| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cofu2 | Structured version Visualization version GIF version | ||
| Description: Value of the morphism part of the functor composition. (Contributed by Mario Carneiro, 28-Jan-2017.) |
| Ref | Expression |
|---|---|
| cofuval.b | ⊢ 𝐵 = (Base‘𝐶) |
| cofuval.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
| cofuval.g | ⊢ (𝜑 → 𝐺 ∈ (𝐷 Func 𝐸)) |
| cofu2nd.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| cofu2nd.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| cofu2.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| cofu2.y | ⊢ (𝜑 → 𝑅 ∈ (𝑋𝐻𝑌)) |
| Ref | Expression |
|---|---|
| cofu2 | ⊢ (𝜑 → ((𝑋(2nd ‘(𝐺 ∘func 𝐹))𝑌)‘𝑅) = ((((1st ‘𝐹)‘𝑋)(2nd ‘𝐺)((1st ‘𝐹)‘𝑌))‘((𝑋(2nd ‘𝐹)𝑌)‘𝑅))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cofuval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
| 2 | cofuval.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) | |
| 3 | cofuval.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (𝐷 Func 𝐸)) | |
| 4 | cofu2nd.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 5 | cofu2nd.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 6 | 1, 2, 3, 4, 5 | cofu2nd 17787 | . . 3 ⊢ (𝜑 → (𝑋(2nd ‘(𝐺 ∘func 𝐹))𝑌) = ((((1st ‘𝐹)‘𝑋)(2nd ‘𝐺)((1st ‘𝐹)‘𝑌)) ∘ (𝑋(2nd ‘𝐹)𝑌))) |
| 7 | 6 | fveq1d 6819 | . 2 ⊢ (𝜑 → ((𝑋(2nd ‘(𝐺 ∘func 𝐹))𝑌)‘𝑅) = (((((1st ‘𝐹)‘𝑋)(2nd ‘𝐺)((1st ‘𝐹)‘𝑌)) ∘ (𝑋(2nd ‘𝐹)𝑌))‘𝑅)) |
| 8 | cofu2.h | . . . 4 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 9 | eqid 2731 | . . . 4 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
| 10 | relfunc 17764 | . . . . 5 ⊢ Rel (𝐶 Func 𝐷) | |
| 11 | 1st2ndbr 7969 | . . . . 5 ⊢ ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) | |
| 12 | 10, 2, 11 | sylancr 587 | . . . 4 ⊢ (𝜑 → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) |
| 13 | 1, 8, 9, 12, 4, 5 | funcf2 17770 | . . 3 ⊢ (𝜑 → (𝑋(2nd ‘𝐹)𝑌):(𝑋𝐻𝑌)⟶(((1st ‘𝐹)‘𝑋)(Hom ‘𝐷)((1st ‘𝐹)‘𝑌))) |
| 14 | cofu2.y | . . 3 ⊢ (𝜑 → 𝑅 ∈ (𝑋𝐻𝑌)) | |
| 15 | fvco3 6916 | . . 3 ⊢ (((𝑋(2nd ‘𝐹)𝑌):(𝑋𝐻𝑌)⟶(((1st ‘𝐹)‘𝑋)(Hom ‘𝐷)((1st ‘𝐹)‘𝑌)) ∧ 𝑅 ∈ (𝑋𝐻𝑌)) → (((((1st ‘𝐹)‘𝑋)(2nd ‘𝐺)((1st ‘𝐹)‘𝑌)) ∘ (𝑋(2nd ‘𝐹)𝑌))‘𝑅) = ((((1st ‘𝐹)‘𝑋)(2nd ‘𝐺)((1st ‘𝐹)‘𝑌))‘((𝑋(2nd ‘𝐹)𝑌)‘𝑅))) | |
| 16 | 13, 14, 15 | syl2anc 584 | . 2 ⊢ (𝜑 → (((((1st ‘𝐹)‘𝑋)(2nd ‘𝐺)((1st ‘𝐹)‘𝑌)) ∘ (𝑋(2nd ‘𝐹)𝑌))‘𝑅) = ((((1st ‘𝐹)‘𝑋)(2nd ‘𝐺)((1st ‘𝐹)‘𝑌))‘((𝑋(2nd ‘𝐹)𝑌)‘𝑅))) |
| 17 | 7, 16 | eqtrd 2766 | 1 ⊢ (𝜑 → ((𝑋(2nd ‘(𝐺 ∘func 𝐹))𝑌)‘𝑅) = ((((1st ‘𝐹)‘𝑋)(2nd ‘𝐺)((1st ‘𝐹)‘𝑌))‘((𝑋(2nd ‘𝐹)𝑌)‘𝑅))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 class class class wbr 5086 ∘ ccom 5615 Rel wrel 5616 ⟶wf 6472 ‘cfv 6476 (class class class)co 7341 1st c1st 7914 2nd c2nd 7915 Basecbs 17115 Hom chom 17167 Func cfunc 17756 ∘func ccofu 17758 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 df-1st 7916 df-2nd 7917 df-map 8747 df-ixp 8817 df-func 17760 df-cofu 17762 |
| This theorem is referenced by: cofucl 17790 1st2ndprf 18107 uncf2 18138 yonedalem22 18179 cofu2a 49127 cofid2a 49145 cofuswapf2 49327 prcofdiag1 49425 prcofdiag 49426 oppfdiag 49448 |
| Copyright terms: Public domain | W3C validator |