Step | Hyp | Ref
| Expression |
1 | | curfval.g |
. . . 4
⊢ 𝐺 = (〈𝐶, 𝐷〉 curryF 𝐹) |
2 | | curfval.a |
. . . 4
⊢ 𝐴 = (Base‘𝐶) |
3 | | curfval.c |
. . . 4
⊢ (𝜑 → 𝐶 ∈ Cat) |
4 | | curfval.d |
. . . 4
⊢ (𝜑 → 𝐷 ∈ Cat) |
5 | | curfval.f |
. . . 4
⊢ (𝜑 → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) |
6 | | curfval.b |
. . . 4
⊢ 𝐵 = (Base‘𝐷) |
7 | | curf1.x |
. . . 4
⊢ (𝜑 → 𝑋 ∈ 𝐴) |
8 | | curf1.k |
. . . 4
⊢ 𝐾 = ((1st ‘𝐺)‘𝑋) |
9 | | eqid 2738 |
. . . 4
⊢ (Hom
‘𝐷) = (Hom
‘𝐷) |
10 | | eqid 2738 |
. . . 4
⊢
(Id‘𝐶) =
(Id‘𝐶) |
11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | curf1 17859 |
. . 3
⊢ (𝜑 → 𝐾 = 〈(𝑦 ∈ 𝐵 ↦ (𝑋(1st ‘𝐹)𝑦)), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(〈𝑋, 𝑦〉(2nd ‘𝐹)〈𝑋, 𝑧〉)𝑔)))〉) |
12 | 6 | fvexi 6770 |
. . . . . . 7
⊢ 𝐵 ∈ V |
13 | 12 | mptex 7081 |
. . . . . 6
⊢ (𝑦 ∈ 𝐵 ↦ (𝑋(1st ‘𝐹)𝑦)) ∈ V |
14 | 12, 12 | mpoex 7893 |
. . . . . 6
⊢ (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(〈𝑋, 𝑦〉(2nd ‘𝐹)〈𝑋, 𝑧〉)𝑔))) ∈ V |
15 | 13, 14 | op1std 7814 |
. . . . 5
⊢ (𝐾 = 〈(𝑦 ∈ 𝐵 ↦ (𝑋(1st ‘𝐹)𝑦)), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(〈𝑋, 𝑦〉(2nd ‘𝐹)〈𝑋, 𝑧〉)𝑔)))〉 → (1st ‘𝐾) = (𝑦 ∈ 𝐵 ↦ (𝑋(1st ‘𝐹)𝑦))) |
16 | 11, 15 | syl 17 |
. . . 4
⊢ (𝜑 → (1st
‘𝐾) = (𝑦 ∈ 𝐵 ↦ (𝑋(1st ‘𝐹)𝑦))) |
17 | 13, 14 | op2ndd 7815 |
. . . . 5
⊢ (𝐾 = 〈(𝑦 ∈ 𝐵 ↦ (𝑋(1st ‘𝐹)𝑦)), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(〈𝑋, 𝑦〉(2nd ‘𝐹)〈𝑋, 𝑧〉)𝑔)))〉 → (2nd ‘𝐾) = (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(〈𝑋, 𝑦〉(2nd ‘𝐹)〈𝑋, 𝑧〉)𝑔)))) |
18 | 11, 17 | syl 17 |
. . . 4
⊢ (𝜑 → (2nd
‘𝐾) = (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(〈𝑋, 𝑦〉(2nd ‘𝐹)〈𝑋, 𝑧〉)𝑔)))) |
19 | 16, 18 | opeq12d 4809 |
. . 3
⊢ (𝜑 → 〈(1st
‘𝐾), (2nd
‘𝐾)〉 =
〈(𝑦 ∈ 𝐵 ↦ (𝑋(1st ‘𝐹)𝑦)), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(〈𝑋, 𝑦〉(2nd ‘𝐹)〈𝑋, 𝑧〉)𝑔)))〉) |
20 | 11, 19 | eqtr4d 2781 |
. 2
⊢ (𝜑 → 𝐾 = 〈(1st ‘𝐾), (2nd ‘𝐾)〉) |
21 | | eqid 2738 |
. . . 4
⊢
(Base‘𝐸) =
(Base‘𝐸) |
22 | | eqid 2738 |
. . . 4
⊢ (Hom
‘𝐸) = (Hom
‘𝐸) |
23 | | eqid 2738 |
. . . 4
⊢
(Id‘𝐷) =
(Id‘𝐷) |
24 | | eqid 2738 |
. . . 4
⊢
(Id‘𝐸) =
(Id‘𝐸) |
25 | | eqid 2738 |
. . . 4
⊢
(comp‘𝐷) =
(comp‘𝐷) |
26 | | eqid 2738 |
. . . 4
⊢
(comp‘𝐸) =
(comp‘𝐸) |
27 | | funcrcl 17494 |
. . . . . 6
⊢ (𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸) → ((𝐶 ×c 𝐷) ∈ Cat ∧ 𝐸 ∈ Cat)) |
28 | 5, 27 | syl 17 |
. . . . 5
⊢ (𝜑 → ((𝐶 ×c 𝐷) ∈ Cat ∧ 𝐸 ∈ Cat)) |
29 | 28 | simprd 495 |
. . . 4
⊢ (𝜑 → 𝐸 ∈ Cat) |
30 | | eqid 2738 |
. . . . . . . . 9
⊢ (𝐶 ×c
𝐷) = (𝐶 ×c 𝐷) |
31 | 30, 2, 6 | xpcbas 17811 |
. . . . . . . 8
⊢ (𝐴 × 𝐵) = (Base‘(𝐶 ×c 𝐷)) |
32 | | relfunc 17493 |
. . . . . . . . 9
⊢ Rel
((𝐶
×c 𝐷) Func 𝐸) |
33 | | 1st2ndbr 7856 |
. . . . . . . . 9
⊢ ((Rel
((𝐶
