MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cofucl Structured version   Visualization version   GIF version

Theorem cofucl 17795
Description: The composition of two functors is a functor. Proposition 3.23 of [Adamek] p. 33. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
cofucl.f (𝜑𝐹 ∈ (𝐶 Func 𝐷))
cofucl.g (𝜑𝐺 ∈ (𝐷 Func 𝐸))
Assertion
Ref Expression
cofucl (𝜑 → (𝐺func 𝐹) ∈ (𝐶 Func 𝐸))

Proof of Theorem cofucl
Dummy variables 𝑓 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . . 4 (Base‘𝐶) = (Base‘𝐶)
2 cofucl.f . . . 4 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
3 cofucl.g . . . 4 (𝜑𝐺 ∈ (𝐷 Func 𝐸))
41, 2, 3cofuval 17789 . . 3 (𝜑 → (𝐺func 𝐹) = ⟨((1st𝐺) ∘ (1st𝐹)), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)))⟩)
51, 2, 3cofu1st 17790 . . . 4 (𝜑 → (1st ‘(𝐺func 𝐹)) = ((1st𝐺) ∘ (1st𝐹)))
64fveq2d 6826 . . . . 5 (𝜑 → (2nd ‘(𝐺func 𝐹)) = (2nd ‘⟨((1st𝐺) ∘ (1st𝐹)), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)))⟩))
7 fvex 6835 . . . . . . 7 (1st𝐺) ∈ V
8 fvex 6835 . . . . . . 7 (1st𝐹) ∈ V
97, 8coex 7860 . . . . . 6 ((1st𝐺) ∘ (1st𝐹)) ∈ V
10 fvex 6835 . . . . . . 7 (Base‘𝐶) ∈ V
1110, 10mpoex 8011 . . . . . 6 (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦))) ∈ V
129, 11op2nd 7930 . . . . 5 (2nd ‘⟨((1st𝐺) ∘ (1st𝐹)), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)))⟩) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)))
136, 12eqtrdi 2782 . . . 4 (𝜑 → (2nd ‘(𝐺func 𝐹)) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦))))
145, 13opeq12d 4830 . . 3 (𝜑 → ⟨(1st ‘(𝐺func 𝐹)), (2nd ‘(𝐺func 𝐹))⟩ = ⟨((1st𝐺) ∘ (1st𝐹)), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)))⟩)
154, 14eqtr4d 2769 . 2 (𝜑 → (𝐺func 𝐹) = ⟨(1st ‘(𝐺func 𝐹)), (2nd ‘(𝐺func 𝐹))⟩)
16 eqid 2731 . . . . . . 7 (Base‘𝐷) = (Base‘𝐷)
17 eqid 2731 . . . . . . 7 (Base‘𝐸) = (Base‘𝐸)
18 relfunc 17769 . . . . . . . 8 Rel (𝐷 Func 𝐸)
19 1st2ndbr 7974 . . . . . . . 8 ((Rel (𝐷 Func 𝐸) ∧ 𝐺 ∈ (𝐷 Func 𝐸)) → (1st𝐺)(𝐷 Func 𝐸)(2nd𝐺))
2018, 3, 19sylancr 587 . . . . . . 7 (𝜑 → (1st𝐺)(𝐷 Func 𝐸)(2nd𝐺))
2116, 17, 20funcf1 17773 . . . . . 6 (𝜑 → (1st𝐺):(Base‘𝐷)⟶(Base‘𝐸))
22 relfunc 17769 . . . . . . . 8 Rel (𝐶 Func 𝐷)
23 1st2ndbr 7974 . . . . . . . 8 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
2422, 2, 23sylancr 587 . . . . . . 7 (𝜑 → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
251, 16, 24funcf1 17773 . . . . . 6 (𝜑 → (1st𝐹):(Base‘𝐶)⟶(Base‘𝐷))
26 fco 6675 . . . . . 6 (((1st𝐺):(Base‘𝐷)⟶(Base‘𝐸) ∧ (1st𝐹):(Base‘𝐶)⟶(Base‘𝐷)) → ((1st𝐺) ∘ (1st𝐹)):(Base‘𝐶)⟶(Base‘𝐸))
2721, 25, 26syl2anc 584 . . . . 5 (𝜑 → ((1st𝐺) ∘ (1st𝐹)):(Base‘𝐶)⟶(Base‘𝐸))
285feq1d 6633 . . . . 5 (𝜑 → ((1st ‘(𝐺func 𝐹)):(Base‘𝐶)⟶(Base‘𝐸) ↔ ((1st𝐺) ∘ (1st𝐹)):(Base‘𝐶)⟶(Base‘𝐸)))
2927, 28mpbird 257 . . . 4 (𝜑 → (1st ‘(𝐺func 𝐹)):(Base‘𝐶)⟶(Base‘𝐸))
