MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cofucl Structured version   Visualization version   GIF version

Theorem cofucl 17857
Description: The composition of two functors is a functor. Proposition 3.23 of [Adamek] p. 33. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
cofucl.f (𝜑𝐹 ∈ (𝐶 Func 𝐷))
cofucl.g (𝜑𝐺 ∈ (𝐷 Func 𝐸))
Assertion
Ref Expression
cofucl (𝜑 → (𝐺func 𝐹) ∈ (𝐶 Func 𝐸))

Proof of Theorem cofucl
Dummy variables 𝑓 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . . . 4 (Base‘𝐶) = (Base‘𝐶)
2 cofucl.f . . . 4 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
3 cofucl.g . . . 4 (𝜑𝐺 ∈ (𝐷 Func 𝐸))
41, 2, 3cofuval 17851 . . 3 (𝜑 → (𝐺func 𝐹) = ⟨((1st𝐺) ∘ (1st𝐹)), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)))⟩)
51, 2, 3cofu1st 17852 . . . 4 (𝜑 → (1st ‘(𝐺func 𝐹)) = ((1st𝐺) ∘ (1st𝐹)))
64fveq2d 6865 . . . . 5 (𝜑 → (2nd ‘(𝐺func 𝐹)) = (2nd ‘⟨((1st𝐺) ∘ (1st𝐹)), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)))⟩))
7 fvex 6874 . . . . . . 7 (1st𝐺) ∈ V
8 fvex 6874 . . . . . . 7 (1st𝐹) ∈ V
97, 8coex 7909 . . . . . 6 ((1st𝐺) ∘ (1st𝐹)) ∈ V
10 fvex 6874 . . . . . . 7 (Base‘𝐶) ∈ V
1110, 10mpoex 8061 . . . . . 6 (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦))) ∈ V
129, 11op2nd 7980 . . . . 5 (2nd ‘⟨((1st𝐺) ∘ (1st𝐹)), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)))⟩) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)))
136, 12eqtrdi 2781 . . . 4 (𝜑 → (2nd ‘(𝐺func 𝐹)) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦))))
145, 13opeq12d 4848 . . 3 (𝜑 → ⟨(1st ‘(𝐺func 𝐹)), (2nd ‘(𝐺func 𝐹))⟩ = ⟨((1st𝐺) ∘ (1st𝐹)), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)))⟩)
154, 14eqtr4d 2768 . 2 (𝜑 → (𝐺func 𝐹) = ⟨(1st ‘(𝐺func 𝐹)), (2nd ‘(𝐺func 𝐹))⟩)
16 eqid 2730 . . . . . . 7 (Base‘𝐷) = (Base‘𝐷)
17 eqid 2730 . . . . . . 7 (Base‘𝐸) = (Base‘𝐸)
18 relfunc 17831 . . . . . . . 8 Rel (𝐷 Func 𝐸)
19 1st2ndbr 8024 . . . . . . . 8 ((Rel (𝐷 Func 𝐸) ∧ 𝐺 ∈ (𝐷 Func 𝐸)) → (1st𝐺)(𝐷 Func 𝐸)(2nd𝐺))
2018, 3, 19sylancr 587 . . . . . . 7 (𝜑 → (1st𝐺)(𝐷 Func 𝐸)(2nd𝐺))
2116, 17, 20funcf1 17835 . . . . . 6 (𝜑 → (1st𝐺):(Base‘𝐷)⟶(Base‘𝐸))
22 relfunc 17831 . . . . . . . 8 Rel (𝐶 Func 𝐷)
23 1st2ndbr 8024 . . . . . . . 8 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
2422, 2, 23sylancr 587 . . . . . . 7 (𝜑 → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
251, 16, 24funcf1 17835 . . . . . 6 (𝜑 → (1st𝐹):(Base‘𝐶)⟶(Base‘𝐷))
26 fco 6715 . . . . . 6 (((1st𝐺):(Base‘𝐷)⟶(Base‘𝐸) ∧ (1st𝐹):(Base‘𝐶)⟶(Base‘𝐷)) → ((1st𝐺) ∘ (1st𝐹)):(Base‘𝐶)⟶(Base‘𝐸))
2721, 25, 26syl2anc 584 . . . . 5 (𝜑 → ((1st𝐺) ∘ (1st𝐹)):(Base‘𝐶)⟶(Base‘𝐸))
285feq1d 6673 . . . . 5 (𝜑 → ((1st ‘(𝐺func 𝐹)):(Base‘𝐶)⟶(Base‘𝐸) ↔ ((1st𝐺) ∘ (1st𝐹)):(Base‘𝐶)⟶(Base‘𝐸)))
2927, 28mpbird 257 . . . 4 (𝜑 → (1st ‘(𝐺func 𝐹)):(Base‘𝐶)⟶(Base‘𝐸))
