Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cofuval Structured version   Visualization version   GIF version

Theorem cofuval 17226
 Description: Value of the composition of two functors. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
cofuval.b 𝐵 = (Base‘𝐶)
cofuval.f (𝜑𝐹 ∈ (𝐶 Func 𝐷))
cofuval.g (𝜑𝐺 ∈ (𝐷 Func 𝐸))
Assertion
Ref Expression
cofuval (𝜑 → (𝐺func 𝐹) = ⟨((1st𝐺) ∘ (1st𝐹)), (𝑥𝐵, 𝑦𝐵 ↦ ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)))⟩)
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝐸(𝑥,𝑦)

Proof of Theorem cofuval
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-cofu 17204 . . 3 func = (𝑔 ∈ V, 𝑓 ∈ V ↦ ⟨((1st𝑔) ∘ (1st𝑓)), (𝑥 ∈ dom dom (2nd𝑓), 𝑦 ∈ dom dom (2nd𝑓) ↦ ((((1st𝑓)‘𝑥)(2nd𝑔)((1st𝑓)‘𝑦)) ∘ (𝑥(2nd𝑓)𝑦)))⟩)
21a1i 11 . 2 (𝜑 → ∘func = (𝑔 ∈ V, 𝑓 ∈ V ↦ ⟨((1st𝑔) ∘ (1st𝑓)), (𝑥 ∈ dom dom (2nd𝑓), 𝑦 ∈ dom dom (2nd𝑓) ↦ ((((1st𝑓)‘𝑥)(2nd𝑔)((1st𝑓)‘𝑦)) ∘ (𝑥(2nd𝑓)𝑦)))⟩))
3 simprl 770 . . . . 5 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → 𝑔 = 𝐺)
43fveq2d 6668 . . . 4 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (1st𝑔) = (1st𝐺))
5 simprr 772 . . . . 5 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → 𝑓 = 𝐹)
65fveq2d 6668 . . . 4 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (1st𝑓) = (1st𝐹))
74, 6coeq12d 5711 . . 3 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → ((1st𝑔) ∘ (1st𝑓)) = ((1st𝐺) ∘ (1st𝐹)))
85fveq2d 6668 . . . . . . . 8 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (2nd𝑓) = (2nd𝐹))
98dmeqd 5752 . . . . . . 7 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → dom (2nd𝑓) = dom (2nd𝐹))
10 cofuval.b . . . . . . . . . 10 𝐵 = (Base‘𝐶)
11 relfunc 17206 . . . . . . . . . . 11 Rel (𝐶 Func 𝐷)
12 cofuval.f . . . . . . . . . . 11 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
13 1st2ndbr 7752 . . . . . . . . . . 11 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
1411, 12, 13sylancr 590 . . . . . . . . . 10 (𝜑 → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
1510, 14funcfn2 17213 . . . . . . . . 9 (𝜑 → (2nd𝐹) Fn (𝐵 × 𝐵))
1615fndmd 6444 . . . . . . . 8 (𝜑 → dom (2nd𝐹) = (𝐵 × 𝐵))
1716adantr 484 . . . . . . 7 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → dom (2nd𝐹) = (𝐵 × 𝐵))
189, 17eqtrd 2794 . . . . . 6 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → dom (2nd𝑓) = (𝐵 × 𝐵))
1918dmeqd 5752 . . . . 5 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → dom dom (2nd𝑓) = dom (𝐵 × 𝐵))
20 dmxpid 5777 . . . . 5 dom (𝐵 × 𝐵) = 𝐵
2119, 20eqtrdi 2810 . . . 4 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → dom dom (2nd𝑓) = 𝐵)
223fveq2d 6668 . . . . . 6 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (2nd𝑔) = (2nd𝐺))
236fveq1d 6666 . . . . . 6 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → ((1st𝑓)‘𝑥) = ((1st𝐹)‘𝑥))
