . . 4 ⊢ 𝐻 = (Hom ‘𝐶) | |
9 | eqid 2737 | . . . 4 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
10 | relfunc 17922 | . . . . 5 ⊢ Rel (𝐶 Func 𝐷) | |
11 | 1st2ndbr 8075 | . . . . 5 ⊢ ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) | |
12 | 10, 2, 11 | sylancr 587 | . . . 4 ⊢ (𝜑 → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) |
13 | 1, 8, 9, 12, 4, 5 | funcf2 17928 | . . 3 ⊢ (𝜑 → (𝑋(2nd ‘𝐹)𝑌):(𝑋𝐻𝑌)⟶(((1st ‘𝐹)‘𝑋)(Hom ‘𝐷)((1st ‘𝐹)‘𝑌))) |
14 | cofu2.y | . . 3 ⊢ (𝜑 → 𝑅 ∈ (𝑋𝐻𝑌)) | |
15 | fvco3 7015 | . . 3 ⊢ (((𝑋(2nd ‘𝐹)𝑌):(𝑋𝐻𝑌)⟶(((1st ‘𝐹)‘𝑋)(Hom ‘𝐷)((1st ‘𝐹)‘𝑌)) ∧ 𝑅 ∈ (𝑋𝐻𝑌)) → (((((1st ‘𝐹)‘𝑋)(2nd ‘𝐺)((1st ‘𝐹)‘𝑌)) ∘ (𝑋(2nd ‘𝐹)𝑌))‘𝑅) = ((((1st ‘𝐹)‘𝑋)(2nd ‘𝐺)((1st ‘𝐹)‘𝑌))‘((𝑋(2nd ‘𝐹)𝑌)‘𝑅))) | |
16 | 13, 14, 15 | syl2anc 584 | . 2 ⊢ (𝜑 → (((((1st ‘𝐹)‘𝑋)(2nd ‘𝐺)((1st ‘𝐹)‘𝑌)) ∘ (𝑋(2nd ‘𝐹)𝑌))‘𝑅) = ((((1st ‘𝐹)‘𝑋)(2nd ‘𝐺)((1st ‘𝐹)‘𝑌))‘((𝑋(2nd ‘𝐹)𝑌)‘𝑅))) |
17 | 7, 16 | eqtrd 2777 | 1 ⊢ (𝜑 → ((𝑋(2nd ‘(𝐺 ∘func 𝐹))𝑌)‘𝑅) = ((((1st ‘𝐹)‘𝑋)(2nd ‘𝐺)((1st ‘𝐹)‘𝑌))‘((𝑋(2nd ‘𝐹)𝑌)‘𝑅))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 class class class wbr 5151 ∘ ccom 5697 Rel wrel 5698 ⟶wf 6565 ‘cfv 6569 (class class class)co 7438 1st c1st 8020 2nd c2nd 8021 Basecbs 17254 Hom chom 17318 Func cfunc 17914 ∘func ccofu 17916 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-ov 7441 df-oprab 7442 df-mpo 7443 df-1st 8022 df-2nd 8023 df-map 8876 df-ixp 8946 df-func 17918 df-cofu 17920 |
This theorem is referenced by: cofucl 17948 1st2ndprf 18271 uncf2 18303 yonedalem22 18344 |
Copyright terms: Public domain | W3C validator |