30 eqid 2730 . . . . . . 7 (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦))) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)))
31 ovex 7423 . . . . . . . 8 (((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∈ V
32 ovex 7423 . . . . . . . 8 (𝑥(2nd𝐹)𝑦) ∈ V
3331, 32coex 7909 . . . . . . 7 ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)) ∈ V
3430, 33fnmpoi 8052 . . . . . 6 (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦))) Fn ((Base‘𝐶) × (Base‘𝐶))
3513fneq1d 6614 . . . . . 6 (𝜑 → ((2nd ‘(𝐺func 𝐹)) Fn ((Base‘𝐶) × (Base‘𝐶)) ↔ (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦))) Fn ((Base‘𝐶) × (Base‘𝐶))))
3634, 35mpbiri 258 . . . . 5 (𝜑 → (2nd ‘(𝐺func 𝐹)) Fn ((Base‘𝐶) × (Base‘𝐶)))
37 eqid 2730 . . . . . . . . . . 11 (Hom ‘𝐷) = (Hom ‘𝐷)
38 eqid 2730 . . . . . . . . . . 11 (Hom ‘𝐸) = (Hom ‘𝐸)
3920adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (1st𝐺)(𝐷 Func 𝐸)(2nd𝐺))
4025adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (1st𝐹):(Base‘𝐶)⟶(Base‘𝐷))
41 simprl 770 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑥 ∈ (Base‘𝐶))
4240, 41ffvelcdmd 7060 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((1st𝐹)‘𝑥) ∈ (Base‘𝐷))
43 simprr 772 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶))
4440, 43ffvelcdmd 7060 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((1st𝐹)‘𝑦) ∈ (Base‘𝐷))
4516, 37, 38, 39, 42, 44funcf2 17837 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)):(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦))⟶(((1st𝐺)‘((1st𝐹)‘𝑥))(Hom ‘𝐸)((1st𝐺)‘((1st𝐹)‘𝑦))))
46 eqid 2730 . . . . . . . . . . 11 (Hom ‘𝐶) = (Hom ‘𝐶)
4724adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
481, 46, 37, 47, 41, 43funcf2 17837 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd𝐹)𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦)))
49 fco 6715 . . . . . . . . . 10 (((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)):(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦))⟶(((1st𝐺)‘((1st𝐹)‘𝑥))(Hom ‘𝐸)((1st𝐺)‘((1st𝐹)‘𝑦))) ∧ (𝑥(2nd𝐹)𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦))) → ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st𝐺)‘((1st𝐹)‘𝑥))(Hom ‘𝐸)((1st𝐺)‘((1st𝐹)‘𝑦))))
5045, 48, 49syl2anc 584 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st𝐺)‘((1st𝐹)‘𝑥))(Hom ‘𝐸)((1st𝐺)‘((1st𝐹)‘𝑦))))
51 ovex 7423 . . . . . . . . . 10 (((1st𝐺)‘((1st𝐹)‘𝑥))(Hom ‘𝐸)((1st𝐺)‘((1st𝐹)‘𝑦))) ∈ V
52 ovex 7423 . . . . . . . . . 10 (𝑥(Hom ‘𝐶)𝑦) ∈ V
5351, 52elmap 8847 . . . . . . . . 9 (((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)) ∈ ((((1st𝐺)‘((1st𝐹)‘𝑥))(Hom ‘𝐸)((1st𝐺)‘((1st𝐹)‘𝑦))) ↑m (𝑥(Hom ‘𝐶)𝑦)) ↔ ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st𝐺)‘((1st𝐹)‘𝑥))(Hom ‘𝐸)((1st𝐺)‘((1st𝐹)‘𝑦))))
5450, 53sylibr 234 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)) ∈ ((((1st𝐺)‘((1st𝐹)‘𝑥))(Hom ‘𝐸)((1st𝐺)‘((1st𝐹)‘𝑦))) ↑m (𝑥(Hom ‘𝐶)𝑦)))
552adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝐹 ∈ (𝐶 Func 𝐷))
563adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝐺 ∈ (𝐷 Func 𝐸))
571, 55, 56, 41, 43cofu2nd 17854 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd ‘(𝐺func 𝐹))𝑦) = ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)))
581, 55, 56, 41cofu1 17853 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((1st ‘(𝐺func 𝐹))‘𝑥) = ((1st𝐺)‘((1st𝐹)‘𝑥)))
591, 55, 56, 43cofu1 17853 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((1st ‘(𝐺func 𝐹))‘𝑦) = ((1st𝐺)‘((1st𝐹)‘𝑦)))
6058, 59oveq12d 7408 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (((1st ‘(𝐺func 𝐹))‘𝑥)(Hom ‘𝐸)((1st ‘(𝐺func 𝐹))‘𝑦)) = (((1st𝐺)‘((1st𝐹)‘𝑥))(Hom ‘𝐸)((1st𝐺)‘((1st𝐹)‘𝑦))))
6160oveq1d 7405 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((((1st ‘(𝐺func 𝐹))‘𝑥)(Hom ‘𝐸)((1st ‘(𝐺func 𝐹))‘𝑦)) ↑m (𝑥(Hom ‘𝐶)𝑦)) = ((((1st𝐺)‘((1st𝐹)‘𝑥))(Hom ‘𝐸)((1st𝐺)‘((1st𝐹)‘𝑦))) ↑m (𝑥(Hom ‘𝐶)𝑦)))
6254, 57, 613eltr4d 2844 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd ‘(𝐺func 𝐹))𝑦) ∈ ((((1st ‘(𝐺func 𝐹))‘𝑥)(Hom ‘𝐸)((1st ‘(𝐺func 𝐹))‘𝑦)) ↑m (𝑥(Hom ‘𝐶)𝑦)))
6362ralrimivva 3181 . . . . . 6 (𝜑 → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥(2nd ‘(𝐺func 𝐹))𝑦) ∈ ((((1st ‘(𝐺func 𝐹))‘𝑥)(Hom ‘𝐸)((1st ‘(𝐺func 𝐹))‘𝑦)) ↑m (𝑥(Hom ‘𝐶)𝑦)))
64 fveq2 6861 . . . . . . . . 9 (𝑧 = ⟨𝑥, 𝑦⟩ → ((2nd ‘(𝐺func 𝐹))‘𝑧) = ((2nd ‘(𝐺func 𝐹))‘⟨𝑥, 𝑦⟩))
65 df-ov 7393 . . . . . . . . 9 (𝑥(2nd ‘(𝐺func 𝐹))𝑦) = ((2nd ‘(𝐺func 𝐹))‘⟨𝑥, 𝑦⟩)
6664, 65eqtr4di 2783 . . . . . . . 8 (𝑧 = ⟨𝑥, 𝑦⟩ → ((2nd ‘(𝐺func 𝐹))‘𝑧) = (𝑥(2nd ‘(𝐺func 𝐹))𝑦))
67 vex 3454 . . . . . . . . . . . 12 𝑥 ∈ V
68 vex 3454 . . . . . . . . . . . 12 𝑦 ∈ V
6967, 68op1std 7981 . . . . . . . . . . 11 (𝑧 = ⟨𝑥, 𝑦⟩ → (1st𝑧) = 𝑥)
7069fveq2d 6865 . . . . . . . . . 10 (𝑧 = ⟨𝑥, 𝑦⟩ → ((1st ‘(𝐺func 𝐹))‘(1st𝑧)) = ((1st ‘(𝐺func 𝐹))‘𝑥))
7167, 68op2ndd 7982 . . . . . . . . . . 11 (𝑧 = ⟨𝑥, 𝑦⟩ → (2nd𝑧) = 𝑦)
7271fveq2d 6865 . . . . . . . . . 10 (𝑧 = ⟨𝑥, 𝑦⟩ → ((1st ‘(𝐺func 𝐹))‘(2nd𝑧)) = ((1st ‘(𝐺func 𝐹))‘𝑦))
7370, 72oveq12d 7408 . . . . . . . . 9 (𝑧 = ⟨𝑥, 𝑦⟩ → (((1st ‘(𝐺func 𝐹))‘(1st𝑧))(Hom ‘𝐸)((1st ‘(𝐺func 𝐹))‘(2nd𝑧))) = (((1st ‘(𝐺func 𝐹))‘𝑥)(Hom ‘𝐸)((1st ‘(𝐺func 𝐹))‘𝑦)))
74 fveq2 6861 . . . . . . . . . 10 (𝑧 = ⟨𝑥, 𝑦⟩ → ((Hom ‘𝐶)‘𝑧) = ((Hom ‘𝐶)‘⟨𝑥, 𝑦⟩))
75 df-ov 7393 . . . . . . . . . 10 (𝑥(Hom ‘𝐶)𝑦) = ((Hom ‘𝐶)‘⟨𝑥, 𝑦⟩)
7674, 75eqtr4di 2783 . . . . . . . . 9 (𝑧 = ⟨𝑥, 𝑦⟩ → ((Hom ‘𝐶)‘𝑧) = (𝑥(Hom ‘𝐶)𝑦))
7773, 76oveq12d 7408 . . . . . . . 8 (𝑧 = ⟨𝑥, 𝑦⟩ → ((((1st ‘(𝐺func 𝐹))‘(1st𝑧))(Hom ‘𝐸)((1st ‘(𝐺func 𝐹))‘(2nd𝑧))) ↑m ((Hom ‘𝐶)‘𝑧)) = ((((1st ‘(𝐺func 𝐹))‘𝑥)(Hom ‘𝐸)((1st ‘(𝐺func 𝐹))‘𝑦)) ↑m (𝑥(Hom ‘𝐶)𝑦)))
7866, 77eleq12d 2823 . . . . . . 7 (𝑧 = ⟨𝑥, 𝑦⟩ → (((2nd ‘(𝐺func 𝐹))‘𝑧) ∈ ((((1st ‘(𝐺func 𝐹))‘(1st𝑧))(Hom ‘𝐸)((1st ‘(𝐺func 𝐹))‘(2nd𝑧))) ↑m ((Hom ‘𝐶)‘𝑧)) ↔ (𝑥(2nd ‘(𝐺func 𝐹))𝑦) ∈ ((((1st ‘(𝐺func 𝐹))‘𝑥)(Hom ‘𝐸)((1st ‘(𝐺func 𝐹))‘𝑦)) ↑m (𝑥(Hom ‘𝐶)𝑦))))
