| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > colperpexlem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for colperpex 28667. Second part of lemma 8.20 of [Schwabhauser] p. 62. (Contributed by Thierry Arnoux, 10-Nov-2019.) |
| Ref | Expression |
|---|---|
| colperpex.p | ⊢ 𝑃 = (Base‘𝐺) |
| colperpex.d | ⊢ − = (dist‘𝐺) |
| colperpex.i | ⊢ 𝐼 = (Itv‘𝐺) |
| colperpex.l | ⊢ 𝐿 = (LineG‘𝐺) |
| colperpex.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| colperpexlem.s | ⊢ 𝑆 = (pInvG‘𝐺) |
| colperpexlem.m | ⊢ 𝑀 = (𝑆‘𝐴) |
| colperpexlem.n | ⊢ 𝑁 = (𝑆‘𝐵) |
| colperpexlem.k | ⊢ 𝐾 = (𝑆‘𝑄) |
| colperpexlem.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| colperpexlem.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| colperpexlem.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
| colperpexlem.q | ⊢ (𝜑 → 𝑄 ∈ 𝑃) |
| colperpexlem.1 | ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺)) |
| colperpexlem.2 | ⊢ (𝜑 → (𝐾‘(𝑀‘𝐶)) = (𝑁‘𝐶)) |
| colperpexlem2.e | ⊢ (𝜑 → 𝐵 ≠ 𝐶) |
| Ref | Expression |
|---|---|
| colperpexlem2 | ⊢ (𝜑 → 𝐴 ≠ 𝑄) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | colperpexlem2.e | . . 3 ⊢ (𝜑 → 𝐵 ≠ 𝐶) | |
| 2 | simpr 484 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝐴 = 𝑄) → 𝐴 = 𝑄) | |
| 3 | 2 | fveq2d 6865 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐴 = 𝑄) → (𝑆‘𝐴) = (𝑆‘𝑄)) |
| 4 | colperpexlem.m | . . . . . . . . 9 ⊢ 𝑀 = (𝑆‘𝐴) | |
| 5 | colperpexlem.k | . . . . . . . . 9 ⊢ 𝐾 = (𝑆‘𝑄) | |
| 6 | 3, 4, 5 | 3eqtr4g 2790 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐴 = 𝑄) → 𝑀 = 𝐾) |
| 7 | 6 | fveq1d 6863 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐴 = 𝑄) → (𝑀‘(𝑀‘𝐶)) = (𝐾‘(𝑀‘𝐶))) |
| 8 | colperpex.p | . . . . . . . . 9 ⊢ 𝑃 = (Base‘𝐺) | |
| 9 | colperpex.d | . . . . . . . . 9 ⊢ − = (dist‘𝐺) | |
| 10 | colperpex.i | . . . . . . . . 9 ⊢ 𝐼 = (Itv‘𝐺) | |
| 11 | colperpex.l | . . . . . . . . 9 ⊢ 𝐿 = (LineG‘𝐺) | |
| 12 | colperpexlem.s | . . . . . . . . 9 ⊢ 𝑆 = (pInvG‘𝐺) | |
| 13 | colperpex.g | . . . . . . . . 9 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 14 | colperpexlem.a | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 15 | colperpexlem.c | . . . . . . . . 9 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
| 16 | 8, 9, 10, 11, 12, 13, 14, 4, 15 | mirmir 28596 | . . . . . . . 8 ⊢ (𝜑 → (𝑀‘(𝑀‘𝐶)) = 𝐶) |
| 17 | 16 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐴 = 𝑄) → (𝑀‘(𝑀‘𝐶)) = 𝐶) |
| 18 | colperpexlem.2 | . . . . . . . 8 ⊢ (𝜑 → (𝐾‘(𝑀‘𝐶)) = (𝑁‘𝐶)) | |
| 19 | 18 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐴 = 𝑄) → (𝐾‘(𝑀‘𝐶)) = (𝑁‘𝐶)) |
| 20 | 7, 17, 19 | 3eqtr3rd 2774 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 = 𝑄) → (𝑁‘𝐶) = 𝐶) |
| 21 | colperpexlem.b | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 22 | colperpexlem.n | . . . . . . . 8 ⊢ 𝑁 = (𝑆‘𝐵) | |
| 23 | 8, 9, 10, 11, 12, 13, 21, 22, 15 | mirinv 28600 | . . . . . . 7 ⊢ (𝜑 → ((𝑁‘𝐶) = 𝐶 ↔ 𝐵 = 𝐶)) |
| 24 | 23 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 = 𝑄) → ((𝑁‘𝐶) = 𝐶 ↔ 𝐵 = 𝐶)) |
| 25 | 20, 24 | mpbid 232 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 = 𝑄) → 𝐵 = 𝐶) |
| 26 | 25 | ex 412 | . . . 4 ⊢ (𝜑 → (𝐴 = 𝑄 → 𝐵 = 𝐶)) |
| 27 | 26 | necon3ad 2939 | . . 3 ⊢ (𝜑 → (𝐵 ≠ 𝐶 → ¬ 𝐴 = 𝑄)) |
| 28 | 1, 27 | mpd 15 | . 2 ⊢ (𝜑 → ¬ 𝐴 = 𝑄) |
| 29 | 28 | neqned 2933 | 1 ⊢ (𝜑 → 𝐴 ≠ 𝑄) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ‘cfv 6514 〈“cs3 14815 Basecbs 17186 distcds 17236 TarskiGcstrkg 28361 Itvcitv 28367 LineGclng 28368 pInvGcmir 28586 ∟Gcrag 28627 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-trkgc 28382 df-trkgb 28383 df-trkgcb 28384 df-trkg 28387 df-mir 28587 |
| This theorem is referenced by: colperpexlem3 28666 |
| Copyright terms: Public domain | W3C validator |