×c 𝐷) Func 𝐸) ∧ 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) → (1st ‘𝐹)((𝐶 ×c 𝐷) Func 𝐸)(2nd ‘𝐹)) |
34 | 32, 5, 33 | sylancr 586 |
. . . . . . . 8
⊢ (𝜑 → (1st
‘𝐹)((𝐶 ×c
𝐷) Func 𝐸)(2nd ‘𝐹)) |
35 | 31, 21, 34 | funcf1 17497 |
. . . . . . 7
⊢ (𝜑 → (1st
‘𝐹):(𝐴 × 𝐵)⟶(Base‘𝐸)) |
36 | 35 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (1st ‘𝐹):(𝐴 × 𝐵)⟶(Base‘𝐸)) |
37 | 7 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝑋 ∈ 𝐴) |
38 | | simpr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ 𝐵) |
39 | 36, 37, 38 | fovrnd 7422 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (𝑋(1st ‘𝐹)𝑦) ∈ (Base‘𝐸)) |
40 | 16, 39 | fmpt3d 6972 |
. . . 4
⊢ (𝜑 → (1st
‘𝐾):𝐵⟶(Base‘𝐸)) |
41 | | eqid 2738 |
. . . . . 6
⊢ (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(〈𝑋, 𝑦〉(2nd ‘𝐹)〈𝑋, 𝑧〉)𝑔))) = (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(〈𝑋, 𝑦〉(2nd ‘𝐹)〈𝑋, 𝑧〉)𝑔))) |
42 | | ovex 7288 |
. . . . . . 7
⊢ (𝑦(Hom ‘𝐷)𝑧) ∈ V |
43 | 42 | mptex 7081 |
. . . . . 6
⊢ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(〈𝑋, 𝑦〉(2nd ‘𝐹)〈𝑋, 𝑧〉)𝑔)) ∈ V |
44 | 41, 43 | fnmpoi 7883 |
. . . . 5
⊢ (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(〈𝑋, 𝑦〉(2nd ‘𝐹)〈𝑋, 𝑧〉)𝑔))) Fn (𝐵 × 𝐵) |
45 | 18 | fneq1d 6510 |
. . . . 5
⊢ (𝜑 → ((2nd
‘𝐾) Fn (𝐵 × 𝐵) ↔ (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(〈𝑋, 𝑦〉(2nd ‘𝐹)〈𝑋, 𝑧〉)𝑔))) Fn (𝐵 × 𝐵))) |
46 | 44, 45 | mpbiri 257 |
. . . 4
⊢ (𝜑 → (2nd
‘𝐾) Fn (𝐵 × 𝐵)) |
47 | 18 | oveqd 7272 |
. . . . . 6
⊢ (𝜑 → (𝑦(2nd ‘𝐾)𝑧) = (𝑦(𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(〈𝑋, 𝑦〉(2nd ‘𝐹)〈𝑋, 𝑧〉)𝑔)))𝑧)) |
48 | 41 | ovmpt4g 7398 |
. . . . . . 7
⊢ ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(〈𝑋, 𝑦〉(2nd ‘𝐹)〈𝑋, 𝑧〉)𝑔)) ∈ V) → (𝑦(𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(〈𝑋, 𝑦〉(2nd ‘𝐹)〈𝑋, 𝑧〉)𝑔)))𝑧) = (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(〈𝑋, 𝑦〉(2nd ‘𝐹)〈𝑋, 𝑧〉)𝑔))) |
49 | 43, 48 | mp3an3 1448 |
. . . . . 6
⊢ ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝑦(𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(〈𝑋, 𝑦〉(2nd ‘𝐹)〈𝑋, 𝑧〉)𝑔)))𝑧) = (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(〈𝑋, 𝑦〉(2nd ‘𝐹)〈𝑋, 𝑧〉)𝑔))) |
50 | 47, 49 | sylan9eq 2799 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑦(2nd ‘𝐾)𝑧) = (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(〈𝑋, 𝑦〉(2nd ‘𝐹)〈𝑋, 𝑧〉)𝑔))) |
51 | | eqid 2738 |
. . . . . . . 8
⊢ (Hom
‘(𝐶
×c 𝐷)) = (Hom ‘(𝐶 ×c 𝐷)) |
52 | 34 | ad2antrr 722 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (1st ‘𝐹)((𝐶 ×c 𝐷) Func 𝐸)(2nd ‘𝐹)) |
53 | 7 | ad2antrr 722 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝑋 ∈ 𝐴) |
54 | | simplrl 773 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝑦 ∈ 𝐵) |
55 | 53, 54 | opelxpd 5618 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 〈𝑋, 𝑦〉 ∈ (𝐴 × 𝐵)) |
