MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  curf1cl Structured version   Visualization version   GIF version

Theorem curf1cl 18189
Description: The partially evaluated curry functor is a functor. (Contributed by Mario Carneiro, 13-Jan-2017.)
Hypotheses
Ref Expression
curfval.g 𝐺 = (⟨𝐶, 𝐷⟩ curryF 𝐹)
curfval.a 𝐴 = (Base‘𝐶)
curfval.c (𝜑𝐶 ∈ Cat)
curfval.d (𝜑𝐷 ∈ Cat)
curfval.f (𝜑𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
curfval.b 𝐵 = (Base‘𝐷)
curf1.x (𝜑𝑋𝐴)
curf1.k 𝐾 = ((1st𝐺)‘𝑋)
Assertion
Ref Expression
curf1cl (𝜑𝐾 ∈ (𝐷 Func 𝐸))

Proof of Theorem curf1cl
Dummy variables 𝑔 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 curfval.g . . . 4 𝐺 = (⟨𝐶, 𝐷⟩ curryF 𝐹)
2 curfval.a . . . 4 𝐴 = (Base‘𝐶)
3 curfval.c . . . 4 (𝜑𝐶 ∈ Cat)
4 curfval.d . . . 4 (𝜑𝐷 ∈ Cat)
5 curfval.f . . . 4 (𝜑𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
6 curfval.b . . . 4 𝐵 = (Base‘𝐷)
7 curf1.x . . . 4 (𝜑𝑋𝐴)
8 curf1.k . . . 4 𝐾 = ((1st𝐺)‘𝑋)
9 eqid 2729 . . . 4 (Hom ‘𝐷) = (Hom ‘𝐷)
10 eqid 2729 . . . 4 (Id‘𝐶) = (Id‘𝐶)
111, 2, 3, 4, 5, 6, 7, 8, 9, 10curf1 18186 . . 3 (𝜑𝐾 = ⟨(𝑦𝐵 ↦ (𝑋(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)))⟩)
126fvexi 6872 . . . . . . 7 𝐵 ∈ V
1312mptex 7197 . . . . . 6 (𝑦𝐵 ↦ (𝑋(1st𝐹)𝑦)) ∈ V
1412, 12mpoex 8058 . . . . . 6 (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔))) ∈ V
1513, 14op1std 7978 . . . . 5 (𝐾 = ⟨(𝑦𝐵 ↦ (𝑋(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)))⟩ → (1st𝐾) = (𝑦𝐵 ↦ (𝑋(1st𝐹)𝑦)))
1611, 15syl 17 . . . 4 (𝜑 → (1st𝐾) = (𝑦𝐵 ↦ (𝑋(1st𝐹)𝑦)))
1713, 14op2ndd 7979 . . . . 5 (𝐾 = ⟨(𝑦𝐵 ↦ (𝑋(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)))⟩ → (2nd𝐾) = (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔))))
1811, 17syl 17 . . . 4 (𝜑 → (2nd𝐾) = (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔))))
1916, 18opeq12d 4845 . . 3 (𝜑 → ⟨(1st𝐾), (2nd𝐾)⟩ = ⟨(𝑦𝐵 ↦ (𝑋(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)))⟩)
2011, 19eqtr4d 2767 . 2 (𝜑𝐾 = ⟨(1st𝐾), (2nd𝐾)⟩)
21 eqid 2729 . . . 4 (Base‘𝐸) = (Base‘𝐸)
22 eqid 2729 . . . 4 (Hom ‘𝐸) = (Hom ‘𝐸)
23 eqid 2729 . . . 4 (Id‘𝐷) = (Id‘𝐷)
24 eqid 2729 . . . 4 (Id‘𝐸) = (Id‘𝐸)
25 eqid 2729 . . . 4 (comp‘𝐷) = (comp‘𝐷)
26 eqid 2729 . . . 4 (comp‘𝐸) = (comp‘𝐸)
27 funcrcl 17825 . . . . . 6 (𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸) → ((𝐶 ×c 𝐷) ∈ Cat ∧ 𝐸 ∈ Cat))