7978ralxp 5808 . . . . . 6 (∀𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))((2nd ‘(𝐺func 𝐹))‘𝑧) ∈ ((((1st ‘(𝐺func 𝐹))‘(1st𝑧))(Hom ‘𝐸)((1st ‘(𝐺func 𝐹))‘(2nd𝑧))) ↑m ((Hom ‘𝐶)‘𝑧)) ↔ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥(2nd ‘(𝐺func 𝐹))𝑦) ∈ ((((1st ‘(𝐺func 𝐹))‘𝑥)(Hom ‘𝐸)((1st ‘(𝐺func 𝐹))‘𝑦)) ↑m (𝑥(Hom ‘𝐶)𝑦)))
8063, 79sylibr 234 . . . . 5 (𝜑 → ∀𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))((2nd ‘(𝐺func 𝐹))‘𝑧) ∈ ((((1st ‘(𝐺func 𝐹))‘(1st𝑧))(Hom ‘𝐸)((1st ‘(𝐺func 𝐹))‘(2nd𝑧))) ↑m ((Hom ‘𝐶)‘𝑧)))
81 fvex 6874 . . . . . 6 (2nd ‘(𝐺func 𝐹)) ∈ V
8281elixp 8880 . . . . 5 ((2nd ‘(𝐺func 𝐹)) ∈ X𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))((((1st ‘(𝐺func 𝐹))‘(1st𝑧))(Hom ‘𝐸)((1st ‘(𝐺func 𝐹))‘(2nd𝑧))) ↑m ((Hom ‘𝐶)‘𝑧)) ↔ ((2nd ‘(𝐺func 𝐹)) Fn ((Base‘𝐶) × (Base‘𝐶)) ∧ ∀𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))((2nd ‘(𝐺func 𝐹))‘𝑧) ∈ ((((1st ‘(𝐺func 𝐹))‘(1st𝑧))(Hom ‘𝐸)((1st ‘(𝐺func 𝐹))‘(2nd𝑧))) ↑m ((Hom ‘𝐶)‘𝑧))))
8336, 80, 82sylanbrc 583 . . . 4 (𝜑 → (2nd ‘(𝐺func 𝐹)) ∈ X𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))((((1st ‘(𝐺func 𝐹))‘(1st𝑧))(Hom ‘𝐸)((1st ‘(𝐺func 𝐹))‘(2nd𝑧))) ↑m ((Hom ‘𝐶)‘𝑧)))
84 eqid 2730 . . . . . . . . . 10 (Id‘𝐶) = (Id‘𝐶)
85 eqid 2730 . . . . . . . . . 10 (Id‘𝐷) = (Id‘𝐷)
8624adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ (Base‘𝐶)) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
87 simpr 484 . . . . . . . . . 10 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶))
881, 84, 85, 86, 87funcid 17839 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((𝑥(2nd𝐹)𝑥)‘((Id‘𝐶)‘𝑥)) = ((Id‘𝐷)‘((1st𝐹)‘𝑥)))
8988fveq2d 6865 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑥))‘((𝑥(2nd𝐹)𝑥)‘((Id‘𝐶)‘𝑥))) = ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑥))‘((Id‘𝐷)‘((1st𝐹)‘𝑥))))
90 eqid 2730 . . . . . . . . 9 (Id‘𝐸) = (Id‘𝐸)
9120adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝐶)) → (1st𝐺)(𝐷 Func 𝐸)(2nd𝐺))
9225ffvelcdmda 7059 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st𝐹)‘𝑥) ∈ (Base‘𝐷))
9316, 85, 90, 91, 92funcid 17839 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑥))‘((Id‘𝐷)‘((1st𝐹)‘𝑥))) = ((Id‘𝐸)‘((1st𝐺)‘((1st𝐹)‘𝑥))))
9489, 93eqtrd 2765 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑥))‘((𝑥(2nd𝐹)𝑥)‘((Id‘𝐶)‘𝑥))) = ((Id‘𝐸)‘((1st𝐺)‘((1st𝐹)‘𝑥))))
952adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐹 ∈ (𝐶 Func 𝐷))
963adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐺 ∈ (𝐷 Func 𝐸))
97 funcrcl 17832 . . . . . . . . . . . 12 (𝐹 ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
982, 97syl 17 . . . . . . . . . . 11 (𝜑 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
9998simpld 494 . . . . . . . . . 10 (𝜑𝐶 ∈ Cat)
10099adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐶 ∈ Cat)
1011, 46, 84, 100, 87catidcl 17650 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((Id‘𝐶)‘𝑥) ∈ (𝑥(Hom ‘𝐶)𝑥))
1021, 95, 96, 87, 87, 46, 101cofu2 17855 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((𝑥(2nd ‘(𝐺func 𝐹))𝑥)‘((Id‘𝐶)‘𝑥)) = ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑥))‘((𝑥(2nd𝐹)𝑥)‘((Id‘𝐶)‘𝑥))))
1031, 95, 96, 87cofu1 17853 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st ‘(𝐺func 𝐹))‘𝑥) = ((1st𝐺)‘((1st𝐹)‘𝑥)))
104103fveq2d 6865 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((Id‘𝐸)‘((1st ‘(𝐺func 𝐹))‘𝑥)) = ((Id‘𝐸)‘((1st𝐺)‘((1st𝐹)‘𝑥))))
10594, 102, 1043eqtr4d 2775 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((𝑥(2nd ‘(𝐺func 𝐹))𝑥)‘((Id‘𝐶)‘𝑥)) = ((Id‘𝐸)‘((1st ‘(𝐺func 𝐹))‘𝑥)))
10686adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
107 simplr 768 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑥 ∈ (Base‘𝐶))
108 simprlr 779 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑧 ∈ (Base‘𝐶))
1091, 46, 37, 106, 107, 108funcf2 17837 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑥(2nd𝐹)𝑧):(𝑥(Hom ‘𝐶)𝑧)⟶(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑧)))
110 eqid 2730 . . . . . . . . . . . . 13 (comp‘𝐶) = (comp‘𝐶)
111100adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝐶 ∈ Cat)
112 simprll 778 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑦 ∈ (Base‘𝐶))
113 simprrl 780 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))
114 simprrr 781 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))
1151, 46, 110, 111, 107, 112, 108, 113, 114catcocl 17653 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧))
116 fvco3 6963 . . . . . . . . . . . 12 (((𝑥(2nd𝐹)𝑧):(𝑥(Hom ‘𝐶)𝑧)⟶(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑧)) ∧ (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧)) → (((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑧)) ∘ (𝑥(2nd𝐹)𝑧))‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑧))‘((𝑥(2nd𝐹)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))))
117109, 115, 116syl2anc 584 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑧)) ∘ (𝑥(2nd𝐹)𝑧))‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑧))‘((𝑥(2nd𝐹)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))))
118 eqid 2730 . . . . . . . . . . . . 13 (comp‘𝐷) = (comp‘𝐷)
1191, 46, 110, 118, 106, 107, 112, 108, 113, 114funcco 17840 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((𝑥(2nd𝐹)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = (((𝑦(2nd𝐹)𝑧)‘𝑔)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐹)‘𝑧))((𝑥(2nd𝐹)𝑦)‘𝑓)))
120119fveq2d 6865 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑧))‘((𝑥(2nd𝐹)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))) = ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑧))‘(((𝑦(2nd𝐹)𝑧)‘𝑔)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐹)‘𝑧))((𝑥(2nd𝐹)𝑦)‘𝑓))))