56 | | simplrr 774 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝑧 ∈ 𝐵) |
57 | 53, 56 | opelxpd 5618 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 〈𝑋, 𝑧〉 ∈ (𝐴 × 𝐵)) |
58 | 31, 51, 22, 52, 55, 57 | funcf2 17499 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (〈𝑋, 𝑦〉(2nd ‘𝐹)〈𝑋, 𝑧〉):(〈𝑋, 𝑦〉(Hom ‘(𝐶 ×c 𝐷))〈𝑋, 𝑧〉)⟶(((1st ‘𝐹)‘〈𝑋, 𝑦〉)(Hom ‘𝐸)((1st ‘𝐹)‘〈𝑋, 𝑧〉))) |
59 | | eqid 2738 |
. . . . . . . . 9
⊢ (Hom
‘𝐶) = (Hom
‘𝐶) |
60 | 30, 31, 59, 9, 51, 55, 57 | xpchom 17813 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (〈𝑋, 𝑦〉(Hom ‘(𝐶 ×c 𝐷))〈𝑋, 𝑧〉) = (((1st
‘〈𝑋, 𝑦〉)(Hom ‘𝐶)(1st
‘〈𝑋, 𝑧〉)) ×
((2nd ‘〈𝑋, 𝑦〉)(Hom ‘𝐷)(2nd ‘〈𝑋, 𝑧〉)))) |
61 | 3 | ad2antrr 722 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝐶 ∈ Cat) |
62 | 4 | ad2antrr 722 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝐷 ∈ Cat) |
63 | 5 | ad2antrr 722 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) |
64 | 1, 2, 61, 62, 63, 6, 53, 8, 54 | curf11 17860 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((1st ‘𝐾)‘𝑦) = (𝑋(1st ‘𝐹)𝑦)) |
65 | | df-ov 7258 |
. . . . . . . . . 10
⊢ (𝑋(1st ‘𝐹)𝑦) = ((1st ‘𝐹)‘〈𝑋, 𝑦〉) |
66 | 64, 65 | eqtr2di 2796 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((1st ‘𝐹)‘〈𝑋, 𝑦〉) = ((1st ‘𝐾)‘𝑦)) |
67 | 1, 2, 61, 62, 63, 6, 53, 8, 56 | curf11 17860 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((1st ‘𝐾)‘𝑧) = (𝑋(1st ‘𝐹)𝑧)) |
68 | | df-ov 7258 |
. . . . . . . . . 10
⊢ (𝑋(1st ‘𝐹)𝑧) = ((1st ‘𝐹)‘〈𝑋, 𝑧〉) |
69 | 67, 68 | eqtr2di 2796 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((1st ‘𝐹)‘〈𝑋, 𝑧〉) = ((1st ‘𝐾)‘𝑧)) |
70 | 66, 69 | oveq12d 7273 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (((1st ‘𝐹)‘〈𝑋, 𝑦〉)(Hom ‘𝐸)((1st ‘𝐹)‘〈𝑋, 𝑧〉)) = (((1st ‘𝐾)‘𝑦)(Hom ‘𝐸)((1st ‘𝐾)‘𝑧))) |
71 | 60, 70 | feq23d 6579 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((〈𝑋, 𝑦〉(2nd ‘𝐹)〈𝑋, 𝑧〉):(〈𝑋, 𝑦〉(Hom ‘(𝐶 ×c 𝐷))〈𝑋, 𝑧〉)⟶(((1st ‘𝐹)‘〈𝑋, 𝑦〉)(Hom ‘𝐸)((1st ‘𝐹)‘〈𝑋, 𝑧〉)) ↔ (〈𝑋, 𝑦〉(2nd ‘𝐹)〈𝑋, 𝑧〉):(((1st ‘〈𝑋, 𝑦〉)(Hom ‘𝐶)(1st ‘〈𝑋, 𝑧〉)) × ((2nd
‘〈𝑋, 𝑦〉)(Hom ‘𝐷)(2nd
‘〈𝑋, 𝑧〉)))⟶(((1st
‘𝐾)‘𝑦)(Hom ‘𝐸)((1st ‘𝐾)‘𝑧)))) |
72 | 58, 71 | mpbid 231 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (〈𝑋, 𝑦〉(2nd ‘𝐹)〈𝑋, 𝑧〉):(((1st ‘〈𝑋, 𝑦〉)(Hom ‘𝐶)(1st ‘〈𝑋, 𝑧〉)) × ((2nd
‘〈𝑋, 𝑦〉)(Hom ‘𝐷)(2nd
‘〈𝑋, 𝑧〉)))⟶(((1st
‘𝐾)‘𝑦)(Hom ‘𝐸)((1st ‘𝐾)‘𝑧))) |
73 | 2, 59, 10, 61, 53 | catidcl 17308 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((Id‘𝐶)‘𝑋) ∈ (𝑋(Hom ‘𝐶)𝑋)) |
74 | | op1stg 7816 |
. . . . . . . . 9
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (1st ‘〈𝑋, 𝑦〉) = 𝑋) |
75 | 53, 54, 74 | syl2anc 583 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (1st ‘〈𝑋, 𝑦〉) = 𝑋) |
76 | | op1stg 7816 |
. . . . . . . . 9
