MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  curf1cl Structured version   Visualization version   GIF version

Theorem curf1cl 18165
Description: The partially evaluated curry functor is a functor. (Contributed by Mario Carneiro, 13-Jan-2017.)
Hypotheses
Ref Expression
curfval.g 𝐺 = (⟨𝐶, 𝐷⟩ curryF 𝐹)
curfval.a 𝐴 = (Base‘𝐶)
curfval.c (𝜑𝐶 ∈ Cat)
curfval.d (𝜑𝐷 ∈ Cat)
curfval.f (𝜑𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
curfval.b 𝐵 = (Base‘𝐷)
curf1.x (𝜑𝑋𝐴)
curf1.k 𝐾 = ((1st𝐺)‘𝑋)
Assertion
Ref Expression
curf1cl (𝜑𝐾 ∈ (𝐷 Func 𝐸))

Proof of Theorem curf1cl
Dummy variables 𝑔 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 curfval.g . . . 4 𝐺 = (⟨𝐶, 𝐷⟩ curryF 𝐹)
2 curfval.a . . . 4 𝐴 = (Base‘𝐶)
3 curfval.c . . . 4 (𝜑𝐶 ∈ Cat)
4 curfval.d . . . 4 (𝜑𝐷 ∈ Cat)
5 curfval.f . . . 4 (𝜑𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
6 curfval.b . . . 4 𝐵 = (Base‘𝐷)
7 curf1.x . . . 4 (𝜑𝑋𝐴)
8 curf1.k . . . 4 𝐾 = ((1st𝐺)‘𝑋)
9 eqid 2729 . . . 4 (Hom ‘𝐷) = (Hom ‘𝐷)
10 eqid 2729 . . . 4 (Id‘𝐶) = (Id‘𝐶)
111, 2, 3, 4, 5, 6, 7, 8, 9, 10curf1 18162 . . 3 (𝜑𝐾 = ⟨(𝑦𝐵 ↦ (𝑋(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)))⟩)
126fvexi 6854 . . . . . . 7 𝐵 ∈ V
1312mptex 7179 . . . . . 6 (𝑦𝐵 ↦ (𝑋(1st𝐹)𝑦)) ∈ V
1412, 12mpoex 8037 . . . . . 6 (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔))) ∈ V
1513, 14op1std 7957 . . . . 5 (𝐾 = ⟨(𝑦𝐵 ↦ (𝑋(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)))⟩ → (1st𝐾) = (𝑦𝐵 ↦ (𝑋(1st𝐹)𝑦)))
1611, 15syl 17 . . . 4 (𝜑 → (1st𝐾) = (𝑦𝐵 ↦ (𝑋(1st𝐹)𝑦)))
1713, 14op2ndd 7958 . . . . 5 (𝐾 = ⟨(𝑦𝐵 ↦ (𝑋(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)))⟩ → (2nd𝐾) = (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔))))
1811, 17syl 17 . . . 4 (𝜑 → (2nd𝐾) = (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔))))
1916, 18opeq12d 4841 . . 3 (𝜑 → ⟨(1st𝐾), (2nd𝐾)⟩ = ⟨(𝑦𝐵 ↦ (𝑋(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)))⟩)
2011, 19eqtr4d 2767 . 2 (𝜑𝐾 = ⟨(1st𝐾), (2nd𝐾)⟩)
21 eqid 2729 . . . 4 (Base‘𝐸) = (Base‘𝐸)
22 eqid 2729 . . . 4 (Hom ‘𝐸) = (Hom ‘𝐸)
23 eqid 2729 . . . 4 (Id‘𝐷) = (Id‘𝐷)
24 eqid 2729 . . . 4 (Id‘𝐸) = (Id‘𝐸)
25 eqid 2729 . . . 4 (comp‘𝐷) = (comp‘𝐷)
26 eqid 2729 . . . 4 (comp‘𝐸) = (comp‘𝐸)
27 funcrcl 17801 . . . . . 6 (𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸) → ((𝐶 ×c 𝐷) ∈ Cat ∧ 𝐸 ∈ Cat))
285, 27syl 17 . . . . 5 (𝜑 → ((𝐶 ×c 𝐷) ∈ Cat ∧ 𝐸 ∈ Cat))
2928simprd 495 . . . 4 (𝜑𝐸 ∈ Cat)
