MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  colperpexlem2 Structured version   Visualization version   GIF version

Theorem colperpexlem2 28694
Description: Lemma for colperpex 28696. Second part of lemma 8.20 of [Schwabhauser] p. 62. (Contributed by Thierry Arnoux, 10-Nov-2019.)
Hypotheses
Ref Expression
colperpex.p 𝑃 = (Base‘𝐺)
colperpex.d = (dist‘𝐺)
colperpex.i 𝐼 = (Itv‘𝐺)
colperpex.l 𝐿 = (LineG‘𝐺)
colperpex.g (𝜑𝐺 ∈ TarskiG)
colperpexlem.s 𝑆 = (pInvG‘𝐺)
colperpexlem.m 𝑀 = (𝑆𝐴)
colperpexlem.n 𝑁 = (𝑆𝐵)
colperpexlem.k 𝐾 = (𝑆𝑄)
colperpexlem.a (𝜑𝐴𝑃)
colperpexlem.b (𝜑𝐵𝑃)
colperpexlem.c (𝜑𝐶𝑃)
colperpexlem.q (𝜑𝑄𝑃)
colperpexlem.1 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))
colperpexlem.2 (𝜑 → (𝐾‘(𝑀𝐶)) = (𝑁𝐶))
colperpexlem2.e (𝜑𝐵𝐶)
Assertion
Ref Expression
colperpexlem2 (𝜑𝐴𝑄)

Proof of Theorem colperpexlem2
StepHypRef Expression
1 colperpexlem2.e . . 3 (𝜑𝐵𝐶)
2 simpr 484 . . . . . . . . . 10 ((𝜑𝐴 = 𝑄) → 𝐴 = 𝑄)
32fveq2d 6830 . . . . . . . . 9 ((𝜑𝐴 = 𝑄) → (𝑆𝐴) = (𝑆𝑄))
4 colperpexlem.m . . . . . . . . 9 𝑀 = (𝑆𝐴)
5 colperpexlem.k . . . . . . . . 9 𝐾 = (𝑆𝑄)
63, 4, 53eqtr4g 2789 . . . . . . . 8 ((𝜑𝐴 = 𝑄) → 𝑀 = 𝐾)
76fveq1d 6828 . . . . . . 7 ((𝜑𝐴 = 𝑄) → (𝑀‘(𝑀𝐶)) = (𝐾‘(𝑀𝐶)))
8 colperpex.p . . . . . . . . 9 𝑃 = (Base‘𝐺)
9 colperpex.d . . . . . . . . 9 = (dist‘𝐺)
10 colperpex.i . . . . . . . . 9 𝐼 = (Itv‘𝐺)
11 colperpex.l . . . . . . . . 9 𝐿 = (LineG‘𝐺)
12 colperpexlem.s . . . . . . . . 9 𝑆 = (pInvG‘𝐺)
13 colperpex.g . . . . . . . . 9 (𝜑𝐺 ∈ TarskiG)
14 colperpexlem.a . . . . . . . . 9 (𝜑𝐴𝑃)
15 colperpexlem.c . . . . . . . . 9 (𝜑𝐶𝑃)
168, 9, 10, 11, 12, 13, 14, 4, 15mirmir 28625 . . . . . . . 8 (𝜑 → (𝑀‘(𝑀𝐶)) = 𝐶)
1716adantr 480 . . . . . . 7 ((𝜑𝐴 = 𝑄) → (𝑀‘(𝑀𝐶)) = 𝐶)
18 colperpexlem.2 . . . . . . . 8 (𝜑 → (𝐾‘(𝑀𝐶)) = (𝑁𝐶))
1918adantr 480 . . . . . . 7 ((𝜑𝐴 = 𝑄) → (𝐾‘(𝑀𝐶)) = (𝑁𝐶))
207, 17, 193eqtr3rd 2773 . . . . . 6 ((𝜑𝐴 = 𝑄) → (𝑁𝐶) = 𝐶)
21 colperpexlem.b . . . . . . . 8 (𝜑𝐵𝑃)
22 colperpexlem.n . . . . . . . 8 𝑁 = (𝑆𝐵)
238, 9, 10, 11, 12, 13, 21, 22, 15mirinv 28629 . . . . . . 7 (𝜑 → ((𝑁𝐶) = 𝐶𝐵 = 𝐶))
2423adantr 480 . . . . . 6 ((𝜑𝐴 = 𝑄) → ((𝑁𝐶) = 𝐶𝐵 = 𝐶))
2520, 24mpbid 232 . . . . 5 ((𝜑𝐴 = 𝑄) → 𝐵 = 𝐶)
2625ex 412 . . . 4 (𝜑 → (𝐴 = 𝑄𝐵 = 𝐶))
2726necon3ad 2938 . . 3 (𝜑 → (𝐵𝐶 → ¬ 𝐴 = 𝑄))
281, 27mpd 15 . 2 (𝜑 → ¬ 𝐴 = 𝑄)
2928neqned 2932 1 (𝜑𝐴𝑄)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  cfv 6486  ⟨“cs3 14767  Basecbs 17138  distcds 17188  TarskiGcstrkg 28390  Itvcitv 28396  LineGclng 28397  pInvGcmir 28615  ∟Gcrag 28656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-trkgc 28411  df-trkgb 28412  df-trkgcb 28413  df-trkg 28416  df-mir 28616
This theorem is referenced by:  colperpexlem3  28695
  Copyright terms: Public domain W3C validator