30 eqid 2731 . . . . . . 7 (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦))) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)))
31 ovex 7379 . . . . . . . 8 (((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∈ V
32 ovex 7379 . . . . . . . 8 (𝑥(2nd𝐹)𝑦) ∈ V
3331, 32coex 7860 . . . . . . 7 ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)) ∈ V
3430, 33fnmpoi 8002 . . . . . 6 (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦))) Fn ((Base‘𝐶) × (Base‘𝐶))
3513fneq1d 6574 . . . . . 6 (𝜑 → ((2nd ‘(𝐺func 𝐹)) Fn ((Base‘𝐶) × (Base‘𝐶)) ↔ (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦))) Fn ((Base‘𝐶) × (Base‘𝐶))))
3634, 35mpbiri 258 . . . . 5 (𝜑 → (2nd ‘(𝐺func 𝐹)) Fn ((Base‘𝐶) × (Base‘𝐶)))
37 eqid 2731 . . . . . . . . . . 11 (Hom ‘𝐷) = (Hom ‘𝐷)
38 eqid 2731 . . . . . . . . . . 11 (Hom ‘𝐸) = (Hom ‘𝐸)
3920adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (1st𝐺)(𝐷 Func 𝐸)(2nd𝐺))
4025adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (1st𝐹):(Base‘𝐶)⟶(Base‘𝐷))
41 simprl 770 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑥 ∈ (Base‘𝐶))
4240, 41ffvelcdmd 7018 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((1st𝐹)‘𝑥) ∈ (Base‘𝐷))
43 simprr 772 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶))
4440, 43ffvelcdmd 7018 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((1st𝐹)‘𝑦) ∈ (Base‘𝐷))
4516, 37, 38, 39, 42, 44funcf2 17775 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)):(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦))⟶(((1st𝐺)‘((1st𝐹)‘𝑥))(Hom ‘𝐸)((1st𝐺)‘((1st𝐹)‘𝑦))))
46 eqid 2731 . . . . . . . . . . 11 (Hom ‘𝐶) = (Hom ‘𝐶)
4724adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
481, 46, 37, 47, 41, 43funcf2 17775 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd𝐹)𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦)))
49 fco 6675 . . . . . . . . . 10 (((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)):(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦))⟶(((1st𝐺)‘((1st𝐹)‘𝑥))(Hom ‘𝐸)((1st𝐺)‘((1st𝐹)‘𝑦))) ∧ (𝑥(2nd𝐹)𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦))) → ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st𝐺)‘((1st𝐹)‘𝑥))(Hom ‘𝐸)((1st𝐺)‘((1st𝐹)‘𝑦))))
5045, 48, 49syl2anc 584 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st𝐺)‘((1st𝐹)‘𝑥))(Hom ‘𝐸)((1st𝐺)‘((1st𝐹)‘𝑦))))
51 ovex 7379 . . . . . . . . . 10 (((1st𝐺)‘((1st𝐹)‘𝑥))(Hom ‘𝐸)((1st𝐺)‘((1st𝐹)‘𝑦))) ∈ V
52 ovex 7379 . . . . . . . . . 10 (𝑥(Hom ‘𝐶)𝑦) ∈ V
5351, 52elmap 8795 . . . . . . . . 9 (((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)) ∈ ((((1st𝐺)‘((1st𝐹)‘𝑥))(Hom ‘𝐸)((1st𝐺)‘((1st𝐹)‘𝑦))) ↑m (𝑥(Hom ‘𝐶)𝑦)) ↔ ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st𝐺)‘((1st𝐹)‘𝑥))(Hom ‘𝐸)((1st𝐺)‘((1st𝐹)‘𝑦))))
5450, 53sylibr 234 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)) ∈ ((((1st𝐺)‘((1st𝐹)‘𝑥))(Hom ‘𝐸)((1st𝐺)‘((1st𝐹)‘𝑦))) ↑m (𝑥(Hom ‘𝐶)𝑦)))
552adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝐹 ∈ (𝐶 Func 𝐷))
563adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝐺 ∈ (𝐷 Func 𝐸))
571, 55, 56, 41, 43cofu2nd 17792 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd ‘(𝐺func 𝐹))𝑦) = ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)))
581, 55, 56, 41cofu1 17791 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((1st ‘(𝐺func 𝐹))‘𝑥) = ((1st𝐺)‘((1st𝐹)‘𝑥)))
591, 55, 56, 43cofu1 17791 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((1st ‘(𝐺func 𝐹))‘𝑦) = ((1st𝐺)‘((1st𝐹)‘𝑦)))
6058, 59oveq12d 7364 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (((1st ‘(𝐺func 𝐹))‘𝑥)(Hom ‘𝐸)((1st ‘(𝐺func 𝐹))‘𝑦)) = (((1st𝐺)‘((1st𝐹)‘𝑥))(Hom ‘𝐸)((1st𝐺)‘((1st𝐹)‘𝑦))))
6160oveq1d 7361 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((((1st ‘(𝐺func 𝐹))‘𝑥)(Hom ‘𝐸)((1st ‘(𝐺func 𝐹))‘𝑦)) ↑m (𝑥(Hom ‘𝐶)𝑦)) = ((((1st𝐺)‘((1st𝐹)‘𝑥))(Hom ‘𝐸)((1st𝐺)‘((1st𝐹)‘𝑦))) ↑m (𝑥(Hom ‘𝐶)𝑦)))
6254, 57, 613eltr4d 2846 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd ‘(𝐺func 𝐹))𝑦) ∈ ((((1st ‘(𝐺func 𝐹))‘𝑥)(Hom ‘𝐸)((1st ‘(𝐺func 𝐹))‘𝑦)) ↑m (𝑥(Hom ‘𝐶)𝑦)))
6362ralrimivva 3175 . . . . . 6 (𝜑 → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥(2nd ‘(𝐺func 𝐹))𝑦) ∈ ((((1st ‘(𝐺func 𝐹))‘𝑥)(Hom ‘𝐸)((1st ‘(𝐺func 𝐹))‘𝑦)) ↑m (𝑥(Hom ‘𝐶)𝑦)))
64 fveq2 6822 . . . . . . . . 9 (𝑧 = ⟨𝑥, 𝑦⟩ → ((2nd ‘(𝐺func 𝐹))‘𝑧) = ((2nd ‘(𝐺func 𝐹))‘⟨𝑥, 𝑦⟩))
65 df-ov 7349 . . . . . . . . 9 (𝑥(2nd ‘(𝐺func 𝐹))𝑦) = ((2nd ‘(𝐺func 𝐹))‘⟨𝑥, 𝑦⟩)
6664, 65eqtr4di 2784 . . . . . . . 8 (𝑧 = ⟨𝑥, 𝑦⟩ → ((2nd ‘(𝐺func 𝐹))‘𝑧) = (𝑥(2nd ‘(𝐺func 𝐹))𝑦))
67 vex 3440 . . . . . . . . . . . 12 𝑥 ∈ V
68 vex 3440 . . . . . . . . . . . 12 𝑦 ∈ V
6967, 68op1std 7931 . . . . . . . . . . 11 (𝑧 = ⟨𝑥, 𝑦⟩ → (1st𝑧) = 𝑥)
7069fveq2d 6826 . . . . . . . . . 10 (𝑧 = ⟨𝑥, 𝑦⟩ → ((1st ‘(𝐺func 𝐹))‘(1st𝑧)) = ((1st ‘(𝐺func 𝐹))‘𝑥))
7167, 68op2ndd 7932 . . . . . . . . . . 11 (𝑧 = ⟨𝑥, 𝑦⟩ → (2nd𝑧) = 𝑦)
7271fveq2d 6826 . . . . . . . . . 10 (𝑧 = ⟨𝑥, 𝑦⟩ → ((1st ‘(𝐺func 𝐹))‘(2nd𝑧)) = ((1st ‘(𝐺func 𝐹))‘𝑦))
7370, 72oveq12d 7364 . . . . . . . . 9 (𝑧 = ⟨𝑥, 𝑦⟩ → (((1st ‘(𝐺func 𝐹))‘(1st𝑧))(Hom ‘𝐸)((1st ‘(𝐺func 𝐹))‘(2nd𝑧))) = (((1st ‘(𝐺func 𝐹))‘𝑥)(Hom ‘𝐸)((1st ‘(𝐺func 𝐹))‘𝑦)))
74 fveq2 6822 . . . . . . . . . 10 (𝑧 = ⟨𝑥, 𝑦⟩ → ((Hom ‘𝐶)‘𝑧) = ((Hom ‘𝐶)‘⟨𝑥, 𝑦⟩))
75 df-ov 7349 . . . . . . . . . 10 (𝑥(Hom ‘𝐶)𝑦) = ((Hom ‘𝐶)‘⟨𝑥, 𝑦⟩)
7674, 75eqtr4di 2784 . . . . . . . . 9 (𝑧 = ⟨𝑥, 𝑦⟩ → ((Hom ‘𝐶)‘𝑧) = (𝑥(Hom ‘𝐶)𝑦))
7773, 76oveq12d 7364 . . . . . . . 8 (𝑧 = ⟨𝑥, 𝑦⟩ → ((((1st ‘(𝐺func 𝐹))‘(1st𝑧))(Hom ‘𝐸)((1st ‘(𝐺func 𝐹))‘(2nd𝑧))) ↑m ((Hom ‘𝐶)‘𝑧)) = ((((1st ‘(𝐺func 𝐹))‘𝑥)(Hom ‘𝐸)((1st ‘(𝐺func 𝐹))‘𝑦)) ↑m (𝑥(Hom ‘𝐶)𝑦)))
7866, 77eleq12d 2825 . . . . . . 7 (𝑧 = ⟨𝑥, 𝑦⟩ → (((2nd ‘(𝐺func 𝐹))‘𝑧) ∈ ((((1st ‘(𝐺func 𝐹))‘(1st𝑧))(Hom ‘𝐸)((1st ‘(𝐺func 𝐹))‘(2nd𝑧))) ↑m ((Hom ‘𝐶)‘𝑧)) ↔ (𝑥(2nd ‘(𝐺func 𝐹))𝑦) ∈ ((((1st ‘(𝐺func 𝐹))‘𝑥)(Hom ‘𝐸)((1st ‘(𝐺func 𝐹))‘𝑦)) ↑m (𝑥(Hom ‘𝐶)𝑦))))