30 eqid 2729 . . . . . . . . 9 (𝐶 ×c 𝐷) = (𝐶 ×c 𝐷)
3130, 2, 6xpcbas 18115 . . . . . . . 8 (𝐴 × 𝐵) = (Base‘(𝐶 ×c 𝐷))
32 relfunc 17800 . . . . . . . . 9 Rel ((𝐶 ×c 𝐷) Func 𝐸)
33 1st2ndbr 8000 . . . . . . . . 9 ((Rel ((𝐶 ×c 𝐷) Func 𝐸) ∧ 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) → (1st𝐹)((𝐶 ×c 𝐷) Func 𝐸)(2nd𝐹))
3432, 5, 33sylancr 587 . . . . . . . 8 (𝜑 → (1st𝐹)((𝐶 ×c 𝐷) Func 𝐸)(2nd𝐹))
3531, 21, 34funcf1 17804 . . . . . . 7 (𝜑 → (1st𝐹):(𝐴 × 𝐵)⟶(Base‘𝐸))
3635adantr 480 . . . . . 6 ((𝜑𝑦𝐵) → (1st𝐹):(𝐴 × 𝐵)⟶(Base‘𝐸))
377adantr 480 . . . . . 6 ((𝜑𝑦𝐵) → 𝑋𝐴)
38 simpr 484 . . . . . 6 ((𝜑𝑦𝐵) → 𝑦𝐵)
3936, 37, 38fovcdmd 7541 . . . . 5 ((𝜑𝑦𝐵) → (𝑋(1st𝐹)𝑦) ∈ (Base‘𝐸))
4016, 39fmpt3d 7070 . . . 4 (𝜑 → (1st𝐾):𝐵⟶(Base‘𝐸))
41 eqid 2729 . . . . . 6 (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔))) = (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)))
42 ovex 7402 . . . . . . 7 (𝑦(Hom ‘𝐷)𝑧) ∈ V
4342mptex 7179 . . . . . 6 (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)) ∈ V
4441, 43fnmpoi 8028 . . . . 5 (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔))) Fn (𝐵 × 𝐵)
4518fneq1d 6593 . . . . 5 (𝜑 → ((2nd𝐾) Fn (𝐵 × 𝐵) ↔ (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔))) Fn (𝐵 × 𝐵)))
4644, 45mpbiri 258 . . . 4 (𝜑 → (2nd𝐾) Fn (𝐵 × 𝐵))
4718oveqd 7386 . . . . . 6 (𝜑 → (𝑦(2nd𝐾)𝑧) = (𝑦(𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)))𝑧))
4841ovmpt4g 7516 . . . . . . 7 ((𝑦𝐵𝑧𝐵 ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)) ∈ V) → (𝑦(𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)))𝑧) = (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)))
4943, 48mp3an3 1452 . . . . . 6 ((𝑦𝐵𝑧𝐵) → (𝑦(𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)))𝑧) = (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)))
5047, 49sylan9eq 2784 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑦(2nd𝐾)𝑧) = (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)))
51 eqid 2729 . . . . . . . 8 (Hom ‘(𝐶 ×c 𝐷)) = (Hom ‘(𝐶 ×c 𝐷))
5234ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (1st𝐹)((𝐶 ×c 𝐷) Func 𝐸)(2nd𝐹))
537ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝑋𝐴)
54 simplrl 776 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝑦𝐵)
5553, 54opelxpd 5670 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ⟨𝑋, 𝑦⟩ ∈ (𝐴 × 𝐵))
56 simplrr 777 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝑧𝐵)
5753, 56opelxpd 5670 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ⟨𝑋, 𝑧⟩ ∈ (𝐴 × 𝐵))
