MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cofucl Structured version   Visualization version   GIF version

Theorem cofucl 17850
Description: The composition of two functors is a functor. Proposition 3.23 of [Adamek] p. 33. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
cofucl.f (𝜑𝐹 ∈ (𝐶 Func 𝐷))
cofucl.g (𝜑𝐺 ∈ (𝐷 Func 𝐸))
Assertion
Ref Expression
cofucl (𝜑 → (𝐺func 𝐹) ∈ (𝐶 Func 𝐸))

Proof of Theorem cofucl
Dummy variables 𝑓 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . 4 (Base‘𝐶) = (Base‘𝐶)
2 cofucl.f . . . 4 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
3 cofucl.g . . . 4 (𝜑𝐺 ∈ (𝐷 Func 𝐸))
41, 2, 3cofuval 17844 . . 3 (𝜑 → (𝐺func 𝐹) = ⟨((1st𝐺) ∘ (1st𝐹)), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)))⟩)
51, 2, 3cofu1st 17845 . . . 4 (𝜑 → (1st ‘(𝐺func 𝐹)) = ((1st𝐺) ∘ (1st𝐹)))
64fveq2d 6862 . . . . 5 (𝜑 → (2nd ‘(𝐺func 𝐹)) = (2nd ‘⟨((1st𝐺) ∘ (1st𝐹)), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)))⟩))
7 fvex 6871 . . . . . . 7 (1st𝐺) ∈ V
8 fvex 6871 . . . . . . 7 (1st𝐹) ∈ V
97, 8coex 7906 . . . . . 6 ((1st𝐺) ∘ (1st𝐹)) ∈ V
10 fvex 6871 . . . . . . 7 (Base‘𝐶) ∈ V
1110, 10mpoex 8058 . . . . . 6 (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦))) ∈ V
129, 11op2nd 7977 . . . . 5 (2nd ‘⟨((1st𝐺) ∘ (1st𝐹)), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)))⟩) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)))
136, 12eqtrdi 2780 . . . 4 (𝜑 → (2nd ‘(𝐺func 𝐹)) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦))))
145, 13opeq12d 4845 . . 3 (𝜑 → ⟨(1st ‘(𝐺func 𝐹)), (2nd ‘(𝐺func 𝐹))⟩ = ⟨((1st𝐺) ∘ (1st𝐹)), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)))⟩)
154, 14eqtr4d 2767 . 2 (𝜑 → (𝐺func 𝐹) = ⟨(1st ‘(𝐺func 𝐹)), (2nd ‘(𝐺func 𝐹))⟩)
16 eqid 2729 . . . . . . 7 (Base‘𝐷) = (Base‘𝐷)
17 eqid 2729 . . . . . . 7 (Base‘𝐸) = (Base‘𝐸)
18 relfunc 17824 . . . . . . . 8 Rel (𝐷 Func 𝐸)
19 1st2ndbr 8021 . . . . . . . 8 ((Rel (𝐷 Func 𝐸) ∧ 𝐺 ∈ (𝐷 Func 𝐸)) → (1st𝐺)(𝐷 Func 𝐸)(2nd𝐺))
2018, 3, 19sylancr 587 . . . . . . 7 (𝜑 → (1st𝐺)(𝐷 Func 𝐸)(2nd𝐺))
2116, 17, 20funcf1 17828 . . . . . 6 (𝜑 → (1st𝐺):(Base‘𝐷)⟶(Base‘𝐸))
22 relfunc 17824 . . . . . . . 8 Rel (𝐶 Func 𝐷)
23 1st2ndbr 8021 . . . . . . . 8 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
2422, 2, 23sylancr 587 . . . . . . 7 (𝜑 → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
251, 16, 24funcf1 17828 . . . . . 6 (𝜑 → (1st𝐹):(Base‘𝐶)⟶(Base‘𝐷))
26 fco 6712 . . . . . 6 (((1st𝐺):(Base‘𝐷)⟶(Base‘𝐸) ∧ (1st𝐹):(Base‘𝐶)⟶(Base‘𝐷)) → ((1st𝐺) ∘ (1st𝐹)):(Base‘𝐶)⟶(Base‘𝐸))
2721, 25, 26syl2anc 584 . . . . 5 (𝜑 → ((1st𝐺) ∘ (1st𝐹)):(Base‘𝐶)⟶(Base‘𝐸))
285feq1d 6670 . . . . 5 (𝜑 → ((1st ‘(𝐺func 𝐹)):(Base‘𝐶)⟶(Base‘𝐸) ↔ ((1st𝐺) ∘ (1st𝐹)):(Base‘𝐶)⟶(Base‘𝐸)))
2927, 28mpbird 257 . . . 4 (𝜑 → (1st ‘(𝐺func 𝐹)):(Base‘𝐶)⟶(Base‘𝐸))