121 eqid 2730 . . . . . . . . . . . 12 (comp‘𝐸) = (comp‘𝐸)
12291adantr 480 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (1st𝐺)(𝐷 Func 𝐸)(2nd𝐺))
12392adantr 480 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((1st𝐹)‘𝑥) ∈ (Base‘𝐷))
12425adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (Base‘𝐶)) → (1st𝐹):(Base‘𝐶)⟶(Base‘𝐷))
125124adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (1st𝐹):(Base‘𝐶)⟶(Base‘𝐷))
126125, 112ffvelcdmd 7060 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((1st𝐹)‘𝑦) ∈ (Base‘𝐷))
127125, 108ffvelcdmd 7060 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((1st𝐹)‘𝑧) ∈ (Base‘𝐷))
1281, 46, 37, 106, 107, 112funcf2 17837 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑥(2nd𝐹)𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦)))
129128, 113ffvelcdmd 7060 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((𝑥(2nd𝐹)𝑦)‘𝑓) ∈ (((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦)))
1301, 46, 37, 106, 112, 108funcf2 17837 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑦(2nd𝐹)𝑧):(𝑦(Hom ‘𝐶)𝑧)⟶(((1st𝐹)‘𝑦)(Hom ‘𝐷)((1st𝐹)‘𝑧)))
131130, 114ffvelcdmd 7060 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((𝑦(2nd𝐹)𝑧)‘𝑔) ∈ (((1st𝐹)‘𝑦)(Hom ‘𝐷)((1st𝐹)‘𝑧)))
13216, 37, 118, 121, 122, 123, 126, 127, 129, 131funcco 17840 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑧))‘(((𝑦(2nd𝐹)𝑧)‘𝑔)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐹)‘𝑧))((𝑥(2nd𝐹)𝑦)‘𝑓))) = (((((1st𝐹)‘𝑦)(2nd𝐺)((1st𝐹)‘𝑧))‘((𝑦(2nd𝐹)𝑧)‘𝑔))(⟨((1st𝐺)‘((1st𝐹)‘𝑥)), ((1st𝐺)‘((1st𝐹)‘𝑦))⟩(comp‘𝐸)((1st𝐺)‘((1st𝐹)‘𝑧)))((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦))‘((𝑥(2nd𝐹)𝑦)‘𝑓))))
133117, 120, 1323eqtrd 2769 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑧)) ∘ (𝑥(2nd𝐹)𝑧))‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = (((((1st𝐹)‘𝑦)(2nd𝐺)((1st𝐹)‘𝑧))‘((𝑦(2nd𝐹)𝑧)‘𝑔))(⟨((1st𝐺)‘((1st𝐹)‘𝑥)), ((1st𝐺)‘((1st𝐹)‘𝑦))⟩(comp‘𝐸)((1st𝐺)‘((1st𝐹)‘𝑧)))((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦))‘((𝑥(2nd𝐹)𝑦)‘𝑓))))
13495adantr 480 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝐹 ∈ (𝐶 Func 𝐷))
13596adantr 480 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝐺 ∈ (𝐷 Func 𝐸))
1361, 134, 135, 107, 108cofu2nd 17854 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑥(2nd ‘(𝐺func 𝐹))𝑧) = ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑧)) ∘ (𝑥(2nd𝐹)𝑧)))
137136fveq1d 6863 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((𝑥(2nd ‘(𝐺func 𝐹))𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = (((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑧)) ∘ (𝑥(2nd𝐹)𝑧))‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)))
138103adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((1st ‘(𝐺func 𝐹))‘𝑥) = ((1st𝐺)‘((1st𝐹)‘𝑥)))