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) → (1st ‘〈𝑋, 𝑧〉) = 𝑋) |
77 | 53, 56, 76 | syl2anc 583 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (1st ‘〈𝑋, 𝑧〉) = 𝑋) |
78 | 75, 77 | oveq12d 7273 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((1st ‘〈𝑋, 𝑦〉)(Hom ‘𝐶)(1st ‘〈𝑋, 𝑧〉)) = (𝑋(Hom ‘𝐶)𝑋)) |
79 | 73, 78 | eleqtrrd 2842 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((Id‘𝐶)‘𝑋) ∈ ((1st ‘〈𝑋, 𝑦〉)(Hom ‘𝐶)(1st ‘〈𝑋, 𝑧〉))) |
80 | | simpr 484 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) |
81 | | op2ndg 7817 |
. . . . . . . . 9
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (2nd ‘〈𝑋, 𝑦〉) = 𝑦) |
82 | 53, 54, 81 | syl2anc 583 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (2nd ‘〈𝑋, 𝑦〉) = 𝑦) |
83 | | op2ndg 7817 |
. . . . . . . . 9
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) → (2nd ‘〈𝑋, 𝑧〉) = 𝑧) |
84 | 53, 56, 83 | syl2anc 583 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (2nd ‘〈𝑋, 𝑧〉) = 𝑧) |
85 | 82, 84 | oveq12d 7273 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((2nd ‘〈𝑋, 𝑦〉)(Hom ‘𝐷)(2nd ‘〈𝑋, 𝑧〉)) = (𝑦(Hom ‘𝐷)𝑧)) |
86 | 80, 85 | eleqtrrd 2842 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝑔 ∈ ((2nd ‘〈𝑋, 𝑦〉)(Hom ‘𝐷)(2nd ‘〈𝑋, 𝑧〉))) |
87 | 72, 79, 86 | fovrnd 7422 |
. . . . 5
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (((Id‘𝐶)‘𝑋)(〈𝑋, 𝑦〉(2nd ‘𝐹)〈𝑋, 𝑧〉)𝑔) ∈ (((1st ‘𝐾)‘𝑦)(Hom ‘𝐸)((1st ‘𝐾)‘𝑧))) |
88 | 50, 87 | fmpt3d 6972 |
. . . 4
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑦(2nd ‘𝐾)𝑧):(𝑦(Hom ‘𝐷)𝑧)⟶(((1st ‘𝐾)‘𝑦)(Hom ‘𝐸)((1st ‘𝐾)‘𝑧))) |
89 | 3 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝐶 ∈ Cat) |
90 | 4 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝐷 ∈ Cat) |
91 | | eqid 2738 |
. . . . . . . . 9
⊢
(Id‘(𝐶
×c 𝐷)) = (Id‘(𝐶 ×c 𝐷)) |
92 | 30, 89, 90, 2, 6, 10, 23, 91, 37, 38 | xpcid 17822 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ((Id‘(𝐶 ×c 𝐷))‘〈𝑋, 𝑦〉) = 〈((Id‘𝐶)‘𝑋), ((Id‘𝐷)‘𝑦)〉) |
93 | 92 | fveq2d 6760 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ((〈𝑋, 𝑦〉(2nd ‘𝐹)〈𝑋, 𝑦〉)‘((Id‘(𝐶 ×c 𝐷))‘〈𝑋, 𝑦〉)) = ((〈𝑋, 𝑦〉(2nd ‘𝐹)〈𝑋, 𝑦〉)‘〈((Id‘𝐶)‘𝑋), ((Id‘𝐷)‘𝑦)〉)) |
94 | | df-ov 7258 |
. . . . . . 7
⊢
(((Id‘𝐶)‘𝑋)(〈𝑋, 𝑦〉(2nd ‘𝐹)〈𝑋, 𝑦〉)((Id‘𝐷)‘𝑦)) = ((〈𝑋, 𝑦〉(2nd ‘𝐹)〈𝑋, 𝑦〉)‘〈((Id‘𝐶)‘𝑋), ((Id‘𝐷)‘𝑦)〉) |
95 | 93, 94 | eqtr4di 2797 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ((〈𝑋, 𝑦〉(2nd ‘𝐹)〈𝑋, 𝑦〉)‘((Id‘(𝐶 ×c 𝐷))‘〈𝑋, 𝑦〉)) = (((Id‘𝐶)‘𝑋)(〈𝑋, 𝑦〉(2nd ‘𝐹)〈𝑋, 𝑦〉)((Id‘𝐷)‘𝑦))) |
96 | 34 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (1st ‘𝐹)((𝐶 ×c 𝐷) Func 𝐸)(2nd ‘𝐹)) |
97 | | opelxpi 5617 |
. . . . . . . 8
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 〈𝑋, 𝑦〉 ∈ (𝐴 × 𝐵)) |
98 | 7, 97 | sylan 579 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 〈𝑋, 𝑦〉 ∈ (𝐴 × 𝐵)) |