5831, 51, 22, 52, 55, 57funcf2 17806 . . . . . . 7 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩):(⟨𝑋, 𝑦⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑋, 𝑧⟩)⟶(((1st𝐹)‘⟨𝑋, 𝑦⟩)(Hom ‘𝐸)((1st𝐹)‘⟨𝑋, 𝑧⟩)))
59 eqid 2729 . . . . . . . . 9 (Hom ‘𝐶) = (Hom ‘𝐶)
6030, 31, 59, 9, 51, 55, 57xpchom 18117 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (⟨𝑋, 𝑦⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑋, 𝑧⟩) = (((1st ‘⟨𝑋, 𝑦⟩)(Hom ‘𝐶)(1st ‘⟨𝑋, 𝑧⟩)) × ((2nd ‘⟨𝑋, 𝑦⟩)(Hom ‘𝐷)(2nd ‘⟨𝑋, 𝑧⟩))))
613ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝐶 ∈ Cat)
624ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝐷 ∈ Cat)
635ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
641, 2, 61, 62, 63, 6, 53, 8, 54curf11 18163 . . . . . . . . . 10 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((1st𝐾)‘𝑦) = (𝑋(1st𝐹)𝑦))
65 df-ov 7372 . . . . . . . . . 10 (𝑋(1st𝐹)𝑦) = ((1st𝐹)‘⟨𝑋, 𝑦⟩)
6664, 65eqtr2di 2781 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((1st𝐹)‘⟨𝑋, 𝑦⟩) = ((1st𝐾)‘𝑦))
671, 2, 61, 62, 63, 6, 53, 8, 56curf11 18163 . . . . . . . . . 10 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((1st𝐾)‘𝑧) = (𝑋(1st𝐹)𝑧))
68 df-ov 7372 . . . . . . . . . 10 (𝑋(1st𝐹)𝑧) = ((1st𝐹)‘⟨𝑋, 𝑧⟩)
6967, 68eqtr2di 2781 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((1st𝐹)‘⟨𝑋, 𝑧⟩) = ((1st𝐾)‘𝑧))
7066, 69oveq12d 7387 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (((1st𝐹)‘⟨𝑋, 𝑦⟩)(Hom ‘𝐸)((1st𝐹)‘⟨𝑋, 𝑧⟩)) = (((1st𝐾)‘𝑦)(Hom ‘𝐸)((1st𝐾)‘𝑧)))
7160, 70feq23d 6665 . . . . . . 7 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩):(⟨𝑋, 𝑦⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑋, 𝑧⟩)⟶(((1st𝐹)‘⟨𝑋, 𝑦⟩)(Hom ‘𝐸)((1st𝐹)‘⟨𝑋, 𝑧⟩)) ↔ (⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩):(((1st ‘⟨𝑋, 𝑦⟩)(Hom ‘𝐶)(1st ‘⟨𝑋, 𝑧⟩)) × ((2nd ‘⟨𝑋, 𝑦⟩)(Hom ‘𝐷)(2nd ‘⟨𝑋, 𝑧⟩)))⟶(((1st𝐾)‘𝑦)(Hom ‘𝐸)((1st𝐾)‘𝑧))))
7258, 71mpbid 232 . . . . . 6 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩):(((1st ‘⟨𝑋, 𝑦⟩)(Hom ‘𝐶)(1st ‘⟨𝑋, 𝑧⟩)) × ((2nd ‘⟨𝑋, 𝑦⟩)(Hom ‘𝐷)(2nd ‘⟨𝑋, 𝑧⟩)))⟶(((1st𝐾)‘𝑦)(Hom ‘𝐸)((1st𝐾)‘𝑧)))
732, 59, 10, 61, 53catidcl 17619 . . . . . . 7 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((Id‘𝐶)‘𝑋) ∈ (𝑋(Hom ‘𝐶)𝑋))
74 op1stg 7959 . . . . . . . . 9 ((𝑋𝐴𝑦𝐵) → (1st ‘⟨𝑋, 𝑦⟩) = 𝑋)
7553, 54, 74syl2anc 584 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (1st ‘⟨𝑋, 𝑦⟩) = 𝑋)
76 op1stg 7959 . . . . . . . . 9 ((𝑋𝐴𝑧𝐵) → (1st ‘⟨𝑋, 𝑧⟩) = 𝑋)