285, 27syl 17 . . . . 5 (𝜑 → ((𝐶 ×c 𝐷) ∈ Cat ∧ 𝐸 ∈ Cat))
2928simprd 495 . . . 4 (𝜑𝐸 ∈ Cat)
30 eqid 2729 . . . . . . . . 9 (𝐶 ×c 𝐷) = (𝐶 ×c 𝐷)
3130, 2, 6xpcbas 18139 . . . . . . . 8 (𝐴 × 𝐵) = (Base‘(𝐶 ×c 𝐷))
32 relfunc 17824 . . . . . . . . 9 Rel ((𝐶 ×c 𝐷) Func 𝐸)
33 1st2ndbr 8021 . . . . . . . . 9 ((Rel ((𝐶 ×c 𝐷) Func 𝐸) ∧ 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) → (1st𝐹)((𝐶 ×c 𝐷) Func 𝐸)(2nd𝐹))
3432, 5, 33sylancr 587 . . . . . . . 8 (𝜑 → (1st𝐹)((𝐶 ×c 𝐷) Func 𝐸)(2nd𝐹))
3531, 21, 34funcf1 17828 . . . . . . 7 (𝜑 → (1st𝐹):(𝐴 × 𝐵)⟶(Base‘𝐸))
3635adantr 480 . . . . . 6 ((𝜑𝑦𝐵) → (1st𝐹):(𝐴 × 𝐵)⟶(Base‘𝐸))
377adantr 480 . . . . . 6 ((𝜑𝑦𝐵) → 𝑋𝐴)
38 simpr 484 . . . . . 6 ((𝜑𝑦𝐵) → 𝑦𝐵)
3936, 37, 38fovcdmd 7561 . . . . 5 ((𝜑𝑦𝐵) → (𝑋(1st𝐹)𝑦) ∈ (Base‘𝐸))
4016, 39fmpt3d 7088 . . . 4 (𝜑 → (1st𝐾):𝐵⟶(Base‘𝐸))
41 eqid 2729 . . . . . 6 (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔))) = (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)))
42 ovex 7420 . . . . . . 7 (𝑦(Hom ‘𝐷)𝑧) ∈ V
4342mptex 7197 . . . . . 6 (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)) ∈ V
4441, 43fnmpoi 8049 . . . . 5 (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔))) Fn (𝐵 × 𝐵)
4518fneq1d 6611 . . . . 5 (𝜑 → ((2nd𝐾) Fn (𝐵 × 𝐵) ↔ (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔))) Fn (𝐵 × 𝐵)))
4644, 45mpbiri 258 . . . 4 (𝜑 → (2nd𝐾) Fn (𝐵 × 𝐵))
4718oveqd 7404 . . . . . 6 (𝜑 → (𝑦(2nd𝐾)𝑧) = (𝑦(𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)))𝑧))
4841ovmpt4g 7536 . . . . . . 7 ((𝑦𝐵𝑧𝐵 ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)) ∈ V) → (𝑦(𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)))𝑧) = (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)))
4943, 48mp3an3 1452 . . . . . 6 ((𝑦𝐵𝑧𝐵) → (𝑦(𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)))𝑧) = (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)))
5047, 49sylan9eq 2784 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑦(2nd𝐾)𝑧) = (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)))
51 eqid 2729 . . . . . . . 8 (Hom ‘(𝐶 ×c 𝐷)) = (Hom ‘(𝐶 ×c 𝐷))
5234ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (1st𝐹)((𝐶 ×c 𝐷) Func 𝐸)(2nd𝐹))
537ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝑋𝐴)
