![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cofu2 | Structured version Visualization version GIF version |
Description: Value of the morphism part of the functor composition. (Contributed by Mario Carneiro, 28-Jan-2017.) |
Ref | Expression |
---|---|
cofuval.b | ⊢ 𝐵 = (Base‘𝐶) |
cofuval.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
cofuval.g | ⊢ (𝜑 → 𝐺 ∈ (𝐷 Func 𝐸)) |
cofu2nd.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
cofu2nd.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
cofu2.h | ⊢ 𝐻 = (Hom ‘𝐶) |
cofu2.y | ⊢ (𝜑 → 𝑅 ∈ (𝑋𝐻𝑌)) |
Ref | Expression |
---|---|
cofu2 | ⊢ (𝜑 → ((𝑋(2nd ‘(𝐺 ∘func 𝐹))𝑌)‘𝑅) = ((((1st ‘𝐹)‘𝑋)(2nd ‘𝐺)((1st ‘𝐹)‘𝑌))‘((𝑋(2nd ‘𝐹)𝑌)‘𝑅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cofuval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
2 | cofuval.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) | |
3 | cofuval.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (𝐷 Func 𝐸)) | |
4 | cofu2nd.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
5 | cofu2nd.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
6 | 1, 2, 3, 4, 5 | cofu2nd 17870 | . . 3 ⊢ (𝜑 → (𝑋(2nd ‘(𝐺 ∘func 𝐹))𝑌) = ((((1st ‘𝐹)‘𝑋)(2nd ‘𝐺)((1st ‘𝐹)‘𝑌)) ∘ (𝑋(2nd ‘𝐹)𝑌))) |
7 | 6 | fveq1d 6899 | . 2 ⊢ (𝜑 → ((𝑋(2nd ‘(𝐺 ∘func 𝐹))𝑌)‘𝑅) = (((((1st ‘𝐹)‘𝑋)(2nd ‘𝐺)((1st ‘𝐹)‘𝑌)) ∘ (𝑋(2nd ‘𝐹)𝑌))‘𝑅)) |
8 | cofu2.h | . . . 4 ⊢ 𝐻 = (Hom ‘𝐶) | |
9 | eqid 2728 | . . . 4 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
10 | relfunc 17847 | . . . . 5 ⊢ Rel (𝐶 Func 𝐷) | |
11 | 1st2ndbr 8046 | . . . . 5 ⊢ ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) | |
12 | 10, 2, 11 | sylancr 586 | . . . 4 ⊢ (𝜑 → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) |
13 | 1, 8, 9, 12, 4, 5 | funcf2 17853 | . . 3 ⊢ (𝜑 → (𝑋(2nd ‘𝐹)𝑌):(𝑋𝐻𝑌)⟶(((1st ‘𝐹)‘𝑋)(Hom ‘𝐷)((1st ‘𝐹)‘𝑌))) |
14 | cofu2.y | . . 3 ⊢ (𝜑 → 𝑅 ∈ (𝑋𝐻𝑌)) | |
15 | fvco3 6997 | . . 3 ⊢ (((𝑋(2nd ‘𝐹)𝑌):(𝑋𝐻𝑌)⟶(((1st ‘𝐹)‘𝑋)(Hom ‘𝐷)((1st ‘𝐹)‘𝑌)) ∧ 𝑅 ∈ (𝑋𝐻𝑌)) → (((((1st ‘𝐹)‘𝑋)(2nd ‘𝐺)((1st ‘𝐹)‘𝑌)) ∘ (𝑋(2nd ‘𝐹)𝑌))‘𝑅) = ((((1st ‘𝐹)‘𝑋)(2nd ‘𝐺)((1st ‘𝐹)‘𝑌))‘((𝑋(2nd ‘𝐹)𝑌)‘𝑅))) | |
16 | 13, 14, 15 | syl2anc 583 | . 2 ⊢ (𝜑 → (((((1st ‘𝐹)‘𝑋)(2nd ‘𝐺)((1st ‘𝐹)‘𝑌)) ∘ (𝑋(2nd ‘𝐹)𝑌))‘𝑅) = ((((1st ‘𝐹)‘𝑋)(2nd ‘𝐺)((1st ‘𝐹)‘𝑌))‘((𝑋(2nd ‘𝐹)𝑌)‘𝑅))) |
17 | 7, 16 | eqtrd 2768 | 1 ⊢ (𝜑 → ((𝑋(2nd ‘(𝐺 ∘func 𝐹))𝑌)‘𝑅) = ((((1st ‘𝐹)‘𝑋)(2nd ‘𝐺)((1st ‘𝐹)‘𝑌))‘((𝑋(2nd ‘𝐹)𝑌)‘𝑅))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 class class class wbr 5148 ∘ ccom 5682 Rel wrel 5683 ⟶wf 6544 ‘cfv 6548 (class class class)co 7420 1st c1st 7991 2nd c2nd 7992 Basecbs 17179 Hom chom 17243 Func cfunc 17839 ∘func ccofu 17841 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-ov 7423 df-oprab 7424 df-mpo 7425 df-1st 7993 df-2nd 7994 df-map 8846 df-ixp 8916 df-func 17843 df-cofu 17845 |
This theorem is referenced by: cofucl 17873 1st2ndprf 18196 uncf2 18228 yonedalem22 18269 |
Copyright terms: Public domain | W3C validator |