7753, 56, 76syl2anc 584 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (1st ‘⟨𝑋, 𝑧⟩) = 𝑋)
7875, 77oveq12d 7387 . . . . . . 7 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((1st ‘⟨𝑋, 𝑦⟩)(Hom ‘𝐶)(1st ‘⟨𝑋, 𝑧⟩)) = (𝑋(Hom ‘𝐶)𝑋))
7973, 78eleqtrrd 2831 . . . . . 6 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((Id‘𝐶)‘𝑋) ∈ ((1st ‘⟨𝑋, 𝑦⟩)(Hom ‘𝐶)(1st ‘⟨𝑋, 𝑧⟩)))
80 simpr 484 . . . . . . 7 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))
81 op2ndg 7960 . . . . . . . . 9 ((𝑋𝐴𝑦𝐵) → (2nd ‘⟨𝑋, 𝑦⟩) = 𝑦)
8253, 54, 81syl2anc 584 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (2nd ‘⟨𝑋, 𝑦⟩) = 𝑦)
83 op2ndg 7960 . . . . . . . . 9 ((𝑋𝐴𝑧𝐵) → (2nd ‘⟨𝑋, 𝑧⟩) = 𝑧)
8453, 56, 83syl2anc 584 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (2nd ‘⟨𝑋, 𝑧⟩) = 𝑧)
8582, 84oveq12d 7387 . . . . . . 7 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((2nd ‘⟨𝑋, 𝑦⟩)(Hom ‘𝐷)(2nd ‘⟨𝑋, 𝑧⟩)) = (𝑦(Hom ‘𝐷)𝑧))
8680, 85eleqtrrd 2831 . . . . . 6 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝑔 ∈ ((2nd ‘⟨𝑋, 𝑦⟩)(Hom ‘𝐷)(2nd ‘⟨𝑋, 𝑧⟩)))
8772, 79, 86fovcdmd 7541 . . . . 5 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔) ∈ (((1st𝐾)‘𝑦)(Hom ‘𝐸)((1st𝐾)‘𝑧)))
8850, 87fmpt3d 7070 . . . 4 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑦(2nd𝐾)𝑧):(𝑦(Hom ‘𝐷)𝑧)⟶(((1st𝐾)‘𝑦)(Hom ‘𝐸)((1st𝐾)‘𝑧)))
893adantr 480 . . . . . . . . 9 ((𝜑𝑦𝐵) → 𝐶 ∈ Cat)
904adantr 480 . . . . . . . . 9 ((𝜑𝑦𝐵) → 𝐷 ∈ Cat)
91 eqid 2729 . . . . . . . . 9 (Id‘(𝐶 ×c 𝐷)) = (Id‘(𝐶 ×c 𝐷))
9230, 89, 90, 2, 6, 10, 23, 91, 37, 38xpcid 18126 . . . . . . . 8 ((𝜑𝑦𝐵) → ((Id‘(𝐶 ×c 𝐷))‘⟨𝑋, 𝑦⟩) = ⟨((Id‘𝐶)‘𝑋), ((Id‘𝐷)‘𝑦)⟩)
9392fveq2d 6844 . . . . . . 7 ((𝜑𝑦𝐵) → ((⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑦⟩)‘((Id‘(𝐶 ×c 𝐷))‘⟨𝑋, 𝑦⟩)) = ((⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑦⟩)‘⟨((Id‘𝐶)‘𝑋), ((Id‘𝐷)‘𝑦)⟩))
94 df-ov 7372 . . . . . . 7 (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑦⟩)((Id‘𝐷)‘𝑦)) = ((⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑦⟩)‘⟨((Id‘𝐶)‘𝑋), ((Id‘𝐷)‘𝑦)⟩)
9593, 94eqtr4di 2782 . . . . . 6 ((𝜑𝑦𝐵) → ((⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑦⟩)‘((Id‘(𝐶 ×c 𝐷))‘⟨𝑋, 𝑦⟩)) = (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑦⟩)((Id‘𝐷)‘𝑦)))
9634adantr 480 . . . . . . 7 ((𝜑𝑦𝐵) → (1st𝐹)((𝐶 ×c 𝐷) Func 𝐸)(2nd𝐹))
97 opelxpi 5668 . . . . . . . 8 ((𝑋𝐴𝑦𝐵) → ⟨𝑋, 𝑦⟩ ∈ (𝐴 × 𝐵))
987, 97sylan 580 . . . . . . 7 ((𝜑𝑦𝐵) → ⟨𝑋, 𝑦⟩ ∈ (𝐴 × 𝐵))
