MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  colperpexlem2 Structured version   Visualization version   GIF version

Theorem colperpexlem2 27090
Description: Lemma for colperpex 27092. Second part of lemma 8.20 of [Schwabhauser] p. 62. (Contributed by Thierry Arnoux, 10-Nov-2019.)
Hypotheses
Ref Expression
colperpex.p 𝑃 = (Base‘𝐺)
colperpex.d = (dist‘𝐺)
colperpex.i 𝐼 = (Itv‘𝐺)
colperpex.l 𝐿 = (LineG‘𝐺)
colperpex.g (𝜑𝐺 ∈ TarskiG)
colperpexlem.s 𝑆 = (pInvG‘𝐺)
colperpexlem.m 𝑀 = (𝑆𝐴)
colperpexlem.n 𝑁 = (𝑆𝐵)
colperpexlem.k 𝐾 = (𝑆𝑄)
colperpexlem.a (𝜑𝐴𝑃)
colperpexlem.b (𝜑𝐵𝑃)
colperpexlem.c (𝜑𝐶𝑃)
colperpexlem.q (𝜑𝑄𝑃)
colperpexlem.1 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))
colperpexlem.2 (𝜑 → (𝐾‘(𝑀𝐶)) = (𝑁𝐶))
colperpexlem2.e (𝜑𝐵𝐶)
Assertion
Ref Expression
colperpexlem2 (𝜑𝐴𝑄)

Proof of Theorem colperpexlem2
StepHypRef Expression
1 colperpexlem2.e . . 3 (𝜑𝐵𝐶)
2 simpr 485 . . . . . . . . . 10 ((𝜑𝐴 = 𝑄) → 𝐴 = 𝑄)
32fveq2d 6775 . . . . . . . . 9 ((𝜑𝐴 = 𝑄) → (𝑆𝐴) = (𝑆𝑄))
4 colperpexlem.m . . . . . . . . 9 𝑀 = (𝑆𝐴)
5 colperpexlem.k . . . . . . . . 9 𝐾 = (𝑆𝑄)
63, 4, 53eqtr4g 2805 . . . . . . . 8 ((𝜑𝐴 = 𝑄) → 𝑀 = 𝐾)
76fveq1d 6773 . . . . . . 7 ((𝜑𝐴 = 𝑄) → (𝑀‘(𝑀𝐶)) = (𝐾‘(𝑀𝐶)))
8 colperpex.p . . . . . . . . 9 𝑃 = (Base‘𝐺)
9 colperpex.d . . . . . . . . 9 = (dist‘𝐺)
10 colperpex.i . . . . . . . . 9 𝐼 = (Itv‘𝐺)
11 colperpex.l . . . . . . . . 9 𝐿 = (LineG‘𝐺)
12 colperpexlem.s . . . . . . . . 9 𝑆 = (pInvG‘𝐺)
13 colperpex.g . . . . . . . . 9 (𝜑𝐺 ∈ TarskiG)
14 colperpexlem.a . . . . . . . . 9 (𝜑𝐴𝑃)
15 colperpexlem.c . . . . . . . . 9 (𝜑𝐶𝑃)
168, 9, 10, 11, 12, 13, 14, 4, 15mirmir 27021 . . . . . . . 8 (𝜑 → (𝑀‘(𝑀𝐶)) = 𝐶)
1716adantr 481 . . . . . . 7 ((𝜑𝐴 = 𝑄) → (𝑀‘(𝑀𝐶)) = 𝐶)
18 colperpexlem.2 . . . . . . . 8 (𝜑 → (𝐾‘(𝑀𝐶)) = (𝑁𝐶))
1918adantr 481 . . . . . . 7 ((𝜑𝐴 = 𝑄) → (𝐾‘(𝑀𝐶)) = (𝑁𝐶))
207, 17, 193eqtr3rd 2789 . . . . . 6 ((𝜑𝐴 = 𝑄) → (𝑁𝐶) = 𝐶)
21 colperpexlem.b . . . . . . . 8 (𝜑𝐵𝑃)
22 colperpexlem.n . . . . . . . 8 𝑁 = (𝑆𝐵)
238, 9, 10, 11, 12, 13, 21, 22, 15mirinv 27025 . . . . . . 7 (𝜑 → ((𝑁𝐶) = 𝐶𝐵 = 𝐶))
2423adantr 481 . . . . . 6 ((𝜑𝐴 = 𝑄) → ((𝑁𝐶) = 𝐶𝐵 = 𝐶))
2520, 24mpbid 231 . . . . 5 ((𝜑𝐴 = 𝑄) → 𝐵 = 𝐶)
2625ex 413 . . . 4 (𝜑 → (𝐴 = 𝑄𝐵 = 𝐶))
2726necon3ad 2958 . . 3 (𝜑 → (𝐵𝐶 → ¬ 𝐴 = 𝑄))
281, 27mpd 15 . 2 (𝜑 → ¬ 𝐴 = 𝑄)
2928neqned 2952 1 (𝜑𝐴𝑄)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1542  wcel 2110  wne 2945  cfv 6432  ⟨“cs3 14553  Basecbs 16910  distcds 16969  TarskiGcstrkg 26786  Itvcitv 26792  LineGclng 26793  pInvGcmir 27011  ∟Gcrag 27052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pr 5356
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5490  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7228  df-ov 7274  df-trkgc 26807  df-trkgb 26808  df-trkgcb 26809  df-trkg 26812  df-mir 27012
This theorem is referenced by:  colperpexlem3  27091
  Copyright terms: Public domain W3C validator