30 eqid 2729 . . . . . . 7 (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦))) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)))
31 ovex 7420 . . . . . . . 8 (((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∈ V
32 ovex 7420 . . . . . . . 8 (𝑥(2nd𝐹)𝑦) ∈ V
3331, 32coex 7906 . . . . . . 7 ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)) ∈ V
3430, 33fnmpoi 8049 . . . . . 6 (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦))) Fn ((Base‘𝐶) × (Base‘𝐶))
3513fneq1d 6611 . . . . . 6 (𝜑 → ((2nd ‘(𝐺func 𝐹)) Fn ((Base‘𝐶) × (Base‘𝐶)) ↔ (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦))) Fn ((Base‘𝐶) × (Base‘𝐶))))
3634, 35mpbiri 258 . . . . 5 (𝜑 → (2nd ‘(𝐺func 𝐹)) Fn ((Base‘𝐶) × (Base‘𝐶)))
37 eqid 2729 . . . . . . . . . . 11 (Hom ‘𝐷) = (Hom ‘𝐷)
38 eqid 2729 . . . . . . . . . . 11 (Hom ‘𝐸) = (Hom ‘𝐸)
3920adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (1st𝐺)(𝐷 Func 𝐸)(2nd𝐺))
4025adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (1st𝐹):(Base‘𝐶)⟶(Base‘𝐷))
41 simprl 770 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑥 ∈ (Base‘𝐶))
4240, 41ffvelcdmd 7057 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((1st𝐹)‘𝑥) ∈ (Base‘𝐷))
43 simprr 772 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶))
4440, 43ffvelcdmd 7057 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((1st𝐹)‘𝑦) ∈ (Base‘𝐷))
4516, 37, 38, 39, 42, 44funcf2 17830 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)):(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦))⟶(((1st𝐺)‘((1st𝐹)‘𝑥))(Hom ‘𝐸)((1st𝐺)‘((1st𝐹)‘𝑦))))
46 eqid 2729 . . . . . . . . . . 11 (Hom ‘𝐶) = (Hom ‘𝐶)
4724adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
481, 46, 37, 47, 41, 43funcf2 17830 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd𝐹)𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦)))
49 fco 6712 . . . . . . . . . 10 (((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)):(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦))⟶(((1st𝐺)‘((1st𝐹)‘𝑥))(Hom ‘𝐸)((1st𝐺)‘((1st𝐹)‘𝑦))) ∧ (𝑥(2nd𝐹)𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦))) → ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st𝐺)‘((1st𝐹)‘𝑥))(Hom ‘𝐸)((1st𝐺)‘((1st𝐹)‘𝑦))))
5045, 48, 49syl2anc 584 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st𝐺)‘((1st𝐹)‘𝑥))(Hom ‘𝐸)((1st𝐺)‘((1st𝐹)‘𝑦))))
51 ovex 7420 . . . . . . . . . 10 (((1st𝐺)‘((1st𝐹)‘𝑥))(Hom ‘𝐸)((1st𝐺)‘((1st𝐹)‘𝑦))) ∈ V
52 ovex 7420 . . . . . . . . . 10 (𝑥(Hom ‘𝐶)𝑦) ∈ V
5351, 52elmap 8844 . . . . . . . . 9 (((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)) ∈ ((((1st𝐺)‘((1st𝐹)‘𝑥))(Hom ‘𝐸)((1st𝐺)‘((1st𝐹)‘𝑦))) ↑m (𝑥(Hom ‘𝐶)𝑦)) ↔ ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st𝐺)‘((1st𝐹)‘𝑥))(Hom ‘𝐸)((1st𝐺)‘((1st𝐹)‘𝑦))))
5450, 53sylibr 234 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)) ∈ ((((1st𝐺)‘((1st𝐹)‘𝑥))(Hom ‘𝐸)((1st𝐺)‘((1st𝐹)‘𝑦))) ↑m (𝑥(Hom ‘𝐶)𝑦)))
552adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝐹 ∈ (𝐶 Func 𝐷))
563adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝐺 ∈ (𝐷 Func 𝐸))
571, 55, 56, 41, 43cofu2nd 17847 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd ‘(𝐺func 𝐹))𝑦) = ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)))
581, 55, 56, 41cofu1 17846 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((1st ‘(𝐺func 𝐹))‘𝑥) = ((1st𝐺)‘((1st𝐹)‘𝑥)))
591, 55, 56, 43cofu1 17846 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((1st ‘(𝐺func 𝐹))‘𝑦) = ((1st𝐺)‘((1st𝐹)‘𝑦)))
6058, 59oveq12d 7405 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (((1st ‘(𝐺func 𝐹))‘𝑥)(Hom ‘𝐸)((1st ‘(𝐺func 𝐹))‘𝑦)) = (((1st𝐺)‘((1st𝐹)‘𝑥))(Hom ‘𝐸)((1st𝐺)‘((1st𝐹)‘𝑦))))
6160oveq1d 7402 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((((1st ‘(𝐺func 𝐹))‘𝑥)(Hom ‘𝐸)((1st ‘(𝐺func 𝐹))‘𝑦)) ↑m (𝑥(Hom ‘𝐶)𝑦)) = ((((1st𝐺)‘((1st𝐹)‘𝑥))(Hom ‘𝐸)((1st𝐺)‘((1st𝐹)‘𝑦))) ↑m (𝑥(Hom ‘𝐶)𝑦)))
6254, 57, 613eltr4d 2843 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd ‘(𝐺func 𝐹))𝑦) ∈ ((((1st ‘(𝐺func 𝐹))‘𝑥)(Hom ‘𝐸)((1st ‘(𝐺func 𝐹))‘𝑦)) ↑m (𝑥(Hom ‘𝐶)𝑦)))
6362ralrimivva 3180 . . . . . 6 (𝜑 → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥(2nd ‘(𝐺func 𝐹))𝑦) ∈ ((((1st ‘(𝐺func 𝐹))‘𝑥)(Hom ‘𝐸)((1st ‘(𝐺func 𝐹))‘𝑦)) ↑m (𝑥(Hom ‘𝐶)𝑦)))
64 fveq2 6858 . . . . . . . . 9 (𝑧 = ⟨𝑥, 𝑦⟩ → ((2nd ‘(𝐺func 𝐹))‘𝑧) = ((2nd ‘(𝐺func 𝐹))‘⟨𝑥, 𝑦⟩))
65 df-ov 7390 . . . . . . . . 9 (𝑥(2nd ‘(𝐺func 𝐹))𝑦) = ((2nd ‘(𝐺func 𝐹))‘⟨𝑥, 𝑦⟩)
6664, 65eqtr4di 2782 . . . . . . . 8 (𝑧 = ⟨𝑥, 𝑦⟩ → ((2nd ‘(𝐺func 𝐹))‘𝑧) = (𝑥(2nd ‘(𝐺func 𝐹))𝑦))
67 vex 3451 . . . . . . . . . . . 12 𝑥 ∈ V
68 vex 3451 . . . . . . . . . . . 12 𝑦 ∈ V
6967, 68op1std 7978 . . . . . . . . . . 11 (𝑧 = ⟨𝑥, 𝑦⟩ → (1st𝑧) = 𝑥)
7069fveq2d 6862 . . . . . . . . . 10 (𝑧 = ⟨𝑥, 𝑦⟩ → ((1st ‘(𝐺func 𝐹))‘(1st𝑧)) = ((1st ‘(𝐺func 𝐹))‘𝑥))
7167, 68op2ndd 7979 . . . . . . . . . . 11 (𝑧 = ⟨𝑥, 𝑦⟩ → (2nd𝑧) = 𝑦)
7271fveq2d 6862 . . . . . . . . . 10 (𝑧 = ⟨𝑥, 𝑦⟩ → ((1st ‘(𝐺func 𝐹))‘(2nd𝑧)) = ((1st ‘(𝐺func 𝐹))‘𝑦))
7370, 72oveq12d 7405 . . . . . . . . 9 (𝑧 = ⟨𝑥, 𝑦⟩ → (((1st ‘(𝐺func 𝐹))‘(1st𝑧))(Hom ‘𝐸)((1st ‘(𝐺func 𝐹))‘(2nd𝑧))) = (((1st ‘(𝐺func 𝐹))‘𝑥)(Hom ‘𝐸)((1st ‘(𝐺func 𝐹))‘𝑦)))
74 fveq2 6858 . . . . . . . . . 10 (𝑧 = ⟨𝑥, 𝑦⟩ → ((Hom ‘𝐶)‘𝑧) = ((Hom ‘𝐶)‘⟨𝑥, 𝑦⟩))
75 df-ov 7390 . . . . . . . . . 10 (𝑥(Hom ‘𝐶)𝑦) = ((Hom ‘𝐶)‘⟨𝑥, 𝑦⟩)
7674, 75eqtr4di 2782 . . . . . . . . 9 (𝑧 = ⟨𝑥, 𝑦⟩ → ((Hom ‘𝐶)‘𝑧) = (𝑥(Hom ‘𝐶)𝑦))
7773, 76oveq12d 7405 . . . . . . . 8 (𝑧 = ⟨𝑥, 𝑦⟩ → ((((1st ‘(𝐺func 𝐹))‘(1st𝑧))(Hom ‘𝐸)((1st ‘(𝐺func 𝐹))‘(2nd𝑧))) ↑m ((Hom ‘𝐶)‘𝑧)) = ((((1st ‘(𝐺func 𝐹))‘𝑥)(Hom ‘𝐸)((1st ‘(𝐺func 𝐹))‘𝑦)) ↑m (𝑥(Hom ‘𝐶)𝑦)))
7866, 77eleq12d 2822 . . . . . . 7 (𝑧 = ⟨𝑥, 𝑦⟩ → (((2nd ‘(𝐺func 𝐹))‘𝑧) ∈ ((((1st ‘(𝐺func 𝐹))‘(1st𝑧))(Hom ‘𝐸)((1st ‘(𝐺func 𝐹))‘(2nd𝑧))) ↑m ((Hom ‘𝐶)‘𝑧)) ↔ (𝑥(2nd ‘(𝐺func 𝐹))𝑦) ∈ ((((1st ‘(𝐺func 𝐹))‘𝑥)(Hom ‘𝐸)((1st ‘(𝐺func 𝐹))‘𝑦)) ↑m (𝑥(Hom ‘𝐶)𝑦))))