9931, 91, 24, 96, 98funcid 17808 . . . . . 6 ((𝜑𝑦𝐵) → ((⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑦⟩)‘((Id‘(𝐶 ×c 𝐷))‘⟨𝑋, 𝑦⟩)) = ((Id‘𝐸)‘((1st𝐹)‘⟨𝑋, 𝑦⟩)))
10095, 99eqtr3d 2766 . . . . 5 ((𝜑𝑦𝐵) → (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑦⟩)((Id‘𝐷)‘𝑦)) = ((Id‘𝐸)‘((1st𝐹)‘⟨𝑋, 𝑦⟩)))
1015adantr 480 . . . . . 6 ((𝜑𝑦𝐵) → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
1026, 9, 23, 90, 38catidcl 17619 . . . . . 6 ((𝜑𝑦𝐵) → ((Id‘𝐷)‘𝑦) ∈ (𝑦(Hom ‘𝐷)𝑦))
1031, 2, 89, 90, 101, 6, 37, 8, 38, 9, 10, 38, 102curf12 18164 . . . . 5 ((𝜑𝑦𝐵) → ((𝑦(2nd𝐾)𝑦)‘((Id‘𝐷)‘𝑦)) = (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑦⟩)((Id‘𝐷)‘𝑦)))
1041, 2, 89, 90, 101, 6, 37, 8, 38curf11 18163 . . . . . . 7 ((𝜑𝑦𝐵) → ((1st𝐾)‘𝑦) = (𝑋(1st𝐹)𝑦))
105104, 65eqtrdi 2780 . . . . . 6 ((𝜑𝑦𝐵) → ((1st𝐾)‘𝑦) = ((1st𝐹)‘⟨𝑋, 𝑦⟩))
106105fveq2d 6844 . . . . 5 ((𝜑𝑦𝐵) → ((Id‘𝐸)‘((1st𝐾)‘𝑦)) = ((Id‘𝐸)‘((1st𝐹)‘⟨𝑋, 𝑦⟩)))
107100, 103, 1063eqtr4d 2774 . . . 4 ((𝜑𝑦𝐵) → ((𝑦(2nd𝐾)𝑦)‘((Id‘𝐷)‘𝑦)) = ((Id‘𝐸)‘((1st𝐾)‘𝑦)))
10873ad2ant1 1133 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → 𝑋𝐴)
109 simp21 1207 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → 𝑦𝐵)
110 simp22 1208 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → 𝑧𝐵)
111 eqid 2729 . . . . . . . . . 10 (comp‘𝐶) = (comp‘𝐶)
112 eqid 2729 . . . . . . . . . 10 (comp‘(𝐶 ×c 𝐷)) = (comp‘(𝐶 ×c 𝐷))
113 simp23 1209 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → 𝑤𝐵)
11433ad2ant1 1133 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → 𝐶 ∈ Cat)
1152, 59, 10, 114, 108catidcl 17619 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((Id‘𝐶)‘𝑋) ∈ (𝑋(Hom ‘𝐶)𝑋))
116 simp3l 1202 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))
117 simp3r 1203 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ∈ (𝑧(Hom ‘𝐷)𝑤))
11830, 2, 6, 59, 9, 108, 109, 108, 110, 111, 25, 112, 108, 113, 115, 116, 115, 117xpcco2 18124 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → (⟨((Id‘𝐶)‘𝑋), ⟩(⟨⟨𝑋, 𝑦⟩, ⟨𝑋, 𝑧⟩⟩(comp‘(𝐶 ×c 𝐷))⟨𝑋, 𝑤⟩)⟨((Id‘𝐶)‘𝑋), 𝑔⟩) = ⟨(((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑋)((Id‘𝐶)‘𝑋)), ((⟨𝑦, 𝑧⟩(comp‘𝐷)𝑤)𝑔)⟩)
1192, 59, 10, 114, 108, 111, 108, 115catlid 17620 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑋)((Id‘𝐶)‘𝑋)) = ((Id‘𝐶)‘𝑋))
120119opeq1d 4839 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ⟨(((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑋)((Id‘𝐶)‘𝑋)), ((⟨𝑦, 𝑧⟩(comp‘𝐷)𝑤)𝑔)⟩ = ⟨((Id‘𝐶)‘𝑋), ((⟨𝑦, 𝑧⟩(comp‘𝐷)𝑤)𝑔)⟩)