99 | 31, 91, 24, 96, 98 | funcid 17501 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ((〈𝑋, 𝑦〉(2nd ‘𝐹)〈𝑋, 𝑦〉)‘((Id‘(𝐶 ×c 𝐷))‘〈𝑋, 𝑦〉)) = ((Id‘𝐸)‘((1st ‘𝐹)‘〈𝑋, 𝑦〉))) |
100 | 95, 99 | eqtr3d 2780 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (((Id‘𝐶)‘𝑋)(〈𝑋, 𝑦〉(2nd ‘𝐹)〈𝑋, 𝑦〉)((Id‘𝐷)‘𝑦)) = ((Id‘𝐸)‘((1st ‘𝐹)‘〈𝑋, 𝑦〉))) |
101 | 5 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) |
102 | 6, 9, 23, 90, 38 | catidcl 17308 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ((Id‘𝐷)‘𝑦) ∈ (𝑦(Hom ‘𝐷)𝑦)) |
103 | 1, 2, 89, 90, 101, 6, 37, 8, 38, 9, 10, 38, 102 | curf12 17861 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ((𝑦(2nd ‘𝐾)𝑦)‘((Id‘𝐷)‘𝑦)) = (((Id‘𝐶)‘𝑋)(〈𝑋, 𝑦〉(2nd ‘𝐹)〈𝑋, 𝑦〉)((Id‘𝐷)‘𝑦))) |
104 | 1, 2, 89, 90, 101, 6, 37, 8, 38 | curf11 17860 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ((1st ‘𝐾)‘𝑦) = (𝑋(1st ‘𝐹)𝑦)) |
105 | 104, 65 | eqtrdi 2795 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ((1st ‘𝐾)‘𝑦) = ((1st ‘𝐹)‘〈𝑋, 𝑦〉)) |
106 | 105 | fveq2d 6760 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ((Id‘𝐸)‘((1st ‘𝐾)‘𝑦)) = ((Id‘𝐸)‘((1st ‘𝐹)‘〈𝑋, 𝑦〉))) |
107 | 100, 103,
106 | 3eqtr4d 2788 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ((𝑦(2nd ‘𝐾)𝑦)‘((Id‘𝐷)‘𝑦)) = ((Id‘𝐸)‘((1st ‘𝐾)‘𝑦))) |
108 | 7 | 3ad2ant1 1131 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ℎ ∈ (𝑧(Hom ‘𝐷)𝑤))) → 𝑋 ∈ 𝐴) |
109 | | simp21 1204 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ℎ ∈ (𝑧(Hom ‘𝐷)𝑤))) → 𝑦 ∈ 𝐵) |
110 | | simp22 1205 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ℎ ∈ (𝑧(Hom ‘𝐷)𝑤))) → 𝑧 ∈ 𝐵) |
111 | | eqid 2738 |
. . . . . . . . . 10
⊢
(comp‘𝐶) =
(comp‘𝐶) |
112 | | eqid 2738 |
. . . . . . . . . 10
⊢
(comp‘(𝐶
×c 𝐷)) = (comp‘(𝐶 ×c 𝐷)) |
113 | | simp23 1206 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ℎ ∈ (𝑧(Hom ‘𝐷)𝑤))) → 𝑤 ∈ 𝐵) |
114 | 3 | 3ad2ant1 1131 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ℎ ∈ (𝑧(Hom ‘𝐷)𝑤))) → 𝐶 ∈ Cat) |
115 | 2, 59, 10, 114, 108 | catidcl 17308 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ℎ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((Id‘𝐶)‘𝑋) ∈ (𝑋(Hom ‘𝐶)𝑋)) |
116 | | simp3l 1199 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ℎ ∈ (𝑧(Hom ‘𝐷)𝑤))) → 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) |
117 | | simp3r 1200 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ℎ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ℎ ∈ (𝑧(Hom ‘𝐷)𝑤)) |
118 | 30, 2, 6, 59, 9, 108, 109, 108, 110, 111, 25, 112, 108, 113, 115, 116, 115, 117 | xpcco2 17820 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ℎ ∈ (𝑧(Hom ‘𝐷)𝑤))) → (〈((Id‘𝐶)‘𝑋), ℎ〉(〈〈𝑋, 𝑦〉, 〈𝑋, 𝑧〉〉(comp‘(𝐶 ×c 𝐷))〈𝑋, 𝑤〉)〈((Id‘𝐶)‘𝑋), 𝑔〉) = 〈(((Id‘𝐶)‘𝑋)(〈𝑋, 𝑋〉(comp‘𝐶)𝑋)((Id‘𝐶)‘𝑋)), (ℎ(〈𝑦, 𝑧〉(comp‘𝐷)𝑤)𝑔)〉) |
