MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  colperpexlem2 Structured version   Visualization version   GIF version

Theorem colperpexlem2 28574
Description: Lemma for colperpex 28576. Second part of lemma 8.20 of [Schwabhauser] p. 62. (Contributed by Thierry Arnoux, 10-Nov-2019.)
Hypotheses
Ref Expression
colperpex.p 𝑃 = (Baseβ€˜πΊ)
colperpex.d βˆ’ = (distβ€˜πΊ)
colperpex.i 𝐼 = (Itvβ€˜πΊ)
colperpex.l 𝐿 = (LineGβ€˜πΊ)
colperpex.g (πœ‘ β†’ 𝐺 ∈ TarskiG)
colperpexlem.s 𝑆 = (pInvGβ€˜πΊ)
colperpexlem.m 𝑀 = (π‘†β€˜π΄)
colperpexlem.n 𝑁 = (π‘†β€˜π΅)
colperpexlem.k 𝐾 = (π‘†β€˜π‘„)
colperpexlem.a (πœ‘ β†’ 𝐴 ∈ 𝑃)
colperpexlem.b (πœ‘ β†’ 𝐡 ∈ 𝑃)
colperpexlem.c (πœ‘ β†’ 𝐢 ∈ 𝑃)
colperpexlem.q (πœ‘ β†’ 𝑄 ∈ 𝑃)
colperpexlem.1 (πœ‘ β†’ βŸ¨β€œπ΄π΅πΆβ€βŸ© ∈ (∟Gβ€˜πΊ))
colperpexlem.2 (πœ‘ β†’ (πΎβ€˜(π‘€β€˜πΆ)) = (π‘β€˜πΆ))
colperpexlem2.e (πœ‘ β†’ 𝐡 β‰  𝐢)
Assertion
Ref Expression
colperpexlem2 (πœ‘ β†’ 𝐴 β‰  𝑄)

Proof of Theorem colperpexlem2
StepHypRef Expression
1 colperpexlem2.e . . 3 (πœ‘ β†’ 𝐡 β‰  𝐢)
2 simpr 483 . . . . . . . . . 10 ((πœ‘ ∧ 𝐴 = 𝑄) β†’ 𝐴 = 𝑄)
32fveq2d 6894 . . . . . . . . 9 ((πœ‘ ∧ 𝐴 = 𝑄) β†’ (π‘†β€˜π΄) = (π‘†β€˜π‘„))
4 colperpexlem.m . . . . . . . . 9 𝑀 = (π‘†β€˜π΄)
5 colperpexlem.k . . . . . . . . 9 𝐾 = (π‘†β€˜π‘„)
63, 4, 53eqtr4g 2790 . . . . . . . 8 ((πœ‘ ∧ 𝐴 = 𝑄) β†’ 𝑀 = 𝐾)
76fveq1d 6892 . . . . . . 7 ((πœ‘ ∧ 𝐴 = 𝑄) β†’ (π‘€β€˜(π‘€β€˜πΆ)) = (πΎβ€˜(π‘€β€˜πΆ)))
8 colperpex.p . . . . . . . . 9 𝑃 = (Baseβ€˜πΊ)
9 colperpex.d . . . . . . . . 9 βˆ’ = (distβ€˜πΊ)
10 colperpex.i . . . . . . . . 9 𝐼 = (Itvβ€˜πΊ)
11 colperpex.l . . . . . . . . 9 𝐿 = (LineGβ€˜πΊ)
12 colperpexlem.s . . . . . . . . 9 𝑆 = (pInvGβ€˜πΊ)
13 colperpex.g . . . . . . . . 9 (πœ‘ β†’ 𝐺 ∈ TarskiG)
14 colperpexlem.a . . . . . . . . 9 (πœ‘ β†’ 𝐴 ∈ 𝑃)
15 colperpexlem.c . . . . . . . . 9 (πœ‘ β†’ 𝐢 ∈ 𝑃)
168, 9, 10, 11, 12, 13, 14, 4, 15mirmir 28505 . . . . . . . 8 (πœ‘ β†’ (π‘€β€˜(π‘€β€˜πΆ)) = 𝐢)
1716adantr 479 . . . . . . 7 ((πœ‘ ∧ 𝐴 = 𝑄) β†’ (π‘€β€˜(π‘€β€˜πΆ)) = 𝐢)
18 colperpexlem.2 . . . . . . . 8 (πœ‘ β†’ (πΎβ€˜(π‘€β€˜πΆ)) = (π‘β€˜πΆ))
1918adantr 479 . . . . . . 7 ((πœ‘ ∧ 𝐴 = 𝑄) β†’ (πΎβ€˜(π‘€β€˜πΆ)) = (π‘β€˜πΆ))
207, 17, 193eqtr3rd 2774 . . . . . 6 ((πœ‘ ∧ 𝐴 = 𝑄) β†’ (π‘β€˜πΆ) = 𝐢)
21 colperpexlem.b . . . . . . . 8 (πœ‘ β†’ 𝐡 ∈ 𝑃)
22 colperpexlem.n . . . . . . . 8 𝑁 = (π‘†β€˜π΅)
238, 9, 10, 11, 12, 13, 21, 22, 15mirinv 28509 . . . . . . 7 (πœ‘ β†’ ((π‘β€˜πΆ) = 𝐢 ↔ 𝐡 = 𝐢))
2423adantr 479 . . . . . 6 ((πœ‘ ∧ 𝐴 = 𝑄) β†’ ((π‘β€˜πΆ) = 𝐢 ↔ 𝐡 = 𝐢))
2520, 24mpbid 231 . . . . 5 ((πœ‘ ∧ 𝐴 = 𝑄) β†’ 𝐡 = 𝐢)
2625ex 411 . . . 4 (πœ‘ β†’ (𝐴 = 𝑄 β†’ 𝐡 = 𝐢))
2726necon3ad 2943 . . 3 (πœ‘ β†’ (𝐡 β‰  𝐢 β†’ Β¬ 𝐴 = 𝑄))
281, 27mpd 15 . 2 (πœ‘ β†’ Β¬ 𝐴 = 𝑄)
2928neqned 2937 1 (πœ‘ β†’ 𝐴 β‰  𝑄)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 394   = wceq 1533   ∈ wcel 2098   β‰  wne 2930  β€˜cfv 6543  βŸ¨β€œcs3 14820  Basecbs 17174  distcds 17236  TarskiGcstrkg 28270  Itvcitv 28276  LineGclng 28277  pInvGcmir 28495  βˆŸGcrag 28536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pr 5424
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-iun 4994  df-br 5145  df-opab 5207  df-mpt 5228  df-id 5571  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7369  df-ov 7416  df-trkgc 28291  df-trkgb 28292  df-trkgcb 28293  df-trkg 28296  df-mir 28496
This theorem is referenced by:  colperpexlem3  28575
  Copyright terms: Public domain W3C validator