7978ralxp 5805 . . . . . 6 (∀𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))((2nd ‘(𝐺func 𝐹))‘𝑧) ∈ ((((1st ‘(𝐺func 𝐹))‘(1st𝑧))(Hom ‘𝐸)((1st ‘(𝐺func 𝐹))‘(2nd𝑧))) ↑m ((Hom ‘𝐶)‘𝑧)) ↔ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥(2nd ‘(𝐺func 𝐹))𝑦) ∈ ((((1st ‘(𝐺func 𝐹))‘𝑥)(Hom ‘𝐸)((1st ‘(𝐺func 𝐹))‘𝑦)) ↑m (𝑥(Hom ‘𝐶)𝑦)))
8063, 79sylibr 234 . . . . 5 (𝜑 → ∀𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))((2nd ‘(𝐺func 𝐹))‘𝑧) ∈ ((((1st ‘(𝐺func 𝐹))‘(1st𝑧))(Hom ‘𝐸)((1st ‘(𝐺func 𝐹))‘(2nd𝑧))) ↑m ((Hom ‘𝐶)‘𝑧)))
81 fvex 6871 . . . . . 6 (2nd ‘(𝐺func 𝐹)) ∈ V
8281elixp 8877 . . . . 5 ((2nd ‘(𝐺func 𝐹)) ∈ X𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))((((1st ‘(𝐺func 𝐹))‘(1st𝑧))(Hom ‘𝐸)((1st ‘(𝐺func 𝐹))‘(2nd𝑧))) ↑m ((Hom ‘𝐶)‘𝑧)) ↔ ((2nd ‘(𝐺func 𝐹)) Fn ((Base‘𝐶) × (Base‘𝐶)) ∧ ∀𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))((2nd ‘(𝐺func 𝐹))‘𝑧) ∈ ((((1st ‘(𝐺func 𝐹))‘(1st𝑧))(Hom ‘𝐸)((1st ‘(𝐺func 𝐹))‘(2nd𝑧))) ↑m ((Hom ‘𝐶)‘𝑧))))
8336, 80, 82sylanbrc 583 . . . 4 (𝜑 → (2nd ‘(𝐺func 𝐹)) ∈ X𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))((((1st ‘(𝐺func 𝐹))‘(1st𝑧))(Hom ‘𝐸)((1st ‘(𝐺func 𝐹))‘(2nd𝑧))) ↑m ((Hom ‘𝐶)‘𝑧)))
84 eqid 2729 . . . . . . . . . 10 (Id‘𝐶) = (Id‘𝐶)
85 eqid 2729 . . . . . . . . . 10 (Id‘𝐷) = (Id‘𝐷)
8624adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ (Base‘𝐶)) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
87 simpr 484 . . . . . . . . . 10 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶))
881, 84, 85, 86, 87funcid 17832 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((𝑥(2nd𝐹)𝑥)‘((Id‘𝐶)‘𝑥)) = ((Id‘𝐷)‘((1st𝐹)‘𝑥)))
8988fveq2d 6862 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑥))‘((𝑥(2nd𝐹)𝑥)‘((Id‘𝐶)‘𝑥))) = ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑥))‘((Id‘𝐷)‘((1st𝐹)‘𝑥))))
90 eqid 2729 . . . . . . . . 9 (Id‘𝐸) = (Id‘𝐸)
9120adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝐶)) → (1st𝐺)(𝐷 Func 𝐸)(2nd𝐺))
9225ffvelcdmda 7056 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st𝐹)‘𝑥) ∈ (Base‘𝐷))
9316, 85, 90, 91, 92funcid 17832 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑥))‘((Id‘𝐷)‘((1st𝐹)‘𝑥))) = ((Id‘𝐸)‘((1st𝐺)‘((1st𝐹)‘𝑥))))
9489, 93eqtrd 2764 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑥))‘((𝑥(2nd𝐹)𝑥)‘((Id‘𝐶)‘𝑥))) = ((Id‘𝐸)‘((1st𝐺)‘((1st𝐹)‘𝑥))))
952adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐹 ∈ (𝐶 Func 𝐷))
963adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐺 ∈ (𝐷 Func 𝐸))
97 funcrcl 17825 . . . . . . . . . . . 12 (𝐹 ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
982, 97syl 17 . . . . . . . . . . 11 (𝜑 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
9998simpld 494 . . . . . . . . . 10 (𝜑𝐶 ∈ Cat)
10099adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐶 ∈ Cat)
1011, 46, 84, 100, 87catidcl 17643 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((Id‘𝐶)‘𝑥) ∈ (𝑥(Hom ‘𝐶)𝑥))
1021, 95, 96, 87, 87, 46, 101cofu2 17848 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((𝑥(2nd ‘(𝐺func 𝐹))𝑥)‘((Id‘𝐶)‘𝑥)) = ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑥))‘((𝑥(2nd𝐹)𝑥)‘((Id‘𝐶)‘𝑥))))
1031, 95, 96, 87cofu1 17846 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st ‘(𝐺func 𝐹))‘𝑥) = ((1st𝐺)‘((1st𝐹)‘𝑥)))
104103fveq2d 6862 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((Id‘𝐸)‘((1st ‘(𝐺func 𝐹))‘𝑥)) = ((Id‘𝐸)‘((1st𝐺)‘((1st𝐹)‘𝑥))))
10594, 102, 1043eqtr4d 2774 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((𝑥(2nd ‘(𝐺func 𝐹))𝑥)‘((Id‘𝐶)‘𝑥)) = ((Id‘𝐸)‘((1st ‘(𝐺func 𝐹))‘𝑥)))
10686adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
107 simplr 768 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑥 ∈ (Base‘𝐶))
108 simprlr 779 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑧 ∈ (Base‘𝐶))
1091, 46, 37, 106, 107, 108funcf2 17830 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑥(2nd𝐹)𝑧):(𝑥(Hom ‘𝐶)𝑧)⟶(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑧)))
110 eqid 2729 . . . . . . . . . . . . 13 (comp‘𝐶) = (comp‘𝐶)
111100adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝐶 ∈ Cat)
112 simprll 778 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑦 ∈ (Base‘𝐶))
113 simprrl 780 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))
114 simprrr 781 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))
1151, 46, 110, 111, 107, 112, 108, 113, 114catcocl 17646 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧))
116 fvco3 6960 . . . . . . . . . . . 12 (((𝑥(2nd𝐹)𝑧):(𝑥(Hom ‘𝐶)𝑧)⟶(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑧)) ∧ (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧)) → (((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑧)) ∘ (𝑥(2nd𝐹)𝑧))‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑧))‘((𝑥(2nd𝐹)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))))
117109, 115, 116syl2anc 584 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑧)) ∘ (𝑥(2nd𝐹)𝑧))‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑧))‘((𝑥(2nd𝐹)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))))
118 eqid 2729 . . . . . . . . . . . . 13 (comp‘𝐷) = (comp‘𝐷)
1191, 46, 110, 118, 106, 107, 112, 108, 113, 114funcco 17833 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((𝑥(2nd𝐹)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = (((𝑦(2nd𝐹)𝑧)‘𝑔)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐹)‘𝑧))((𝑥(2nd𝐹)𝑦)‘𝑓)))
120119fveq2d 6862 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑧))‘((𝑥(2nd𝐹)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))) = ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑧))‘(((𝑦(2nd𝐹)𝑧)‘𝑔)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐹)‘𝑧))((𝑥(2nd𝐹)𝑦)‘𝑓))))