54 simplrl 776 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝑦𝐵)
5553, 54opelxpd 5677 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ⟨𝑋, 𝑦⟩ ∈ (𝐴 × 𝐵))
56 simplrr 777 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝑧𝐵)
5753, 56opelxpd 5677 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ⟨𝑋, 𝑧⟩ ∈ (𝐴 × 𝐵))
5831, 51, 22, 52, 55, 57funcf2 17830 . . . . . . 7 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩):(⟨𝑋, 𝑦⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑋, 𝑧⟩)⟶(((1st𝐹)‘⟨𝑋, 𝑦⟩)(Hom ‘𝐸)((1st𝐹)‘⟨𝑋, 𝑧⟩)))
59 eqid 2729 . . . . . . . . 9 (Hom ‘𝐶) = (Hom ‘𝐶)
6030, 31, 59, 9, 51, 55, 57xpchom 18141 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (⟨𝑋, 𝑦⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑋, 𝑧⟩) = (((1st ‘⟨𝑋, 𝑦⟩)(Hom ‘𝐶)(1st ‘⟨𝑋, 𝑧⟩)) × ((2nd ‘⟨𝑋, 𝑦⟩)(Hom ‘𝐷)(2nd ‘⟨𝑋, 𝑧⟩))))
613ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝐶 ∈ Cat)
624ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝐷 ∈ Cat)
635ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
641, 2, 61, 62, 63, 6, 53, 8, 54curf11 18187 . . . . . . . . . 10 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((1st𝐾)‘𝑦) = (𝑋(1st𝐹)𝑦))
65 df-ov 7390 . . . . . . . . . 10 (𝑋(1st𝐹)𝑦) = ((1st𝐹)‘⟨𝑋, 𝑦⟩)
6664, 65eqtr2di 2781 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((1st𝐹)‘⟨𝑋, 𝑦⟩) = ((1st𝐾)‘𝑦))
671, 2, 61, 62, 63, 6, 53, 8, 56curf11 18187 . . . . . . . . . 10 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((1st𝐾)‘𝑧) = (𝑋(1st𝐹)𝑧))
68 df-ov 7390 . . . . . . . . . 10 (𝑋(1st𝐹)𝑧) = ((1st𝐹)‘⟨𝑋, 𝑧⟩)
6967, 68eqtr2di 2781 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((1st𝐹)‘⟨𝑋, 𝑧⟩) = ((1st𝐾)‘𝑧))
7066, 69oveq12d 7405 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (((1st𝐹)‘⟨𝑋, 𝑦⟩)(Hom ‘𝐸)((1st𝐹)‘⟨𝑋, 𝑧⟩)) = (((1st𝐾)‘𝑦)(Hom ‘𝐸)((1st𝐾)‘𝑧)))
7160, 70feq23d 6683 . . . . . . 7 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩):(⟨𝑋, 𝑦⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑋, 𝑧⟩)⟶(((1st𝐹)‘⟨𝑋, 𝑦⟩)(Hom ‘𝐸)((1st𝐹)‘⟨𝑋, 𝑧⟩)) ↔ (⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩):(((1st ‘⟨𝑋, 𝑦⟩)(Hom ‘𝐶)(1st ‘⟨𝑋, 𝑧⟩)) × ((2nd ‘⟨𝑋, 𝑦⟩)(Hom ‘𝐷)(2nd ‘⟨𝑋, 𝑧⟩)))⟶(((1st𝐾)‘𝑦)(Hom ‘𝐸)((1st𝐾)‘𝑧))))
7258, 71mpbid 232 . . . . . 6 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩):(((1st ‘⟨𝑋, 𝑦⟩)(Hom ‘𝐶)(1st ‘⟨𝑋, 𝑧⟩)) × ((2nd ‘⟨𝑋, 𝑦⟩)(Hom ‘𝐷)(2nd ‘⟨𝑋, 𝑧⟩)))⟶(((1st𝐾)‘𝑦)(Hom ‘𝐸)((1st𝐾)‘𝑧)))