246fveq1d 6666 . . . . . 6 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → ((1st𝑓)‘𝑦) = ((1st𝐹)‘𝑦))
2522, 23, 24oveq123d 7178 . . . . 5 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (((1st𝑓)‘𝑥)(2nd𝑔)((1st𝑓)‘𝑦)) = (((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)))
268oveqd 7174 . . . . 5 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (𝑥(2nd𝑓)𝑦) = (𝑥(2nd𝐹)𝑦))
2725, 26coeq12d 5711 . . . 4 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → ((((1st𝑓)‘𝑥)(2nd𝑔)((1st𝑓)‘𝑦)) ∘ (𝑥(2nd𝑓)𝑦)) = ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)))
2821, 21, 27mpoeq123dv 7230 . . 3 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (𝑥 ∈ dom dom (2nd𝑓), 𝑦 ∈ dom dom (2nd𝑓) ↦ ((((1st𝑓)‘𝑥)(2nd𝑔)((1st𝑓)‘𝑦)) ∘ (𝑥(2nd𝑓)𝑦))) = (𝑥𝐵, 𝑦𝐵 ↦ ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦))))
297, 28opeq12d 4775 . 2 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → ⟨((1st𝑔) ∘ (1st𝑓)), (𝑥 ∈ dom dom (2nd𝑓), 𝑦 ∈ dom dom (2nd𝑓) ↦ ((((1st𝑓)‘𝑥)(2nd𝑔)((1st𝑓)‘𝑦)) ∘ (𝑥(2nd𝑓)𝑦)))⟩ = ⟨((1st𝐺) ∘ (1st𝐹)), (𝑥𝐵, 𝑦𝐵 ↦ ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)))⟩)
30 cofuval.g . . 3 (𝜑𝐺 ∈ (𝐷 Func 𝐸))
3130elexd 3431 . 2 (𝜑𝐺 ∈ V)
3212elexd 3431 . 2 (𝜑𝐹 ∈ V)
33 opex 5329 . . 3 ⟨((1st𝐺) ∘ (1st𝐹)), (𝑥𝐵, 𝑦𝐵 ↦ ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)))⟩ ∈ V
3433a1i 11 . 2 (𝜑 → ⟨((1st𝐺) ∘ (1st𝐹)), (𝑥𝐵, 𝑦𝐵 ↦ ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)))⟩ ∈ V)
352, 29, 31, 32, 34ovmpod 7304 1 (𝜑 → (𝐺func 𝐹) = ⟨((1st𝐺) ∘ (1st𝐹)), (𝑥𝐵, 𝑦𝐵 ↦ ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)))⟩)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1539   ∈ wcel 2112  Vcvv 3410  ⟨cop 4532   class class class wbr 5037   × cxp 5527  dom cdm 5529   ∘ ccom 5533  Rel wrel 5534  ‘cfv 6341  (class class class)co 7157   ∈ cmpo 7159  1st c1st 7698  2nd c2nd 7699  Basecbs 16556   Func cfunc 17198   ∘func ccofu 17200 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5161  ax-sep 5174  ax-nul 5181  ax-pow 5239  ax-pr 5303  ax-un 7466 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-ral 3076  df-rex 3077  df-reu 3078  df-rab 3080  df-v 3412  df-sbc 3700  df-csb 3809  df-dif 3864  df-un 3866  df-in 3868  df-ss 3878  df-nul 4229  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-op 4533  df-uni 4803  df-iun 4889  df-br 5038  df-opab 5100  df-mpt 5118  df-id 5435  df-xp 5535  df-rel 5536  df-cnv 5537  df-co 5538  df-dm 5539  df-rn 5540  df-res 5541  df-ima 5542  df-iota 6300  df-fun 6343  df-fn 6344  df-f 6345  df-f1 6346  df-fo 6347  df-f1o 6348  df-fv 6349  df-ov 7160  df-oprab 7161  df-mpo 7162  df-1st 7700  df-2nd 7701  df-map 8425  df-ixp 8494  df-func 17202  df-cofu 17204 This theorem is referenced by:  cofu1st  17227  cofu2nd  17229  cofuval2  17231  cofucl  17232  cofuass  17233  cofulid  17234  cofurid  17235  prf1st  17535  prf2nd  17536
 Copyright terms: Public domain W3C validator