MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  colperpexlem2 Structured version   Visualization version   GIF version

Theorem colperpexlem2 26516
Description: Lemma for colperpex 26518. Second part of lemma 8.20 of [Schwabhauser] p. 62. (Contributed by Thierry Arnoux, 10-Nov-2019.)
Hypotheses
Ref Expression
colperpex.p 𝑃 = (Base‘𝐺)
colperpex.d = (dist‘𝐺)
colperpex.i 𝐼 = (Itv‘𝐺)
colperpex.l 𝐿 = (LineG‘𝐺)
colperpex.g (𝜑𝐺 ∈ TarskiG)
colperpexlem.s 𝑆 = (pInvG‘𝐺)
colperpexlem.m 𝑀 = (𝑆𝐴)
colperpexlem.n 𝑁 = (𝑆𝐵)
colperpexlem.k 𝐾 = (𝑆𝑄)
colperpexlem.a (𝜑𝐴𝑃)
colperpexlem.b (𝜑𝐵𝑃)
colperpexlem.c (𝜑𝐶𝑃)
colperpexlem.q (𝜑𝑄𝑃)
colperpexlem.1 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))
colperpexlem.2 (𝜑 → (𝐾‘(𝑀𝐶)) = (𝑁𝐶))
colperpexlem2.e (𝜑𝐵𝐶)
Assertion
Ref Expression
colperpexlem2 (𝜑𝐴𝑄)

Proof of Theorem colperpexlem2
StepHypRef Expression
1 colperpexlem2.e . . 3 (𝜑𝐵𝐶)
2 simpr 487 . . . . . . . . . 10 ((𝜑𝐴 = 𝑄) → 𝐴 = 𝑄)
32fveq2d 6673 . . . . . . . . 9 ((𝜑𝐴 = 𝑄) → (𝑆𝐴) = (𝑆𝑄))
4 colperpexlem.m . . . . . . . . 9 𝑀 = (𝑆𝐴)
5 colperpexlem.k . . . . . . . . 9 𝐾 = (𝑆𝑄)
63, 4, 53eqtr4g 2881 . . . . . . . 8 ((𝜑𝐴 = 𝑄) → 𝑀 = 𝐾)
76fveq1d 6671 . . . . . . 7 ((𝜑𝐴 = 𝑄) → (𝑀‘(𝑀𝐶)) = (𝐾‘(𝑀𝐶)))
8 colperpex.p . . . . . . . . 9 𝑃 = (Base‘𝐺)
9 colperpex.d . . . . . . . . 9 = (dist‘𝐺)
10 colperpex.i . . . . . . . . 9 𝐼 = (Itv‘𝐺)
11 colperpex.l . . . . . . . . 9 𝐿 = (LineG‘𝐺)
12 colperpexlem.s . . . . . . . . 9 𝑆 = (pInvG‘𝐺)
13 colperpex.g . . . . . . . . 9 (𝜑𝐺 ∈ TarskiG)
14 colperpexlem.a . . . . . . . . 9 (𝜑𝐴𝑃)
15 colperpexlem.c . . . . . . . . 9 (𝜑𝐶𝑃)
168, 9, 10, 11, 12, 13, 14, 4, 15mirmir 26447 . . . . . . . 8 (𝜑 → (𝑀‘(𝑀𝐶)) = 𝐶)
1716adantr 483 . . . . . . 7 ((𝜑𝐴 = 𝑄) → (𝑀‘(𝑀𝐶)) = 𝐶)
18 colperpexlem.2 . . . . . . . 8 (𝜑 → (𝐾‘(𝑀𝐶)) = (𝑁𝐶))
1918adantr 483 . . . . . . 7 ((𝜑𝐴 = 𝑄) → (𝐾‘(𝑀𝐶)) = (𝑁𝐶))
207, 17, 193eqtr3rd 2865 . . . . . 6 ((𝜑𝐴 = 𝑄) → (𝑁𝐶) = 𝐶)
21 colperpexlem.b . . . . . . . 8 (𝜑𝐵𝑃)
22 colperpexlem.n . . . . . . . 8 𝑁 = (𝑆𝐵)
238, 9, 10, 11, 12, 13, 21, 22, 15mirinv 26451 . . . . . . 7 (𝜑 → ((𝑁𝐶) = 𝐶𝐵 = 𝐶))
2423adantr 483 . . . . . 6 ((𝜑𝐴 = 𝑄) → ((𝑁𝐶) = 𝐶𝐵 = 𝐶))
2520, 24mpbid 234 . . . . 5 ((𝜑𝐴 = 𝑄) → 𝐵 = 𝐶)
2625ex 415 . . . 4 (𝜑 → (𝐴 = 𝑄𝐵 = 𝐶))
2726necon3ad 3029 . . 3 (𝜑 → (𝐵𝐶 → ¬ 𝐴 = 𝑄))
281, 27mpd 15 . 2 (𝜑 → ¬ 𝐴 = 𝑄)
2928neqned 3023 1 (𝜑𝐴𝑄)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wne 3016  cfv 6354  ⟨“cs3 14203  Basecbs 16482  distcds 16573  TarskiGcstrkg 26215  Itvcitv 26221  LineGclng 26222  pInvGcmir 26437  ∟Gcrag 26478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pr 5329
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-trkgc 26233  df-trkgb 26234  df-trkgcb 26235  df-trkg 26238  df-mir 26438
This theorem is referenced by:  colperpexlem3  26517
  Copyright terms: Public domain W3C validator