119 | 2, 59, 10, 114, 108, 111, 108, 115 | catlid 17309 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ℎ ∈ (𝑧(Hom ‘𝐷)𝑤))) → (((Id‘𝐶)‘𝑋)(〈𝑋, 𝑋〉(comp‘𝐶)𝑋)((Id‘𝐶)‘𝑋)) = ((Id‘𝐶)‘𝑋)) |
120 | 119 | opeq1d 4807 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ℎ ∈ (𝑧(Hom ‘𝐷)𝑤))) → 〈(((Id‘𝐶)‘𝑋)(〈𝑋, 𝑋〉(comp‘𝐶)𝑋)((Id‘𝐶)‘𝑋)), (ℎ(〈𝑦, 𝑧〉(comp‘𝐷)𝑤)𝑔)〉 = 〈((Id‘𝐶)‘𝑋), (ℎ(〈𝑦, 𝑧〉(comp‘𝐷)𝑤)𝑔)〉) |
121 | 118, 120 | eqtrd 2778 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ℎ ∈ (𝑧(Hom ‘𝐷)𝑤))) → (〈((Id‘𝐶)‘𝑋), ℎ〉(〈〈𝑋, 𝑦〉, 〈𝑋, 𝑧〉〉(comp‘(𝐶 ×c 𝐷))〈𝑋, 𝑤〉)〈((Id‘𝐶)‘𝑋), 𝑔〉) = 〈((Id‘𝐶)‘𝑋), (ℎ(〈𝑦, 𝑧〉(comp‘𝐷)𝑤)𝑔)〉) |
122 | 121 | fveq2d 6760 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ℎ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((〈𝑋, 𝑦〉(2nd ‘𝐹)〈𝑋, 𝑤〉)‘(〈((Id‘𝐶)‘𝑋), ℎ〉(〈〈𝑋, 𝑦〉, 〈𝑋, 𝑧〉〉(comp‘(𝐶 ×c 𝐷))〈𝑋, 𝑤〉)〈((Id‘𝐶)‘𝑋), 𝑔〉)) = ((〈𝑋, 𝑦〉(2nd ‘𝐹)〈𝑋, 𝑤〉)‘〈((Id‘𝐶)‘𝑋), (ℎ(〈𝑦, 𝑧〉(comp‘𝐷)𝑤)𝑔)〉)) |
123 | | df-ov 7258 |
. . . . . . 7
⊢
(((Id‘𝐶)‘𝑋)(〈𝑋, 𝑦〉(2nd ‘𝐹)〈𝑋, 𝑤〉)(ℎ(〈𝑦, 𝑧〉(comp‘𝐷)𝑤)𝑔)) = ((〈𝑋, 𝑦〉(2nd ‘𝐹)〈𝑋, 𝑤〉)‘〈((Id‘𝐶)‘𝑋), (ℎ(〈𝑦, 𝑧〉(comp‘𝐷)𝑤)𝑔)〉) |
124 | 122, 123 | eqtr4di 2797 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ℎ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((〈𝑋, 𝑦〉(2nd ‘𝐹)〈𝑋, 𝑤〉)‘(〈((Id‘𝐶)‘𝑋), ℎ〉(〈〈𝑋, 𝑦〉, 〈𝑋, 𝑧〉〉(comp‘(𝐶 ×c 𝐷))〈𝑋, 𝑤〉)〈((Id‘𝐶)‘𝑋), 𝑔〉)) = (((Id‘𝐶)‘𝑋)(〈𝑋, 𝑦〉(2nd ‘𝐹)〈𝑋, 𝑤〉)(ℎ(〈𝑦, 𝑧〉(comp‘𝐷)𝑤)𝑔))) |
125 | 34 | 3ad2ant1 1131 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ℎ ∈ (𝑧(Hom ‘𝐷)𝑤))) → (1st ‘𝐹)((𝐶 ×c 𝐷) Func 𝐸)(2nd ‘𝐹)) |
126 | 108, 109 | opelxpd 5618 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ℎ ∈ (𝑧(Hom ‘𝐷)𝑤))) → 〈𝑋, 𝑦〉 ∈ (𝐴 × 𝐵)) |
127 | 108, 110 | opelxpd 5618 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ℎ ∈ (𝑧(Hom ‘𝐷)𝑤))) → 〈𝑋, 𝑧〉 ∈ (𝐴 × 𝐵)) |
128 | 108, 113 | opelxpd 5618 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ℎ ∈ (𝑧(Hom ‘𝐷)𝑤))) → 〈𝑋, 𝑤〉 ∈ (𝐴 × 𝐵)) |
129 | 115, 116 | opelxpd 5618 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ℎ ∈ (𝑧(Hom ‘𝐷)𝑤))) → 〈((Id‘𝐶)‘𝑋), 𝑔〉 ∈ ((𝑋(Hom ‘𝐶)𝑋) × (𝑦(Hom ‘𝐷)𝑧))) |
130 | 30, 2, 6, 59, 9, 108, 109, 108, 110, 51 | xpchom2 17819 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ℎ ∈ (𝑧(Hom ‘𝐷)𝑤))) → (〈𝑋, 𝑦〉(Hom ‘(𝐶 ×c 𝐷))〈𝑋, 𝑧〉) = ((𝑋(Hom ‘𝐶)𝑋) × (𝑦(Hom ‘𝐷)𝑧))) |
131 | 129, 130 | eleqtrrd 2842 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ℎ ∈ (𝑧(Hom ‘𝐷)𝑤))) → 〈((Id‘𝐶)‘𝑋), 𝑔〉 ∈ (〈𝑋, 𝑦〉(Hom ‘(𝐶 ×c 𝐷))〈𝑋, 𝑧〉)) |
132 | 115, 117 | opelxpd 5618 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ℎ ∈ (𝑧(Hom ‘𝐷)𝑤))) → 〈((Id‘𝐶)‘𝑋), ℎ〉 ∈ ((𝑋(Hom ‘𝐶)𝑋) × (𝑧(Hom ‘𝐷)𝑤))) |
133 | 30, 2, 6, 59, 9, 108, 110, 108, 113, 51 | xpchom2 17819 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ℎ ∈ (𝑧(Hom ‘𝐷)𝑤))) → (〈𝑋, 𝑧〉(Hom ‘(𝐶 ×c 𝐷))〈𝑋, 𝑤〉) = ((𝑋(Hom ‘𝐶)𝑋) × (𝑧(Hom ‘𝐷)𝑤))) |