1391, 134, 135, 112cofu1 17853 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((1st ‘(𝐺func 𝐹))‘𝑦) = ((1st𝐺)‘((1st𝐹)‘𝑦)))
140138, 139opeq12d 4848 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ⟨((1st ‘(𝐺func 𝐹))‘𝑥), ((1st ‘(𝐺func 𝐹))‘𝑦)⟩ = ⟨((1st𝐺)‘((1st𝐹)‘𝑥)), ((1st𝐺)‘((1st𝐹)‘𝑦))⟩)
1411, 134, 135, 108cofu1 17853 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((1st ‘(𝐺func 𝐹))‘𝑧) = ((1st𝐺)‘((1st𝐹)‘𝑧)))
142140, 141oveq12d 7408 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (⟨((1st ‘(𝐺func 𝐹))‘𝑥), ((1st ‘(𝐺func 𝐹))‘𝑦)⟩(comp‘𝐸)((1st ‘(𝐺func 𝐹))‘𝑧)) = (⟨((1st𝐺)‘((1st𝐹)‘𝑥)), ((1st𝐺)‘((1st𝐹)‘𝑦))⟩(comp‘𝐸)((1st𝐺)‘((1st𝐹)‘𝑧))))
1431, 134, 135, 112, 108, 46, 114cofu2 17855 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((𝑦(2nd ‘(𝐺func 𝐹))𝑧)‘𝑔) = ((((1st𝐹)‘𝑦)(2nd𝐺)((1st𝐹)‘𝑧))‘((𝑦(2nd𝐹)𝑧)‘𝑔)))
1441, 134, 135, 107, 112, 46, 113cofu2 17855 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((𝑥(2nd ‘(𝐺func 𝐹))𝑦)‘𝑓) = ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦))‘((𝑥(2nd𝐹)𝑦)‘𝑓)))
145142, 143, 144oveq123d 7411 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (((𝑦(2nd ‘(𝐺func 𝐹))𝑧)‘𝑔)(⟨((1st ‘(𝐺func 𝐹))‘𝑥), ((1st ‘(𝐺func 𝐹))‘𝑦)⟩(comp‘𝐸)((1st ‘(𝐺func 𝐹))‘𝑧))((𝑥(2nd ‘(𝐺func 𝐹))𝑦)‘𝑓)) = (((((1st𝐹)‘𝑦)(2nd𝐺)((1st𝐹)‘𝑧))‘((𝑦(2nd𝐹)𝑧)‘𝑔))(⟨((1st𝐺)‘((1st𝐹)‘𝑥)), ((1st𝐺)‘((1st𝐹)‘𝑦))⟩(comp‘𝐸)((1st𝐺)‘((1st𝐹)‘𝑧)))((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦))‘((𝑥(2nd𝐹)𝑦)‘𝑓))))
146133, 137, 1453eqtr4d 2775 . . . . . . . . 9 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((𝑥(2nd ‘(𝐺func 𝐹))𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = (((𝑦(2nd ‘(𝐺func 𝐹))𝑧)‘𝑔)(⟨((1st ‘(𝐺func 𝐹))‘𝑥), ((1st ‘(𝐺func 𝐹))‘𝑦)⟩(comp‘𝐸)((1st ‘(𝐺func 𝐹))‘𝑧))((𝑥(2nd ‘(𝐺func 𝐹))𝑦)‘𝑓)))
147146anassrs 467 . . . . . . . 8 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑥(2nd ‘(𝐺func 𝐹))𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = (((𝑦(2nd ‘(𝐺func 𝐹))𝑧)‘𝑔)(⟨((1st ‘(𝐺func 𝐹))‘𝑥), ((1st ‘(𝐺func 𝐹))‘𝑦)⟩(comp‘𝐸)((1st ‘(𝐺func 𝐹))‘𝑧))((𝑥(2nd ‘(𝐺func 𝐹))𝑦)‘𝑓)))
148147ralrimivva 3181 . . . . . . 7 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑥(2nd ‘(𝐺func 𝐹))𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = (((𝑦(2nd ‘(𝐺func 𝐹))𝑧)‘𝑔)(⟨((1st ‘(𝐺func 𝐹))‘𝑥), ((1st ‘(𝐺func 𝐹))‘𝑦)⟩(comp‘𝐸)((1st ‘(𝐺func 𝐹))‘𝑧))((𝑥(2nd ‘(𝐺func 𝐹))𝑦)‘𝑓)))
149148ralrimivva 3181 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑥(2nd ‘(𝐺func 𝐹))𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = (((𝑦(2nd ‘(𝐺func 𝐹))𝑧)‘𝑔)(⟨((1st ‘(𝐺func 𝐹))‘𝑥), ((1st ‘(𝐺func 𝐹))‘𝑦)⟩(comp‘𝐸)((1st ‘(𝐺func 𝐹))‘𝑧))((𝑥(2nd ‘(𝐺func 𝐹))𝑦)‘𝑓)))
150105, 149jca 511 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → (((𝑥(2nd ‘(𝐺func 𝐹))𝑥)‘((Id‘𝐶)‘𝑥)) = ((Id‘𝐸)‘((1st ‘(𝐺func 𝐹))‘𝑥)) ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑥(2nd ‘(𝐺func 𝐹))𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = (((𝑦(2nd ‘(𝐺func 𝐹))𝑧)‘𝑔)(⟨((1st ‘(𝐺func 𝐹))‘𝑥), ((1st ‘(𝐺func 𝐹))‘𝑦)⟩(comp‘𝐸)((1st ‘(𝐺func 𝐹))‘𝑧))((𝑥(2nd ‘(𝐺func 𝐹))𝑦)‘𝑓))))