732, 59, 10, 61, 53catidcl 17643 . . . . . . 7 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((Id‘𝐶)‘𝑋) ∈ (𝑋(Hom ‘𝐶)𝑋))
74 op1stg 7980 . . . . . . . . 9 ((𝑋𝐴𝑦𝐵) → (1st ‘⟨𝑋, 𝑦⟩) = 𝑋)
7553, 54, 74syl2anc 584 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (1st ‘⟨𝑋, 𝑦⟩) = 𝑋)
76 op1stg 7980 . . . . . . . . 9 ((𝑋𝐴𝑧𝐵) → (1st ‘⟨𝑋, 𝑧⟩) = 𝑋)
7753, 56, 76syl2anc 584 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (1st ‘⟨𝑋, 𝑧⟩) = 𝑋)
7875, 77oveq12d 7405 . . . . . . 7 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((1st ‘⟨𝑋, 𝑦⟩)(Hom ‘𝐶)(1st ‘⟨𝑋, 𝑧⟩)) = (𝑋(Hom ‘𝐶)𝑋))
7973, 78eleqtrrd 2831 . . . . . 6 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((Id‘𝐶)‘𝑋) ∈ ((1st ‘⟨𝑋, 𝑦⟩)(Hom ‘𝐶)(1st ‘⟨𝑋, 𝑧⟩)))
80 simpr 484 . . . . . . 7 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))
81 op2ndg 7981 . . . . . . . . 9 ((𝑋𝐴𝑦𝐵) → (2nd ‘⟨𝑋, 𝑦⟩) = 𝑦)
8253, 54, 81syl2anc 584 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (2nd ‘⟨𝑋, 𝑦⟩) = 𝑦)
83 op2ndg 7981 . . . . . . . . 9 ((𝑋𝐴𝑧𝐵) → (2nd ‘⟨𝑋, 𝑧⟩) = 𝑧)
8453, 56, 83syl2anc 584 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (2nd ‘⟨𝑋, 𝑧⟩) = 𝑧)
8582, 84oveq12d 7405 . . . . . . 7 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((2nd ‘⟨𝑋, 𝑦⟩)(Hom ‘𝐷)(2nd ‘⟨𝑋, 𝑧⟩)) = (𝑦(Hom ‘𝐷)𝑧))
8680, 85eleqtrrd 2831 . . . . . 6 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝑔 ∈ ((2nd ‘⟨𝑋, 𝑦⟩)(Hom ‘𝐷)(2nd ‘⟨𝑋, 𝑧⟩)))
8772, 79, 86fovcdmd 7561 . . . . 5 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔) ∈ (((1st𝐾)‘𝑦)(Hom ‘𝐸)((1st𝐾)‘𝑧)))
8850, 87fmpt3d 7088 . . . 4 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑦(2nd𝐾)𝑧):(𝑦(Hom ‘𝐷)𝑧)⟶(((1st𝐾)‘𝑦)(Hom ‘𝐸)((1st𝐾)‘𝑧)))
893adantr 480 . . . . . . . . 9 ((𝜑𝑦𝐵) → 𝐶 ∈ Cat)
904adantr 480 . . . . . . . . 9 ((𝜑𝑦𝐵) → 𝐷 ∈ Cat)
91 eqid 2729 . . . . . . . . 9 (Id‘(𝐶 ×c 𝐷)) = (Id‘(𝐶 ×c 𝐷))
9230, 89, 90, 2, 6, 10, 23, 91, 37, 38xpcid 18150 . . . . . . . 8 ((𝜑𝑦𝐵) → ((Id‘(𝐶 ×c 𝐷))‘⟨𝑋, 𝑦⟩) = ⟨((Id‘𝐶)‘𝑋), ((Id‘𝐷)‘𝑦)⟩)
9392fveq2d 6862 . . . . . . 7 ((𝜑𝑦𝐵) → ((⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑦⟩)‘((Id‘(𝐶 ×c 𝐷))‘⟨𝑋, 𝑦⟩)) = ((⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑦⟩)‘⟨((Id‘𝐶)‘𝑋), ((Id‘𝐷)‘𝑦)⟩))