134 | 132, 133 | eleqtrrd 2842 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ℎ ∈ (𝑧(Hom ‘𝐷)𝑤))) → 〈((Id‘𝐶)‘𝑋), ℎ〉 ∈ (〈𝑋, 𝑧〉(Hom ‘(𝐶 ×c 𝐷))〈𝑋, 𝑤〉)) |
135 | 31, 51, 112, 26, 125, 126, 127, 128, 131, 134 | funcco 17502 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ℎ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((〈𝑋, 𝑦〉(2nd ‘𝐹)〈𝑋, 𝑤〉)‘(〈((Id‘𝐶)‘𝑋), ℎ〉(〈〈𝑋, 𝑦〉, 〈𝑋, 𝑧〉〉(comp‘(𝐶 ×c 𝐷))〈𝑋, 𝑤〉)〈((Id‘𝐶)‘𝑋), 𝑔〉)) = (((〈𝑋, 𝑧〉(2nd ‘𝐹)〈𝑋, 𝑤〉)‘〈((Id‘𝐶)‘𝑋), ℎ〉)(〈((1st ‘𝐹)‘〈𝑋, 𝑦〉), ((1st ‘𝐹)‘〈𝑋, 𝑧〉)〉(comp‘𝐸)((1st ‘𝐹)‘〈𝑋, 𝑤〉))((〈𝑋, 𝑦〉(2nd ‘𝐹)〈𝑋, 𝑧〉)‘〈((Id‘𝐶)‘𝑋), 𝑔〉))) |
136 | 124, 135 | eqtr3d 2780 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ℎ ∈ (𝑧(Hom ‘𝐷)𝑤))) → (((Id‘𝐶)‘𝑋)(〈𝑋, 𝑦〉(2nd ‘𝐹)〈𝑋, 𝑤〉)(ℎ(〈𝑦, 𝑧〉(comp‘𝐷)𝑤)𝑔)) = (((〈𝑋, 𝑧〉(2nd ‘𝐹)〈𝑋, 𝑤〉)‘〈((Id‘𝐶)‘𝑋), ℎ〉)(〈((1st ‘𝐹)‘〈𝑋, 𝑦〉), ((1st ‘𝐹)‘〈𝑋, 𝑧〉)〉(comp‘𝐸)((1st ‘𝐹)‘〈𝑋, 𝑤〉))((〈𝑋, 𝑦〉(2nd ‘𝐹)〈𝑋, 𝑧〉)‘〈((Id‘𝐶)‘𝑋), 𝑔〉))) |
137 | 4 | 3ad2ant1 1131 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ℎ ∈ (𝑧(Hom ‘𝐷)𝑤))) → 𝐷 ∈ Cat) |
138 | 5 | 3ad2ant1 1131 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ℎ ∈ (𝑧(Hom ‘𝐷)𝑤))) → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) |
139 | 6, 9, 25, 137, 109, 110, 113, 116, 117 | catcocl 17311 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ℎ ∈ (𝑧(Hom ‘𝐷)𝑤))) → (ℎ(〈𝑦, 𝑧〉(comp‘𝐷)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐷)𝑤)) |
140 | 1, 2, 114, 137, 138, 6, 108, 8, 109, 9, 10, 113, 139 | curf12 17861 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ℎ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((𝑦(2nd ‘𝐾)𝑤)‘(ℎ(〈𝑦, 𝑧〉(comp‘𝐷)𝑤)𝑔)) = (((Id‘𝐶)‘𝑋)(〈𝑋, 𝑦〉(2nd ‘𝐹)〈𝑋, 𝑤〉)(ℎ(〈𝑦, 𝑧〉(comp‘𝐷)𝑤)𝑔))) |
141 | 1, 2, 114, 137, 138, 6, 108, 8, 109 | curf11 17860 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ℎ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((1st ‘𝐾)‘𝑦) = (𝑋(1st ‘𝐹)𝑦)) |
142 | 141, 65 | eqtrdi 2795 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ℎ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((1st ‘𝐾)‘𝑦) = ((1st ‘𝐹)‘〈𝑋, 𝑦〉)) |
143 | 1, 2, 114, 137, 138, 6, 108, 8, 110 | curf11 17860 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ℎ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((1st ‘𝐾)‘𝑧) = (𝑋(1st ‘𝐹)𝑧)) |
144 | 143, 68 | eqtrdi 2795 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ℎ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((1st ‘𝐾)‘𝑧) = ((1st ‘𝐹)‘〈𝑋, 𝑧〉)) |
145 | 142, 144 | opeq12d 4809 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ℎ ∈ (𝑧(Hom ‘𝐷)𝑤))) → 〈((1st
‘𝐾)‘𝑦), ((1st ‘𝐾)‘𝑧)〉 = 〈((1st ‘𝐹)‘〈𝑋, 𝑦〉), ((1st ‘𝐹)‘〈𝑋, 𝑧〉)〉) |