121118, 120eqtrd 2764 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → (⟨((Id‘𝐶)‘𝑋), ⟩(⟨⟨𝑋, 𝑦⟩, ⟨𝑋, 𝑧⟩⟩(comp‘(𝐶 ×c 𝐷))⟨𝑋, 𝑤⟩)⟨((Id‘𝐶)‘𝑋), 𝑔⟩) = ⟨((Id‘𝐶)‘𝑋), ((⟨𝑦, 𝑧⟩(comp‘𝐷)𝑤)𝑔)⟩)
122121fveq2d 6844 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑤⟩)‘(⟨((Id‘𝐶)‘𝑋), ⟩(⟨⟨𝑋, 𝑦⟩, ⟨𝑋, 𝑧⟩⟩(comp‘(𝐶 ×c 𝐷))⟨𝑋, 𝑤⟩)⟨((Id‘𝐶)‘𝑋), 𝑔⟩)) = ((⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑤⟩)‘⟨((Id‘𝐶)‘𝑋), ((⟨𝑦, 𝑧⟩(comp‘𝐷)𝑤)𝑔)⟩))
123 df-ov 7372 . . . . . . 7 (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑤⟩)((⟨𝑦, 𝑧⟩(comp‘𝐷)𝑤)𝑔)) = ((⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑤⟩)‘⟨((Id‘𝐶)‘𝑋), ((⟨𝑦, 𝑧⟩(comp‘𝐷)𝑤)𝑔)⟩)
124122, 123eqtr4di 2782 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑤⟩)‘(⟨((Id‘𝐶)‘𝑋), ⟩(⟨⟨𝑋, 𝑦⟩, ⟨𝑋, 𝑧⟩⟩(comp‘(𝐶 ×c 𝐷))⟨𝑋, 𝑤⟩)⟨((Id‘𝐶)‘𝑋), 𝑔⟩)) = (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑤⟩)((⟨𝑦, 𝑧⟩(comp‘𝐷)𝑤)𝑔)))
125343ad2ant1 1133 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → (1st𝐹)((𝐶 ×c 𝐷) Func 𝐸)(2nd𝐹))
126108, 109opelxpd 5670 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ⟨𝑋, 𝑦⟩ ∈ (𝐴 × 𝐵))
127108, 110opelxpd 5670 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ⟨𝑋, 𝑧⟩ ∈ (𝐴 × 𝐵))
128108, 113opelxpd 5670 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ⟨𝑋, 𝑤⟩ ∈ (𝐴 × 𝐵))
129115, 116opelxpd 5670 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ⟨((Id‘𝐶)‘𝑋), 𝑔⟩ ∈ ((𝑋(Hom ‘𝐶)𝑋) × (𝑦(Hom ‘𝐷)𝑧)))
13030, 2, 6, 59, 9, 108, 109, 108, 110, 51xpchom2 18123 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → (⟨𝑋, 𝑦⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑋, 𝑧⟩) = ((𝑋(Hom ‘𝐶)𝑋) × (𝑦(Hom ‘𝐷)𝑧)))
131129, 130eleqtrrd 2831 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ⟨((Id‘𝐶)‘𝑋), 𝑔⟩ ∈ (⟨𝑋, 𝑦⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑋, 𝑧⟩))
132115, 117opelxpd 5670 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ⟨((Id‘𝐶)‘𝑋), ⟩ ∈ ((𝑋(Hom ‘𝐶)𝑋) × (𝑧(Hom ‘𝐷)𝑤)))
13330, 2, 6, 59, 9, 108, 110, 108, 113, 51xpchom2 18123 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → (⟨𝑋, 𝑧⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑋, 𝑤⟩) = ((𝑋(Hom ‘𝐶)𝑋) × (𝑧(Hom ‘𝐷)𝑤)))
134132, 133eleqtrrd 2831 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ⟨((Id‘𝐶)‘𝑋), ⟩ ∈ (⟨𝑋, 𝑧⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑋, 𝑤⟩))
13531, 51, 112, 26, 125, 126, 127, 128, 131, 134funcco 17809 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑤⟩)‘(⟨((Id‘𝐶)‘𝑋), ⟩(⟨⟨𝑋, 𝑦⟩, ⟨𝑋, 𝑧⟩⟩(comp‘(𝐶 ×c 𝐷))⟨𝑋, 𝑤⟩)⟨((Id‘𝐶)‘𝑋), 𝑔⟩)) = (((⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑋, 𝑤⟩)‘⟨((Id‘𝐶)‘𝑋), ⟩)(⟨((1st𝐹)‘⟨𝑋, 𝑦⟩), ((1st𝐹)‘⟨𝑋, 𝑧⟩)⟩(comp‘𝐸)((1st𝐹)‘⟨𝑋, 𝑤⟩))((⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)‘⟨((Id‘𝐶)‘𝑋), 𝑔⟩)))