94 df-ov 7390 . . . . . . 7 (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑦⟩)((Id‘𝐷)‘𝑦)) = ((⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑦⟩)‘⟨((Id‘𝐶)‘𝑋), ((Id‘𝐷)‘𝑦)⟩)
9593, 94eqtr4di 2782 . . . . . 6 ((𝜑𝑦𝐵) → ((⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑦⟩)‘((Id‘(𝐶 ×c 𝐷))‘⟨𝑋, 𝑦⟩)) = (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑦⟩)((Id‘𝐷)‘𝑦)))
9634adantr 480 . . . . . . 7 ((𝜑𝑦𝐵) → (1st𝐹)((𝐶 ×c 𝐷) Func 𝐸)(2nd𝐹))
97 opelxpi 5675 . . . . . . . 8 ((𝑋𝐴𝑦𝐵) → ⟨𝑋, 𝑦⟩ ∈ (𝐴 × 𝐵))
987, 97sylan 580 . . . . . . 7 ((𝜑𝑦𝐵) → ⟨𝑋, 𝑦⟩ ∈ (𝐴 × 𝐵))
9931, 91, 24, 96, 98funcid 17832 . . . . . 6 ((𝜑𝑦𝐵) → ((⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑦⟩)‘((Id‘(𝐶 ×c 𝐷))‘⟨𝑋, 𝑦⟩)) = ((Id‘𝐸)‘((1st𝐹)‘⟨𝑋, 𝑦⟩)))
10095, 99eqtr3d 2766 . . . . 5 ((𝜑𝑦𝐵) → (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑦⟩)((Id‘𝐷)‘𝑦)) = ((Id‘𝐸)‘((1st𝐹)‘⟨𝑋, 𝑦⟩)))
1015adantr 480 . . . . . 6 ((𝜑𝑦𝐵) → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
1026, 9, 23, 90, 38catidcl 17643 . . . . . 6 ((𝜑𝑦𝐵) → ((Id‘𝐷)‘𝑦) ∈ (𝑦(Hom ‘𝐷)𝑦))
1031, 2, 89, 90, 101, 6, 37, 8, 38, 9, 10, 38, 102curf12 18188 . . . . 5 ((𝜑𝑦𝐵) → ((𝑦(2nd𝐾)𝑦)‘((Id‘𝐷)‘𝑦)) = (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑦⟩)((Id‘𝐷)‘𝑦)))
1041, 2, 89, 90, 101, 6, 37, 8, 38curf11 18187 . . . . . . 7 ((𝜑𝑦𝐵) → ((1st𝐾)‘𝑦) = (𝑋(1st𝐹)𝑦))
105104, 65eqtrdi 2780 . . . . . 6 ((𝜑𝑦𝐵) → ((1st𝐾)‘𝑦) = ((1st𝐹)‘⟨𝑋, 𝑦⟩))
106105fveq2d 6862 . . . . 5 ((𝜑𝑦𝐵) → ((Id‘𝐸)‘((1st𝐾)‘𝑦)) = ((Id‘𝐸)‘((1st𝐹)‘⟨𝑋, 𝑦⟩)))
107100, 103, 1063eqtr4d 2774 . . . 4 ((𝜑𝑦𝐵) → ((𝑦(2nd𝐾)𝑦)‘((Id‘𝐷)‘𝑦)) = ((Id‘𝐸)‘((1st𝐾)‘𝑦)))
10873ad2ant1 1133 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → 𝑋𝐴)
109 simp21 1207 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → 𝑦𝐵)
110 simp22 1208 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → 𝑧𝐵)
111 eqid 2729 . . . . . . . . . 10 (comp‘𝐶) = (comp‘𝐶)
112 eqid 2729 . . . . . . . . . 10 (comp‘(𝐶 ×c 𝐷)) = (comp‘(𝐶 ×c 𝐷))
113 simp23 1209 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → 𝑤𝐵)
11433ad2ant1 1133 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → 𝐶 ∈ Cat)
1152, 59, 10, 114, 108catidcl 17643 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((Id‘𝐶)‘𝑋) ∈ (𝑋(Hom ‘𝐶)𝑋))
116 simp3l 1202 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))
117 simp3r 1203 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ∈ (𝑧(Hom ‘𝐷)𝑤))