7978ralxp 5780 . . . . . 6 (∀𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))((2nd ‘(𝐺func 𝐹))‘𝑧) ∈ ((((1st ‘(𝐺func 𝐹))‘(1st𝑧))(Hom ‘𝐸)((1st ‘(𝐺func 𝐹))‘(2nd𝑧))) ↑m ((Hom ‘𝐶)‘𝑧)) ↔ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥(2nd ‘(𝐺func 𝐹))𝑦) ∈ ((((1st ‘(𝐺func 𝐹))‘𝑥)(Hom ‘𝐸)((1st ‘(𝐺func 𝐹))‘𝑦)) ↑m (𝑥(Hom ‘𝐶)𝑦)))
8063, 79sylibr 234 . . . . 5 (𝜑 → ∀𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))((2nd ‘(𝐺func 𝐹))‘𝑧) ∈ ((((1st ‘(𝐺func 𝐹))‘(1st𝑧))(Hom ‘𝐸)((1st ‘(𝐺func 𝐹))‘(2nd𝑧))) ↑m ((Hom ‘𝐶)‘𝑧)))
81 fvex 6835 . . . . . 6 (2nd ‘(𝐺func 𝐹)) ∈ V
8281elixp 8828 . . . . 5 ((2nd ‘(𝐺func 𝐹)) ∈ X𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))((((1st ‘(𝐺func 𝐹))‘(1st𝑧))(Hom ‘𝐸)((1st ‘(𝐺func 𝐹))‘(2nd𝑧))) ↑m ((Hom ‘𝐶)‘𝑧)) ↔ ((2nd ‘(𝐺func 𝐹)) Fn ((Base‘𝐶) × (Base‘𝐶)) ∧ ∀𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))((2nd ‘(𝐺func 𝐹))‘𝑧) ∈ ((((1st ‘(𝐺func 𝐹))‘(1st𝑧))(Hom ‘𝐸)((1st ‘(𝐺func 𝐹))‘(2nd𝑧))) ↑m ((Hom ‘𝐶)‘𝑧))))
8336, 80, 82sylanbrc 583 . . . 4 (𝜑 → (2nd ‘(𝐺func 𝐹)) ∈ X𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))((((1st ‘(𝐺func 𝐹))‘(1st𝑧))(Hom ‘𝐸)((1st ‘(𝐺func 𝐹))‘(2nd𝑧))) ↑m ((Hom ‘𝐶)‘𝑧)))
84 eqid 2731 . . . . . . . . . 10 (Id‘𝐶) = (Id‘𝐶)
85 eqid 2731 . . . . . . . . . 10 (Id‘𝐷) = (Id‘𝐷)
8624adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ (Base‘𝐶)) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
87 simpr 484 . . . . . . . . . 10 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶))
881, 84, 85, 86, 87funcid 17777 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((𝑥(2nd𝐹)𝑥)‘((Id‘𝐶)‘𝑥)) = ((Id‘𝐷)‘((1st𝐹)‘𝑥)))
8988fveq2d 6826 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑥))‘((𝑥(2nd𝐹)𝑥)‘((Id‘𝐶)‘𝑥))) = ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑥))‘((Id‘𝐷)‘((1st𝐹)‘𝑥))))
90 eqid 2731 . . . . . . . . 9 (Id‘𝐸) = (Id‘𝐸)
9120adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝐶)) → (1st𝐺)(𝐷 Func 𝐸)(2nd𝐺))
9225ffvelcdmda 7017 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st𝐹)‘𝑥) ∈ (Base‘𝐷))
9316, 85, 90, 91, 92funcid 17777 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑥))‘((Id‘𝐷)‘((1st𝐹)‘𝑥))) = ((Id‘𝐸)‘((1st𝐺)‘((1st𝐹)‘𝑥))))
9489, 93eqtrd 2766 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑥))‘((𝑥(2nd𝐹)𝑥)‘((Id‘𝐶)‘𝑥))) = ((Id‘𝐸)‘((1st𝐺)‘((1st𝐹)‘𝑥))))
952adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐹 ∈ (𝐶 Func 𝐷))
963adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐺 ∈ (𝐷 Func 𝐸))
97 funcrcl 17770 . . . . . . . . . . . 12 (𝐹 ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
982, 97syl 17 . . . . . . . . . . 11 (𝜑 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
9998simpld 494 . . . . . . . . . 10 (𝜑𝐶 ∈ Cat)
10099adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐶 ∈ Cat)
1011, 46, 84, 100, 87catidcl 17588 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((Id‘𝐶)‘𝑥) ∈ (𝑥(Hom ‘𝐶)𝑥))
1021, 95, 96, 87, 87, 46, 101cofu2 17793 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((𝑥(2nd ‘(𝐺func 𝐹))𝑥)‘((Id‘𝐶)‘𝑥)) = ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑥))‘((𝑥(2nd𝐹)𝑥)‘((Id‘𝐶)‘𝑥))))
1031, 95, 96, 87cofu1 17791 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st ‘(𝐺func 𝐹))‘𝑥) = ((1st𝐺)‘((1st𝐹)‘𝑥)))
104103fveq2d 6826 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((Id‘𝐸)‘((1st ‘(𝐺func 𝐹))‘𝑥)) = ((Id‘𝐸)‘((1st𝐺)‘((1st𝐹)‘𝑥))))
10594, 102, 1043eqtr4d 2776 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((𝑥(2nd ‘(𝐺func 𝐹))𝑥)‘((Id‘𝐶)‘𝑥)) = ((Id‘𝐸)‘((1st ‘(𝐺func 𝐹))‘𝑥)))
10686adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
107 simplr 768 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑥 ∈ (Base‘𝐶))
108 simprlr 779 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑧 ∈ (Base‘𝐶))
1091, 46, 37, 106, 107, 108funcf2 17775 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑥(2nd𝐹)𝑧):(𝑥(Hom ‘𝐶)𝑧)⟶(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑧)))
110 eqid 2731 . . . . . . . . . . . . 13 (comp‘𝐶) = (comp‘𝐶)
111100adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝐶 ∈ Cat)
112 simprll 778 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑦 ∈ (Base‘𝐶))
113 simprrl 780 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))
114 simprrr 781 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))
1151, 46, 110, 111, 107, 112, 108, 113, 114catcocl 17591 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧))
116 fvco3 6921 . . . . . . . . . . . 12 (((𝑥(2nd𝐹)𝑧):(𝑥(Hom ‘𝐶)𝑧)⟶(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑧)) ∧ (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧)) → (((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑧)) ∘ (𝑥(2nd𝐹)𝑧))‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑧))‘((𝑥(2nd𝐹)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))))
117109, 115, 116syl2anc 584 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑧)) ∘ (𝑥(2nd𝐹)𝑧))‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑧))‘((𝑥(2nd𝐹)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))))
118 eqid 2731 . . . . . . . . . . . . 13 (comp‘𝐷) = (comp‘𝐷)
1191, 46, 110, 118, 106, 107, 112, 108, 113, 114funcco 17778 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((𝑥(2nd𝐹)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = (((𝑦(2nd𝐹)𝑧)‘𝑔)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐹)‘𝑧))((𝑥(2nd𝐹)𝑦)‘𝑓)))
120119fveq2d 6826 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑧))‘((𝑥(2nd𝐹)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))) = ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑧))‘(((𝑦(2nd𝐹)𝑧)‘𝑔)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐹)‘𝑧))((𝑥(2nd𝐹)𝑦)‘𝑓))))