146 | 1, 2, 114, 137, 138, 6, 108, 8, 113 | curf11 17860 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ℎ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((1st ‘𝐾)‘𝑤) = (𝑋(1st ‘𝐹)𝑤)) |
147 | | df-ov 7258 |
. . . . . . . 8
⊢ (𝑋(1st ‘𝐹)𝑤) = ((1st ‘𝐹)‘〈𝑋, 𝑤〉) |
148 | 146, 147 | eqtrdi 2795 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ℎ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((1st ‘𝐾)‘𝑤) = ((1st ‘𝐹)‘〈𝑋, 𝑤〉)) |
149 | 145, 148 | oveq12d 7273 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ℎ ∈ (𝑧(Hom ‘𝐷)𝑤))) → (〈((1st
‘𝐾)‘𝑦), ((1st ‘𝐾)‘𝑧)〉(comp‘𝐸)((1st ‘𝐾)‘𝑤)) = (〈((1st ‘𝐹)‘〈𝑋, 𝑦〉), ((1st ‘𝐹)‘〈𝑋, 𝑧〉)〉(comp‘𝐸)((1st ‘𝐹)‘〈𝑋, 𝑤〉))) |
150 | 1, 2, 114, 137, 138, 6, 108, 8, 110, 9, 10, 113, 117 | curf12 17861 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ℎ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((𝑧(2nd ‘𝐾)𝑤)‘ℎ) = (((Id‘𝐶)‘𝑋)(〈𝑋, 𝑧〉(2nd ‘𝐹)〈𝑋, 𝑤〉)ℎ)) |
151 | | df-ov 7258 |
. . . . . . 7
⊢
(((Id‘𝐶)‘𝑋)(〈𝑋, 𝑧〉(2nd ‘𝐹)〈𝑋, 𝑤〉)ℎ) = ((〈𝑋, 𝑧〉(2nd ‘𝐹)〈𝑋, 𝑤〉)‘〈((Id‘𝐶)‘𝑋), ℎ〉) |
152 | 150, 151 | eqtrdi 2795 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ℎ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((𝑧(2nd ‘𝐾)𝑤)‘ℎ) = ((〈𝑋, 𝑧〉(2nd ‘𝐹)〈𝑋, 𝑤〉)‘〈((Id‘𝐶)‘𝑋), ℎ〉)) |
153 | 1, 2, 114, 137, 138, 6, 108, 8, 109, 9, 10, 110, 116 | curf12 17861 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ℎ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((𝑦(2nd ‘𝐾)𝑧)‘𝑔) = (((Id‘𝐶)‘𝑋)(〈𝑋, 𝑦〉(2nd ‘𝐹)〈𝑋, 𝑧〉)𝑔)) |
154 | | df-ov 7258 |
. . . . . . 7
⊢
(((Id‘𝐶)‘𝑋)(〈𝑋, 𝑦〉(2nd ‘𝐹)〈𝑋, 𝑧〉)𝑔) = ((〈𝑋, 𝑦〉(2nd ‘𝐹)〈𝑋, 𝑧〉)‘〈((Id‘𝐶)‘𝑋), 𝑔〉) |
155 | 153, 154 | eqtrdi 2795 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ℎ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((𝑦(2nd ‘𝐾)𝑧)‘𝑔) = ((〈𝑋, 𝑦〉(2nd ‘𝐹)〈𝑋, 𝑧〉)‘〈((Id‘𝐶)‘𝑋), 𝑔〉)) |
156 | 149, 152,
155 | oveq123d 7276 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ℎ ∈ (𝑧(Hom ‘𝐷)𝑤))) → (((𝑧(2nd ‘𝐾)𝑤)‘ℎ)(〈((1st ‘𝐾)‘𝑦), ((1st ‘𝐾)‘𝑧)〉(comp‘𝐸)((1st ‘𝐾)‘𝑤))((𝑦(2nd ‘𝐾)𝑧)‘𝑔)) = (((〈𝑋, 𝑧〉(2nd ‘𝐹)〈𝑋, 𝑤〉)‘〈((Id‘𝐶)‘𝑋), ℎ〉)(〈((1st ‘𝐹)‘〈𝑋, 𝑦〉), ((1st ‘𝐹)‘〈𝑋, 𝑧〉)〉(comp‘𝐸)((1st ‘𝐹)‘〈𝑋, 𝑤〉))((〈𝑋, 𝑦〉(2nd ‘𝐹)〈𝑋, 𝑧〉)‘〈((Id‘𝐶)‘𝑋), 𝑔〉))) |
157 | 136, 140,
156 | 3eqtr4d 2788 |
. . . 4
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ℎ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((𝑦(2nd ‘𝐾)𝑤)‘(ℎ(〈𝑦, 𝑧〉(comp‘𝐷)𝑤)𝑔)) = (((𝑧(2nd ‘𝐾)𝑤)‘ℎ)(〈((1st ‘𝐾)‘𝑦), ((1st ‘𝐾)‘𝑧)〉(comp‘𝐸)((1st ‘𝐾)‘𝑤))((𝑦(2nd ‘𝐾)𝑧)‘𝑔))) |
158 | 6, 21, 9, 22, 23, 24, 25, 26, 4, 29, 40, 46, 88, 107, 157 | isfuncd 17496 |
. . 3
⊢ (𝜑 → (1st
‘𝐾)(𝐷 Func 𝐸)(2nd ‘𝐾)) |
159 | | df-br 5071 |
. . 3
⊢
((1st ‘𝐾)(𝐷 Func 𝐸)(2nd ‘𝐾) ↔ 〈(1st ‘𝐾), (2nd ‘𝐾)〉 ∈ (𝐷 Func 𝐸)) |
160 | 158, 159 | sylib 217 |
. 2
⊢ (𝜑 → 〈(1st
‘𝐾), (2nd
‘𝐾)〉 ∈
(𝐷 Func 𝐸)) |
161 | 20, 160 | eqeltrd 2839 |
1
⊢ (𝜑 → 𝐾 ∈ (𝐷 Func 𝐸)) |