11830, 2, 6, 59, 9, 108, 109, 108, 110, 111, 25, 112, 108, 113, 115, 116, 115, 117xpcco2 18148 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → (⟨((Id‘𝐶)‘𝑋), ⟩(⟨⟨𝑋, 𝑦⟩, ⟨𝑋, 𝑧⟩⟩(comp‘(𝐶 ×c 𝐷))⟨𝑋, 𝑤⟩)⟨((Id‘𝐶)‘𝑋), 𝑔⟩) = ⟨(((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑋)((Id‘𝐶)‘𝑋)), ((⟨𝑦, 𝑧⟩(comp‘𝐷)𝑤)𝑔)⟩)
1192, 59, 10, 114, 108, 111, 108, 115catlid 17644 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑋)((Id‘𝐶)‘𝑋)) = ((Id‘𝐶)‘𝑋))
120119opeq1d 4843 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ⟨(((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑋)((Id‘𝐶)‘𝑋)), ((⟨𝑦, 𝑧⟩(comp‘𝐷)𝑤)𝑔)⟩ = ⟨((Id‘𝐶)‘𝑋), ((⟨𝑦, 𝑧⟩(comp‘𝐷)𝑤)𝑔)⟩)
121118, 120eqtrd 2764 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → (⟨((Id‘𝐶)‘𝑋), ⟩(⟨⟨𝑋, 𝑦⟩, ⟨𝑋, 𝑧⟩⟩(comp‘(𝐶 ×c 𝐷))⟨𝑋, 𝑤⟩)⟨((Id‘𝐶)‘𝑋), 𝑔⟩) = ⟨((Id‘𝐶)‘𝑋), ((⟨𝑦, 𝑧⟩(comp‘𝐷)𝑤)𝑔)⟩)
122121fveq2d 6862 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑤⟩)‘(⟨((Id‘𝐶)‘𝑋), ⟩(⟨⟨𝑋, 𝑦⟩, ⟨𝑋, 𝑧⟩⟩(comp‘(𝐶 ×c 𝐷))⟨𝑋, 𝑤⟩)⟨((Id‘𝐶)‘𝑋), 𝑔⟩)) = ((⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑤⟩)‘⟨((Id‘𝐶)‘𝑋), ((⟨𝑦, 𝑧⟩(comp‘𝐷)𝑤)𝑔)⟩))
123 df-ov 7390 . . . . . . 7 (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑤⟩)((⟨𝑦, 𝑧⟩(comp‘𝐷)𝑤)𝑔)) = ((⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑤⟩)‘⟨((Id‘𝐶)‘𝑋), ((⟨𝑦, 𝑧⟩(comp‘𝐷)𝑤)𝑔)⟩)
124122, 123eqtr4di 2782 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑤⟩)‘(⟨((Id‘𝐶)‘𝑋), ⟩(⟨⟨𝑋, 𝑦⟩, ⟨𝑋, 𝑧⟩⟩(comp‘(𝐶 ×c 𝐷))⟨𝑋, 𝑤⟩)⟨((Id‘𝐶)‘𝑋), 𝑔⟩)) = (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑤⟩)((⟨𝑦, 𝑧⟩(comp‘𝐷)𝑤)𝑔)))
125343ad2ant1 1133 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → (1st𝐹)((𝐶 ×c 𝐷) Func 𝐸)(2nd𝐹))
126108, 109opelxpd 5677 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ⟨𝑋, 𝑦⟩ ∈ (𝐴 × 𝐵))
127108, 110opelxpd 5677 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ⟨𝑋, 𝑧⟩ ∈ (𝐴 × 𝐵))
128108, 113opelxpd 5677 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ⟨𝑋, 𝑤⟩ ∈ (𝐴 × 𝐵))
129115, 116opelxpd 5677 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ⟨((Id‘𝐶)‘𝑋), 𝑔⟩ ∈ ((𝑋(Hom ‘𝐶)𝑋) × (𝑦(Hom ‘𝐷)𝑧)))
13030, 2, 6, 59, 9, 108, 109, 108, 110, 51xpchom2 18147 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → (⟨𝑋, 𝑦⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑋, 𝑧⟩) = ((𝑋(Hom ‘𝐶)𝑋) × (𝑦(Hom ‘𝐷)𝑧)))