121 eqid 2731 . . . . . . . . . . . 12 (comp‘𝐸) = (comp‘𝐸)
12291adantr 480 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (1st𝐺)(𝐷 Func 𝐸)(2nd𝐺))
12392adantr 480 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((1st𝐹)‘𝑥) ∈ (Base‘𝐷))
12425adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (Base‘𝐶)) → (1st𝐹):(Base‘𝐶)⟶(Base‘𝐷))
125124adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (1st𝐹):(Base‘𝐶)⟶(Base‘𝐷))
126125, 112ffvelcdmd 7018 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((1st𝐹)‘𝑦) ∈ (Base‘𝐷))
127125, 108ffvelcdmd 7018 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((1st𝐹)‘𝑧) ∈ (Base‘𝐷))
1281, 46, 37, 106, 107, 112funcf2 17775 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑥(2nd𝐹)𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦)))
129128, 113ffvelcdmd 7018 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((𝑥(2nd𝐹)𝑦)‘𝑓) ∈ (((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦)))
1301, 46, 37, 106, 112, 108funcf2 17775 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑦(2nd𝐹)𝑧):(𝑦(Hom ‘𝐶)𝑧)⟶(((1st𝐹)‘𝑦)(Hom ‘𝐷)((1st𝐹)‘𝑧)))
131130, 114ffvelcdmd 7018 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((𝑦(2nd𝐹)𝑧)‘𝑔) ∈ (((1st𝐹)‘𝑦)(Hom ‘𝐷)((1st𝐹)‘𝑧)))
13216, 37, 118, 121, 122, 123, 126, 127, 129, 131funcco 17778 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑧))‘(((𝑦(2nd𝐹)𝑧)‘𝑔)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐹)‘𝑧))((𝑥(2nd𝐹)𝑦)‘𝑓))) = (((((1st𝐹)‘𝑦)(2nd𝐺)((1st𝐹)‘𝑧))‘((𝑦(2nd𝐹)𝑧)‘𝑔))(⟨((1st𝐺)‘((1st𝐹)‘𝑥)), ((1st𝐺)‘((1st𝐹)‘𝑦))⟩(comp‘𝐸)((1st𝐺)‘((1st𝐹)‘𝑧)))((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦))‘((𝑥(2nd𝐹)𝑦)‘𝑓))))
133117, 120, 1323eqtrd 2770 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑧)) ∘ (𝑥(2nd𝐹)𝑧))‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = (((((1st𝐹)‘𝑦)(2nd𝐺)((1st𝐹)‘𝑧))‘((𝑦(2nd𝐹)𝑧)‘𝑔))(⟨((1st𝐺)‘((1st𝐹)‘𝑥)), ((1st𝐺)‘((1st𝐹)‘𝑦))⟩(comp‘𝐸)((1st𝐺)‘((1st𝐹)‘𝑧)))((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦))‘((𝑥(2nd𝐹)𝑦)‘𝑓))))
13495adantr 480 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝐹 ∈ (𝐶 Func 𝐷))
13596adantr 480 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝐺 ∈ (𝐷 Func 𝐸))
1361, 134, 135, 107, 108cofu2nd 17792 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑥(2nd ‘(𝐺func 𝐹))𝑧) = ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑧)) ∘ (𝑥(2nd𝐹)𝑧)))
137136fveq1d 6824 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((𝑥(2nd ‘(𝐺func 𝐹))𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = (((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑧)) ∘ (𝑥(2nd𝐹)𝑧))‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)))
138103adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((1st ‘(𝐺func 𝐹))‘𝑥) = ((1st𝐺)‘((1st𝐹)‘𝑥)))
