| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cofu2 | Structured version Visualization version GIF version | ||
| Description: Value of the morphism part of the functor composition. (Contributed by Mario Carneiro, 28-Jan-2017.) |
| Ref | Expression |
|---|---|
| cofuval.b | ⊢ 𝐵 = (Base‘𝐶) |
| cofuval.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
| cofuval.g | ⊢ (𝜑 → 𝐺 ∈ (𝐷 Func 𝐸)) |
| cofu2nd.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| cofu2nd.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| cofu2.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| cofu2.y | ⊢ (𝜑 → 𝑅 ∈ (𝑋𝐻𝑌)) |
| Ref | Expression |
|---|---|
| cofu2 | ⊢ (𝜑 → ((𝑋(2nd ‘(𝐺 ∘func 𝐹))𝑌)‘𝑅) = ((((1st ‘𝐹)‘𝑋)(2nd ‘𝐺)((1st ‘𝐹)‘𝑌))‘((𝑋(2nd ‘𝐹)𝑌)‘𝑅))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cofuval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
| 2 | cofuval.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) | |
| 3 | cofuval.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (𝐷 Func 𝐸)) | |
| 4 | cofu2nd.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 5 | cofu2nd.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 6 | 1, 2, 3, 4, 5 | cofu2nd 17847 | . . 3 ⊢ (𝜑 → (𝑋(2nd ‘(𝐺 ∘func 𝐹))𝑌) = ((((1st ‘𝐹)‘𝑋)(2nd ‘𝐺)((1st ‘𝐹)‘𝑌)) ∘ (𝑋(2nd ‘𝐹)𝑌))) |
| 7 | 6 | fveq1d 6860 | . 2 ⊢ (𝜑 → ((𝑋(2nd ‘(𝐺 ∘func 𝐹))𝑌)‘𝑅) = (((((1st ‘𝐹)‘𝑋)(2nd ‘𝐺)((1st ‘𝐹)‘𝑌)) ∘ (𝑋(2nd ‘𝐹)𝑌))‘𝑅)) |
| 8 | cofu2.h | . . . 4 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 9 | eqid 2729 | . . . 4 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
| 10 | relfunc 17824 | . . . . 5 ⊢ Rel (𝐶 Func 𝐷) | |
| 11 | 1st2ndbr 8021 | . . . . 5 ⊢ ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) | |
| 12 | 10, 2, 11 | sylancr 587 | . . . 4 ⊢ (𝜑 → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) |
| 13 | 1, 8, 9, 12, 4, 5 | funcf2 17830 | . . 3 ⊢ (𝜑 → (𝑋(2nd ‘𝐹)𝑌):(𝑋𝐻𝑌)⟶(((1st ‘𝐹)‘𝑋)(Hom ‘𝐷)((1st ‘𝐹)‘𝑌))) |
| 14 | cofu2.y | . . 3 ⊢ (𝜑 → 𝑅 ∈ (𝑋𝐻𝑌)) | |
| 15 | fvco3 6960 | . . 3 ⊢ (((𝑋(2nd ‘𝐹)𝑌):(𝑋𝐻𝑌)⟶(((1st ‘𝐹)‘𝑋)(Hom ‘𝐷)((1st ‘𝐹)‘𝑌)) ∧ 𝑅 ∈ (𝑋𝐻𝑌)) → (((((1st ‘𝐹)‘𝑋)(2nd ‘𝐺)((1st ‘𝐹)‘𝑌)) ∘ (𝑋(2nd ‘𝐹)𝑌))‘𝑅) = ((((1st ‘𝐹)‘𝑋)(2nd ‘𝐺)((1st ‘𝐹)‘𝑌))‘((𝑋(2nd ‘𝐹)𝑌)‘𝑅))) | |
| 16 | 13, 14, 15 | syl2anc 584 | . 2 ⊢ (𝜑 → (((((1st ‘𝐹)‘𝑋)(2nd ‘𝐺)((1st ‘𝐹)‘𝑌)) ∘ (𝑋(2nd ‘𝐹)𝑌))‘𝑅) = ((((1st ‘𝐹)‘𝑋)(2nd ‘𝐺)((1st ‘𝐹)‘𝑌))‘((𝑋(2nd ‘𝐹)𝑌)‘𝑅))) |
| 17 | 7, 16 | eqtrd 2764 | 1 ⊢ (𝜑 → ((𝑋(2nd ‘(𝐺 ∘func 𝐹))𝑌)‘𝑅) = ((((1st ‘𝐹)‘𝑋)(2nd ‘𝐺)((1st ‘𝐹)‘𝑌))‘((𝑋(2nd ‘𝐹)𝑌)‘𝑅))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 class class class wbr 5107 ∘ ccom 5642 Rel wrel 5643 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 1st c1st 7966 2nd c2nd 7967 Basecbs 17179 Hom chom 17231 Func cfunc 17816 ∘func ccofu 17818 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-map 8801 df-ixp 8871 df-func 17820 df-cofu 17822 |
| This theorem is referenced by: cofucl 17850 1st2ndprf 18167 uncf2 18198 yonedalem22 18239 cofu2a 49084 cofid2a 49102 cofuswapf2 49284 prcofdiag1 49382 prcofdiag 49383 oppfdiag 49405 |
| Copyright terms: Public domain | W3C validator |