136124, 135eqtr3d 2766 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑤⟩)((⟨𝑦, 𝑧⟩(comp‘𝐷)𝑤)𝑔)) = (((⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑋, 𝑤⟩)‘⟨((Id‘𝐶)‘𝑋), ⟩)(⟨((1st𝐹)‘⟨𝑋, 𝑦⟩), ((1st𝐹)‘⟨𝑋, 𝑧⟩)⟩(comp‘𝐸)((1st𝐹)‘⟨𝑋, 𝑤⟩))((⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)‘⟨((Id‘𝐶)‘𝑋), 𝑔⟩)))
13743ad2ant1 1133 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → 𝐷 ∈ Cat)
13853ad2ant1 1133 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
1396, 9, 25, 137, 109, 110, 113, 116, 117catcocl 17622 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((⟨𝑦, 𝑧⟩(comp‘𝐷)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐷)𝑤))
1401, 2, 114, 137, 138, 6, 108, 8, 109, 9, 10, 113, 139curf12 18164 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((𝑦(2nd𝐾)𝑤)‘((⟨𝑦, 𝑧⟩(comp‘𝐷)𝑤)𝑔)) = (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑤⟩)((⟨𝑦, 𝑧⟩(comp‘𝐷)𝑤)𝑔)))
1411, 2, 114, 137, 138, 6, 108, 8, 109curf11 18163 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((1st𝐾)‘𝑦) = (𝑋(1st𝐹)𝑦))
142141, 65eqtrdi 2780 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((1st𝐾)‘𝑦) = ((1st𝐹)‘⟨𝑋, 𝑦⟩))
1431, 2, 114, 137, 138, 6, 108, 8, 110curf11 18163 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((1st𝐾)‘𝑧) = (𝑋(1st𝐹)𝑧))
144143, 68eqtrdi 2780 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((1st𝐾)‘𝑧) = ((1st𝐹)‘⟨𝑋, 𝑧⟩))
145142, 144opeq12d 4841 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ⟨((1st𝐾)‘𝑦), ((1st𝐾)‘𝑧)⟩ = ⟨((1st𝐹)‘⟨𝑋, 𝑦⟩), ((1st𝐹)‘⟨𝑋, 𝑧⟩)⟩)
1461, 2, 114, 137, 138, 6, 108, 8, 113curf11 18163 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((1st𝐾)‘𝑤) = (𝑋(1st𝐹)𝑤))
147 df-ov 7372 . . . . . . . 8 (𝑋(1st𝐹)𝑤) = ((1st𝐹)‘⟨𝑋, 𝑤⟩)
148146, 147eqtrdi 2780 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((1st𝐾)‘𝑤) = ((1st𝐹)‘⟨𝑋, 𝑤⟩))
149145, 148oveq12d 7387 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → (⟨((1st𝐾)‘𝑦), ((1st𝐾)‘𝑧)⟩(comp‘𝐸)((1st𝐾)‘𝑤)) = (⟨((1st𝐹)‘⟨𝑋, 𝑦⟩), ((1st𝐹)‘⟨𝑋, 𝑧⟩)⟩(comp‘𝐸)((1st𝐹)‘⟨𝑋, 𝑤⟩)))
1501, 2, 114, 137, 138, 6, 108, 8, 110, 9, 10, 113, 117curf12 18164 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((𝑧(2nd𝐾)𝑤)‘) = (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑋, 𝑤⟩)))