1391, 134, 135, 112cofu1 17791 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((1st ‘(𝐺func 𝐹))‘𝑦) = ((1st𝐺)‘((1st𝐹)‘𝑦)))
140138, 139opeq12d 4830 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ⟨((1st ‘(𝐺func 𝐹))‘𝑥), ((1st ‘(𝐺func 𝐹))‘𝑦)⟩ = ⟨((1st𝐺)‘((1st𝐹)‘𝑥)), ((1st𝐺)‘((1st𝐹)‘𝑦))⟩)
1411, 134, 135, 108cofu1 17791 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((1st ‘(𝐺func 𝐹))‘𝑧) = ((1st𝐺)‘((1st𝐹)‘𝑧)))
142140, 141oveq12d 7364 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (⟨((1st ‘(𝐺func 𝐹))‘𝑥), ((1st ‘(𝐺func 𝐹))‘𝑦)⟩(comp‘𝐸)((1st ‘(𝐺func 𝐹))‘𝑧)) = (⟨((1st𝐺)‘((1st𝐹)‘𝑥)), ((1st𝐺)‘((1st𝐹)‘𝑦))⟩(comp‘𝐸)((1st𝐺)‘((1st𝐹)‘𝑧))))
1431, 134, 135, 112, 108, 46, 114cofu2 17793 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((𝑦(2nd ‘(𝐺func 𝐹))𝑧)‘𝑔) = ((((1st𝐹)‘𝑦)(2nd𝐺)((1st𝐹)‘𝑧))‘((𝑦(2nd𝐹)𝑧)‘𝑔)))
1441, 134, 135, 107, 112, 46, 113cofu2 17793 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((𝑥(2nd ‘(𝐺func 𝐹))𝑦)‘𝑓) = ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦))‘((𝑥(2nd𝐹)𝑦)‘𝑓)))
145142, 143, 144oveq123d 7367 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (((𝑦(2nd ‘(𝐺func 𝐹))𝑧)‘𝑔)(⟨((1st ‘(𝐺func 𝐹))‘𝑥), ((1st ‘(𝐺func 𝐹))‘𝑦)⟩(comp‘𝐸)((1st ‘(𝐺func 𝐹))‘𝑧))((𝑥(2nd ‘(𝐺func 𝐹))𝑦)‘𝑓)) = (((((1st𝐹)‘𝑦)(2nd𝐺)((1st𝐹)‘𝑧))‘((𝑦(2nd𝐹)𝑧)‘𝑔))(⟨((1st𝐺)‘((1st𝐹)‘𝑥)), ((1st𝐺)‘((1st𝐹)‘𝑦))⟩(comp‘𝐸)((1st𝐺)‘((1st𝐹)‘𝑧)))((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦))‘((𝑥(2nd𝐹)𝑦)‘𝑓))))
146133, 137, 1453eqtr4d 2776 . . . . . . . . 9 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((𝑥(2nd ‘(𝐺func 𝐹))𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = (((𝑦(2nd ‘(𝐺func 𝐹))𝑧)‘𝑔)(⟨((1st ‘(𝐺func 𝐹))‘𝑥), ((1st ‘(𝐺func 𝐹))‘𝑦)⟩(comp‘𝐸)((1st ‘(𝐺func 𝐹))‘𝑧))((𝑥(2nd ‘(𝐺func 𝐹))𝑦)‘𝑓)))
147146anassrs 467 . . . . . . . 8 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑥(2nd ‘(𝐺func 𝐹))𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = (((𝑦(2nd ‘(𝐺func 𝐹))𝑧)‘𝑔)(⟨((1st ‘(𝐺func 𝐹))‘𝑥), ((1st ‘(𝐺func 𝐹))‘𝑦)⟩(comp‘𝐸)((1st ‘(𝐺func 𝐹))‘𝑧))((𝑥(2nd ‘(𝐺func 𝐹))𝑦)‘𝑓)))
148147ralrimivva 3175 . . . . . . 7 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑥(2nd ‘(𝐺func 𝐹))𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = (((𝑦(2nd ‘(𝐺func 𝐹))𝑧)‘𝑔)(⟨((1st ‘(𝐺func 𝐹))‘𝑥), ((1st ‘(𝐺func 𝐹))‘𝑦)⟩(comp‘𝐸)((1st ‘(𝐺func 𝐹))‘𝑧))((𝑥(2nd ‘(𝐺func 𝐹))𝑦)‘𝑓)))
149148ralrimivva 3175 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑥(2nd ‘(𝐺func 𝐹))𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = (((𝑦(2nd ‘(𝐺func 𝐹))𝑧)‘𝑔)(⟨((1st ‘(𝐺func 𝐹))‘𝑥), ((1st ‘(𝐺func 𝐹))‘𝑦)⟩(comp‘𝐸)((1st ‘(𝐺func 𝐹))‘𝑧))((𝑥(2nd ‘(𝐺func 𝐹))𝑦)‘𝑓)))
150105, 149jca 511 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → (((𝑥(2nd ‘(𝐺func 𝐹))𝑥)‘((Id‘𝐶)‘𝑥)) = ((Id‘𝐸)‘((1st ‘(𝐺func 𝐹))‘𝑥)) ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑥(2nd ‘(𝐺func 𝐹))𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = (((𝑦(2nd ‘(𝐺func 𝐹))𝑧)‘𝑔)(⟨((1st ‘(𝐺func 𝐹))‘𝑥), ((1st ‘(𝐺func 𝐹))‘𝑦)⟩(comp‘𝐸)((1st ‘(𝐺func 𝐹))‘𝑧))((𝑥(2nd ‘(𝐺func 𝐹))𝑦)‘𝑓))))