121 eqid 2729 . . . . . . . . . . . 12 (comp‘𝐸) = (comp‘𝐸)
12291adantr 480 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (1st𝐺)(𝐷 Func 𝐸)(2nd𝐺))
12392adantr 480 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((1st𝐹)‘𝑥) ∈ (Base‘𝐷))
12425adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (Base‘𝐶)) → (1st𝐹):(Base‘𝐶)⟶(Base‘𝐷))
125124adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (1st𝐹):(Base‘𝐶)⟶(Base‘𝐷))
126125, 112ffvelcdmd 7057 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((1st𝐹)‘𝑦) ∈ (Base‘𝐷))
127125, 108ffvelcdmd 7057 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((1st𝐹)‘𝑧) ∈ (Base‘𝐷))
1281, 46, 37, 106, 107, 112funcf2 17830 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑥(2nd𝐹)𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦)))
129128, 113ffvelcdmd 7057 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((𝑥(2nd𝐹)𝑦)‘𝑓) ∈ (((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦)))
1301, 46, 37, 106, 112, 108funcf2 17830 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑦(2nd𝐹)𝑧):(𝑦(Hom ‘𝐶)𝑧)⟶(((1st𝐹)‘𝑦)(Hom ‘𝐷)((1st𝐹)‘𝑧)))
131130, 114ffvelcdmd 7057 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((𝑦(2nd𝐹)𝑧)‘𝑔) ∈ (((1st𝐹)‘𝑦)(Hom ‘𝐷)((1st𝐹)‘𝑧)))
13216, 37, 118, 121, 122, 123, 126, 127, 129, 131funcco 17833 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑧))‘(((𝑦(2nd𝐹)𝑧)‘𝑔)(⟨((1st𝐹)‘𝑥), ((1st𝐹)‘𝑦)⟩(comp‘𝐷)((1st𝐹)‘𝑧))((𝑥(2nd𝐹)𝑦)‘𝑓))) = (((((1st𝐹)‘𝑦)(2nd𝐺)((1st𝐹)‘𝑧))‘((𝑦(2nd𝐹)𝑧)‘𝑔))(⟨((1st𝐺)‘((1st𝐹)‘𝑥)), ((1st𝐺)‘((1st𝐹)‘𝑦))⟩(comp‘𝐸)((1st𝐺)‘((1st𝐹)‘𝑧)))((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦))‘((𝑥(2nd𝐹)𝑦)‘𝑓))))
133117, 120, 1323eqtrd 2768 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑧)) ∘ (𝑥(2nd𝐹)𝑧))‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = (((((1st𝐹)‘𝑦)(2nd𝐺)((1st𝐹)‘𝑧))‘((𝑦(2nd𝐹)𝑧)‘𝑔))(⟨((1st𝐺)‘((1st𝐹)‘𝑥)), ((1st𝐺)‘((1st𝐹)‘𝑦))⟩(comp‘𝐸)((1st𝐺)‘((1st𝐹)‘𝑧)))((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦))‘((𝑥(2nd𝐹)𝑦)‘𝑓))))
13495adantr 480 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝐹 ∈ (𝐶 Func 𝐷))
13596adantr 480 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → 𝐺 ∈ (𝐷 Func 𝐸))
1361, 134, 135, 107, 108cofu2nd 17847 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (𝑥(2nd ‘(𝐺func 𝐹))𝑧) = ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑧)) ∘ (𝑥(2nd𝐹)𝑧)))
137136fveq1d 6860 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((𝑥(2nd ‘(𝐺func 𝐹))𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = (((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑧)) ∘ (𝑥(2nd𝐹)𝑧))‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)))
138103adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((1st ‘(𝐺func 𝐹))‘𝑥) = ((1st𝐺)‘((1st𝐹)‘𝑥)))