151 df-ov 7372 . . . . . . 7 (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑋, 𝑤⟩)) = ((⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑋, 𝑤⟩)‘⟨((Id‘𝐶)‘𝑋), ⟩)
152150, 151eqtrdi 2780 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((𝑧(2nd𝐾)𝑤)‘) = ((⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑋, 𝑤⟩)‘⟨((Id‘𝐶)‘𝑋), ⟩))
1531, 2, 114, 137, 138, 6, 108, 8, 109, 9, 10, 110, 116curf12 18164 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((𝑦(2nd𝐾)𝑧)‘𝑔) = (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔))
154 df-ov 7372 . . . . . . 7 (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔) = ((⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)‘⟨((Id‘𝐶)‘𝑋), 𝑔⟩)
155153, 154eqtrdi 2780 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((𝑦(2nd𝐾)𝑧)‘𝑔) = ((⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)‘⟨((Id‘𝐶)‘𝑋), 𝑔⟩))
156149, 152, 155oveq123d 7390 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → (((𝑧(2nd𝐾)𝑤)‘)(⟨((1st𝐾)‘𝑦), ((1st𝐾)‘𝑧)⟩(comp‘𝐸)((1st𝐾)‘𝑤))((𝑦(2nd𝐾)𝑧)‘𝑔)) = (((⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑋, 𝑤⟩)‘⟨((Id‘𝐶)‘𝑋), ⟩)(⟨((1st𝐹)‘⟨𝑋, 𝑦⟩), ((1st𝐹)‘⟨𝑋, 𝑧⟩)⟩(comp‘𝐸)((1st𝐹)‘⟨𝑋, 𝑤⟩))((⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)‘⟨((Id‘𝐶)‘𝑋), 𝑔⟩)))
157136, 140, 1563eqtr4d 2774 . . . 4 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((𝑦(2nd𝐾)𝑤)‘((⟨𝑦, 𝑧⟩(comp‘𝐷)𝑤)𝑔)) = (((𝑧(2nd𝐾)𝑤)‘)(⟨((1st𝐾)‘𝑦), ((1st𝐾)‘𝑧)⟩(comp‘𝐸)((1st𝐾)‘𝑤))((𝑦(2nd𝐾)𝑧)‘𝑔)))
1586, 21, 9, 22, 23, 24, 25, 26, 4, 29, 40, 46, 88, 107, 157isfuncd 17803 . . 3 (𝜑 → (1st𝐾)(𝐷 Func 𝐸)(2nd𝐾))
159 df-br 5103 . . 3 ((1st𝐾)(𝐷 Func 𝐸)(2nd𝐾) ↔ ⟨(1st𝐾), (2nd𝐾)⟩ ∈ (𝐷 Func 𝐸))
160158, 159sylib 218 . 2 (𝜑 → ⟨(1st𝐾), (2nd𝐾)⟩ ∈ (𝐷 Func 𝐸))
16120, 160eqeltrd 2828 1 (𝜑𝐾 ∈ (𝐷 Func 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3444  cop 4591   class class class wbr 5102  cmpt 5183   × cxp 5629  Rel wrel 5636   Fn wfn 6494  wf 6495  cfv 6499  (class class class)co 7369  cmpo 7371  1st c1st 7945  2nd c2nd 7946  Basecbs 17155  Hom chom 17207  compcco 17208  Catccat 17601  Idccid 17602   Func cfunc 17792   ×c cxpc 18105   curryF ccurf 18147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-struct 17093  df-slot 17128  df-ndx 17140  df-base 17156  df-hom 17220  df-cco 17221  df-cat 17605  df-cid 17606  df-func 17796  df-xpc 18109  df-curf 18151
This theorem is referenced by:  curf2cl  18168  curfcl  18169  tposcurf1cl  49258  postcofcl  49327
  Copyright terms: Public domain W3C validator