151150ralrimiva 3124 . . . 4 (𝜑 → ∀𝑥 ∈ (Base‘𝐶)(((𝑥(2nd ‘(𝐺func 𝐹))𝑥)‘((Id‘𝐶)‘𝑥)) = ((Id‘𝐸)‘((1st ‘(𝐺func 𝐹))‘𝑥)) ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑥(2nd ‘(𝐺func 𝐹))𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = (((𝑦(2nd ‘(𝐺func 𝐹))𝑧)‘𝑔)(⟨((1st ‘(𝐺func 𝐹))‘𝑥), ((1st ‘(𝐺func 𝐹))‘𝑦)⟩(comp‘𝐸)((1st ‘(𝐺func 𝐹))‘𝑧))((𝑥(2nd ‘(𝐺func 𝐹))𝑦)‘𝑓))))
152 funcrcl 17770 . . . . . . 7 (𝐺 ∈ (𝐷 Func 𝐸) → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat))
1533, 152syl 17 . . . . . 6 (𝜑 → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat))
154153simprd 495 . . . . 5 (𝜑𝐸 ∈ Cat)
1551, 17, 46, 38, 84, 90, 110, 121, 99, 154isfunc 17771 . . . 4 (𝜑 → ((1st ‘(𝐺func 𝐹))(𝐶 Func 𝐸)(2nd ‘(𝐺func 𝐹)) ↔ ((1st ‘(𝐺func 𝐹)):(Base‘𝐶)⟶(Base‘𝐸) ∧ (2nd ‘(𝐺func 𝐹)) ∈ X𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))((((1st ‘(𝐺func 𝐹))‘(1st𝑧))(Hom ‘𝐸)((1st ‘(𝐺func 𝐹))‘(2nd𝑧))) ↑m ((Hom ‘𝐶)‘𝑧)) ∧ ∀𝑥 ∈ (Base‘𝐶)(((𝑥(2nd ‘(𝐺func 𝐹))𝑥)‘((Id‘𝐶)‘𝑥)) = ((Id‘𝐸)‘((1st ‘(𝐺func 𝐹))‘𝑥)) ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑥(2nd ‘(𝐺func 𝐹))𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = (((𝑦(2nd ‘(𝐺func 𝐹))𝑧)‘𝑔)(⟨((1st ‘(𝐺func 𝐹))‘𝑥), ((1st ‘(𝐺func 𝐹))‘𝑦)⟩(comp‘𝐸)((1st ‘(𝐺func 𝐹))‘𝑧))((𝑥(2nd ‘(𝐺func 𝐹))𝑦)‘𝑓))))))
15629, 83, 151, 155mpbir3and 1343 . . 3 (𝜑 → (1st ‘(𝐺func 𝐹))(𝐶 Func 𝐸)(2nd ‘(𝐺func 𝐹)))
157 df-br 5090 . . 3 ((1st ‘(𝐺func 𝐹))(𝐶 Func 𝐸)(2nd ‘(𝐺func 𝐹)) ↔ ⟨(1st ‘(𝐺func 𝐹)), (2nd ‘(𝐺func 𝐹))⟩ ∈ (𝐶 Func 𝐸))
158156, 157sylib 218 . 2 (𝜑 → ⟨(1st ‘(𝐺func 𝐹)), (2nd ‘(𝐺func 𝐹))⟩ ∈ (𝐶 Func 𝐸))
15915, 158eqeltrd 2831 1 (𝜑 → (𝐺func 𝐹) ∈ (𝐶 Func 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wral 3047  cop 4579   class class class wbr 5089   × cxp 5612  ccom 5618  Rel wrel 5619   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346  cmpo 7348  1st c1st 7919  2nd c2nd 7920  m cmap 8750  Xcixp 8821  Basecbs 17120  Hom chom 17172  compcco 17173  Catccat 17570  Idccid 17571   Func cfunc 17761  func ccofu 17763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-map 8752  df-ixp 8822  df-cat 17574  df-cid 17575  df-func 17765  df-cofu 17767
This theorem is referenced by:  cofuass  17796  cofull  17843  cofth  17844  catccatid  18013  1st2ndprf  18112  uncfcl  18141  uncf1  18142  uncf2  18143  yonedalem1  18178  yonedalem21  18179  yonedalem22  18184  funcrngcsetcALT  20556  rescofuf  49204  cofu1a  49205  cofu2a  49206  cofucla  49207  cofuoppf  49261  uptrlem2  49322  uptra  49326  uptr2a  49333  cofuswapfcl  49404  prcofdiag1  49504  prcofdiag  49505  oppfdiag1  49525  oppfdiag  49527  cofuterm  49656
  Copyright terms: Public domain W3C validator