1391, 134, 135, 112cofu1 17846 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((1st ‘(𝐺func 𝐹))‘𝑦) = ((1st𝐺)‘((1st𝐹)‘𝑦)))
140138, 139opeq12d 4845 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ⟨((1st ‘(𝐺func 𝐹))‘𝑥), ((1st ‘(𝐺func 𝐹))‘𝑦)⟩ = ⟨((1st𝐺)‘((1st𝐹)‘𝑥)), ((1st𝐺)‘((1st𝐹)‘𝑦))⟩)
1411, 134, 135, 108cofu1 17846 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((1st ‘(𝐺func 𝐹))‘𝑧) = ((1st𝐺)‘((1st𝐹)‘𝑧)))
142140, 141oveq12d 7405 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (⟨((1st ‘(𝐺func 𝐹))‘𝑥), ((1st ‘(𝐺func 𝐹))‘𝑦)⟩(comp‘𝐸)((1st ‘(𝐺func 𝐹))‘𝑧)) = (⟨((1st𝐺)‘((1st𝐹)‘𝑥)), ((1st𝐺)‘((1st𝐹)‘𝑦))⟩(comp‘𝐸)((1st𝐺)‘((1st𝐹)‘𝑧))))
1431, 134, 135, 112, 108, 46, 114cofu2 17848 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((𝑦(2nd ‘(𝐺func 𝐹))𝑧)‘𝑔) = ((((1st𝐹)‘𝑦)(2nd𝐺)((1st𝐹)‘𝑧))‘((𝑦(2nd𝐹)𝑧)‘𝑔)))
1441, 134, 135, 107, 112, 46, 113cofu2 17848 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((𝑥(2nd ‘(𝐺func 𝐹))𝑦)‘𝑓) = ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦))‘((𝑥(2nd𝐹)𝑦)‘𝑓)))
145142, 143, 144oveq123d 7408 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → (((𝑦(2nd ‘(𝐺func 𝐹))𝑧)‘𝑔)(⟨((1st ‘(𝐺func 𝐹))‘𝑥), ((1st ‘(𝐺func 𝐹))‘𝑦)⟩(comp‘𝐸)((1st ‘(𝐺func 𝐹))‘𝑧))((𝑥(2nd ‘(𝐺func 𝐹))𝑦)‘𝑓)) = (((((1st𝐹)‘𝑦)(2nd𝐺)((1st𝐹)‘𝑧))‘((𝑦(2nd𝐹)𝑧)‘𝑔))(⟨((1st𝐺)‘((1st𝐹)‘𝑥)), ((1st𝐺)‘((1st𝐹)‘𝑦))⟩(comp‘𝐸)((1st𝐺)‘((1st𝐹)‘𝑧)))((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦))‘((𝑥(2nd𝐹)𝑦)‘𝑓))))
146133, 137, 1453eqtr4d 2774 . . . . . . . . 9 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)))) → ((𝑥(2nd ‘(𝐺func 𝐹))𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = (((𝑦(2nd ‘(𝐺func 𝐹))𝑧)‘𝑔)(⟨((1st ‘(𝐺func 𝐹))‘𝑥), ((1st ‘(𝐺func 𝐹))‘𝑦)⟩(comp‘𝐸)((1st ‘(𝐺func 𝐹))‘𝑧))((𝑥(2nd ‘(𝐺func 𝐹))𝑦)‘𝑓)))
147146anassrs 467 . . . . . . . 8 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑥(2nd ‘(𝐺func 𝐹))𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = (((𝑦(2nd ‘(𝐺func 𝐹))𝑧)‘𝑔)(⟨((1st ‘(𝐺func 𝐹))‘𝑥), ((1st ‘(𝐺func 𝐹))‘𝑦)⟩(comp‘𝐸)((1st ‘(𝐺func 𝐹))‘𝑧))((𝑥(2nd ‘(𝐺func 𝐹))𝑦)‘𝑓)))
148147ralrimivva 3180 . . . . . . 7 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑥(2nd ‘(𝐺func 𝐹))𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = (((𝑦(2nd ‘(𝐺func 𝐹))𝑧)‘𝑔)(⟨((1st ‘(𝐺func 𝐹))‘𝑥), ((1st ‘(𝐺func 𝐹))‘𝑦)⟩(comp‘𝐸)((1st ‘(𝐺func 𝐹))‘𝑧))((𝑥(2nd ‘(𝐺func 𝐹))𝑦)‘𝑓)))
149148ralrimivva 3180 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑥(2nd ‘(𝐺func 𝐹))𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = (((𝑦(2nd ‘(𝐺func 𝐹))𝑧)‘𝑔)(⟨((1st ‘(𝐺func 𝐹))‘𝑥), ((1st ‘(𝐺func 𝐹))‘𝑦)⟩(comp‘𝐸)((1st ‘(𝐺func 𝐹))‘𝑧))((𝑥(2nd ‘(𝐺func 𝐹))𝑦)‘𝑓)))
150105, 149jca 511 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → (((𝑥(2nd ‘(𝐺func 𝐹))𝑥)‘((Id‘𝐶)‘𝑥)) = ((Id‘𝐸)‘((1st ‘(𝐺func 𝐹))‘𝑥)) ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑥(2nd ‘(𝐺func 𝐹))𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = (((𝑦(2nd ‘(𝐺func 𝐹))𝑧)‘𝑔)(⟨((1st ‘(𝐺func 𝐹))‘𝑥), ((1st ‘(𝐺func 𝐹))‘𝑦)⟩(comp‘𝐸)((1st ‘(𝐺func 𝐹))‘𝑧))((𝑥(2nd ‘(𝐺func 𝐹))𝑦)‘𝑓))))