151150ralrimiva 3126 . . . 4 (𝜑 → ∀𝑥 ∈ (Base‘𝐶)(((𝑥(2nd ‘(𝐺func 𝐹))𝑥)‘((Id‘𝐶)‘𝑥)) = ((Id‘𝐸)‘((1st ‘(𝐺func 𝐹))‘𝑥)) ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑥(2nd ‘(𝐺func 𝐹))𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = (((𝑦(2nd ‘(𝐺func 𝐹))𝑧)‘𝑔)(⟨((1st ‘(𝐺func 𝐹))‘𝑥), ((1st ‘(𝐺func 𝐹))‘𝑦)⟩(comp‘𝐸)((1st ‘(𝐺func 𝐹))‘𝑧))((𝑥(2nd ‘(𝐺func 𝐹))𝑦)‘𝑓))))
152 funcrcl 17832 . . . . . . 7 (𝐺 ∈ (𝐷 Func 𝐸) → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat))
1533, 152syl 17 . . . . . 6 (𝜑 → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat))
154153simprd 495 . . . . 5 (𝜑𝐸 ∈ Cat)
1551, 17, 46, 38, 84, 90, 110, 121, 99, 154isfunc 17833 . . . 4 (𝜑 → ((1st ‘(𝐺func 𝐹))(𝐶 Func 𝐸)(2nd ‘(𝐺func 𝐹)) ↔ ((1st ‘(𝐺func 𝐹)):(Base‘𝐶)⟶(Base‘𝐸) ∧ (2nd ‘(𝐺func 𝐹)) ∈ X𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))((((1st ‘(𝐺func 𝐹))‘(1st𝑧))(Hom ‘𝐸)((1st ‘(𝐺func 𝐹))‘(2nd𝑧))) ↑m ((Hom ‘𝐶)‘𝑧)) ∧ ∀𝑥 ∈ (Base‘𝐶)(((𝑥(2nd ‘(𝐺func 𝐹))𝑥)‘((Id‘𝐶)‘𝑥)) = ((Id‘𝐸)‘((1st ‘(𝐺func 𝐹))‘𝑥)) ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑥(2nd ‘(𝐺func 𝐹))𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = (((𝑦(2nd ‘(𝐺func 𝐹))𝑧)‘𝑔)(⟨((1st ‘(𝐺func 𝐹))‘𝑥), ((1st ‘(𝐺func 𝐹))‘𝑦)⟩(comp‘𝐸)((1st ‘(𝐺func 𝐹))‘𝑧))((𝑥(2nd ‘(𝐺func 𝐹))𝑦)‘𝑓))))))
15629, 83, 151, 155mpbir3and 1343 . . 3 (𝜑 → (1st ‘(𝐺func 𝐹))(𝐶 Func 𝐸)(2nd ‘(𝐺func 𝐹)))
157 df-br 5111 . . 3 ((1st ‘(𝐺func 𝐹))(𝐶 Func 𝐸)(2nd ‘(𝐺func 𝐹)) ↔ ⟨(1st ‘(𝐺func 𝐹)), (2nd ‘(𝐺func 𝐹))⟩ ∈ (𝐶 Func 𝐸))
158156, 157sylib 218 . 2 (𝜑 → ⟨(1st ‘(𝐺func 𝐹)), (2nd ‘(𝐺func 𝐹))⟩ ∈ (𝐶 Func 𝐸))
15915, 158eqeltrd 2829 1 (𝜑 → (𝐺func 𝐹) ∈ (𝐶 Func 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3045  cop 4598   class class class wbr 5110   × cxp 5639  ccom 5645  Rel wrel 5646   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  cmpo 7392  1st c1st 7969  2nd c2nd 7970  m cmap 8802  Xcixp 8873  Basecbs 17186  Hom chom 17238  compcco 17239  Catccat 17632  Idccid 17633   Func cfunc 17823  func ccofu 17825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-map 8804  df-ixp 8874  df-cat 17636  df-cid 17637  df-func 17827  df-cofu 17829
This theorem is referenced by:  cofuass  17858  cofull  17905  cofth  17906  catccatid  18075  1st2ndprf  18174  uncfcl  18203  uncf1  18204  uncf2  18205  yonedalem1  18240  yonedalem21  18241  yonedalem22  18246  funcrngcsetcALT  20557  rescofuf  49086  cofu1a  49087  cofu2a  49088  cofucla  49089  cofuoppf  49143  uptrlem2  49204  uptra  49208  uptr2a  49215  cofuswapfcl  49286  prcofdiag1  49386  prcofdiag  49387  oppfdiag1  49407  oppfdiag  49409  cofuterm  49538
  Copyright terms: Public domain W3C validator