151150ralrimiva 3125 . . . 4 (𝜑 → ∀𝑥 ∈ (Base‘𝐶)(((𝑥(2nd ‘(𝐺func 𝐹))𝑥)‘((Id‘𝐶)‘𝑥)) = ((Id‘𝐸)‘((1st ‘(𝐺func 𝐹))‘𝑥)) ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑥(2nd ‘(𝐺func 𝐹))𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = (((𝑦(2nd ‘(𝐺func 𝐹))𝑧)‘𝑔)(⟨((1st ‘(𝐺func 𝐹))‘𝑥), ((1st ‘(𝐺func 𝐹))‘𝑦)⟩(comp‘𝐸)((1st ‘(𝐺func 𝐹))‘𝑧))((𝑥(2nd ‘(𝐺func 𝐹))𝑦)‘𝑓))))
152 funcrcl 17825 . . . . . . 7 (𝐺 ∈ (𝐷 Func 𝐸) → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat))
1533, 152syl 17 . . . . . 6 (𝜑 → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat))
154153simprd 495 . . . . 5 (𝜑𝐸 ∈ Cat)
1551, 17, 46, 38, 84, 90, 110, 121, 99, 154isfunc 17826 . . . 4 (𝜑 → ((1st ‘(𝐺func 𝐹))(𝐶 Func 𝐸)(2nd ‘(𝐺func 𝐹)) ↔ ((1st ‘(𝐺func 𝐹)):(Base‘𝐶)⟶(Base‘𝐸) ∧ (2nd ‘(𝐺func 𝐹)) ∈ X𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))((((1st ‘(𝐺func 𝐹))‘(1st𝑧))(Hom ‘𝐸)((1st ‘(𝐺func 𝐹))‘(2nd𝑧))) ↑m ((Hom ‘𝐶)‘𝑧)) ∧ ∀𝑥 ∈ (Base‘𝐶)(((𝑥(2nd ‘(𝐺func 𝐹))𝑥)‘((Id‘𝐶)‘𝑥)) = ((Id‘𝐸)‘((1st ‘(𝐺func 𝐹))‘𝑥)) ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑥(2nd ‘(𝐺func 𝐹))𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = (((𝑦(2nd ‘(𝐺func 𝐹))𝑧)‘𝑔)(⟨((1st ‘(𝐺func 𝐹))‘𝑥), ((1st ‘(𝐺func 𝐹))‘𝑦)⟩(comp‘𝐸)((1st ‘(𝐺func 𝐹))‘𝑧))((𝑥(2nd ‘(𝐺func 𝐹))𝑦)‘𝑓))))))
15629, 83, 151, 155mpbir3and 1343 . . 3 (𝜑 → (1st ‘(𝐺func 𝐹))(𝐶 Func 𝐸)(2nd ‘(𝐺func 𝐹)))
157 df-br 5108 . . 3 ((1st ‘(𝐺func 𝐹))(𝐶 Func 𝐸)(2nd ‘(𝐺func 𝐹)) ↔ ⟨(1st ‘(𝐺func 𝐹)), (2nd ‘(𝐺func 𝐹))⟩ ∈ (𝐶 Func 𝐸))
158156, 157sylib 218 . 2 (𝜑 → ⟨(1st ‘(𝐺func 𝐹)), (2nd ‘(𝐺func 𝐹))⟩ ∈ (𝐶 Func 𝐸))
15915, 158eqeltrd 2828 1 (𝜑 → (𝐺func 𝐹) ∈ (𝐶 Func 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  cop 4595   class class class wbr 5107   × cxp 5636  ccom 5642  Rel wrel 5643   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  cmpo 7389  1st c1st 7966  2nd c2nd 7967  m cmap 8799  Xcixp 8870  Basecbs 17179  Hom chom 17231  compcco 17232  Catccat 17625  Idccid 17626   Func cfunc 17816  func ccofu 17818
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-map 8801  df-ixp 8871  df-cat 17629  df-cid 17630  df-func 17820  df-cofu 17822
This theorem is referenced by:  cofuass  17851  cofull  17898  cofth  17899  catccatid  18068  1st2ndprf  18167  uncfcl  18196  uncf1  18197  uncf2  18198  yonedalem1  18233  yonedalem21  18234  yonedalem22  18239  funcrngcsetcALT  20550  rescofuf  49082  cofu1a  49083  cofu2a  49084  cofucla  49085  cofuoppf  49139  uptrlem2  49200  uptra  49204  uptr2a  49211  cofuswapfcl  49282  prcofdiag1  49382  prcofdiag  49383  oppfdiag1  49403  oppfdiag  49405  cofuterm  49534
  Copyright terms: Public domain W3C validator