131129, 130eleqtrrd 2831 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ⟨((Id‘𝐶)‘𝑋), 𝑔⟩ ∈ (⟨𝑋, 𝑦⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑋, 𝑧⟩))
132115, 117opelxpd 5677 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ⟨((Id‘𝐶)‘𝑋), ⟩ ∈ ((𝑋(Hom ‘𝐶)𝑋) × (𝑧(Hom ‘𝐷)𝑤)))
13330, 2, 6, 59, 9, 108, 110, 108, 113, 51xpchom2 18147 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → (⟨𝑋, 𝑧⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑋, 𝑤⟩) = ((𝑋(Hom ‘𝐶)𝑋) × (𝑧(Hom ‘𝐷)𝑤)))
134132, 133eleqtrrd 2831 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ⟨((Id‘𝐶)‘𝑋), ⟩ ∈ (⟨𝑋, 𝑧⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑋, 𝑤⟩))
13531, 51, 112, 26, 125, 126, 127, 128, 131, 134funcco 17833 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑤⟩)‘(⟨((Id‘𝐶)‘𝑋), ⟩(⟨⟨𝑋, 𝑦⟩, ⟨𝑋, 𝑧⟩⟩(comp‘(𝐶 ×c 𝐷))⟨𝑋, 𝑤⟩)⟨((Id‘𝐶)‘𝑋), 𝑔⟩)) = (((⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑋, 𝑤⟩)‘⟨((Id‘𝐶)‘𝑋), ⟩)(⟨((1st𝐹)‘⟨𝑋, 𝑦⟩), ((1st𝐹)‘⟨𝑋, 𝑧⟩)⟩(comp‘𝐸)((1st𝐹)‘⟨𝑋, 𝑤⟩))((⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)‘⟨((Id‘𝐶)‘𝑋), 𝑔⟩)))
136124, 135eqtr3d 2766 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑤⟩)((⟨𝑦, 𝑧⟩(comp‘𝐷)𝑤)𝑔)) = (((⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑋, 𝑤⟩)‘⟨((Id‘𝐶)‘𝑋), ⟩)(⟨((1st𝐹)‘⟨𝑋, 𝑦⟩), ((1st𝐹)‘⟨𝑋, 𝑧⟩)⟩(comp‘𝐸)((1st𝐹)‘⟨𝑋, 𝑤⟩))((⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)‘⟨((Id‘𝐶)‘𝑋), 𝑔⟩)))
13743ad2ant1 1133 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → 𝐷 ∈ Cat)
13853ad2ant1 1133 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
1396, 9, 25, 137, 109, 110, 113, 116, 117catcocl 17646 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((⟨𝑦, 𝑧⟩(comp‘𝐷)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐷)𝑤))
1401, 2, 114, 137, 138, 6, 108, 8, 109, 9, 10, 113, 139curf12 18188 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((𝑦(2nd𝐾)𝑤)‘((⟨𝑦, 𝑧⟩(comp‘𝐷)𝑤)𝑔)) = (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑤⟩)((⟨𝑦, 𝑧⟩(comp‘𝐷)𝑤)𝑔)))
1411, 2, 114, 137, 138, 6, 108, 8, 109curf11 18187 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((1st𝐾)‘𝑦) = (𝑋(1st𝐹)𝑦))
142141, 65eqtrdi 2780 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((1st𝐾)‘𝑦) = ((1st𝐹)‘⟨𝑋, 𝑦⟩))
1431, 2, 114, 137, 138, 6, 108, 8, 110curf11 18187 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((1st𝐾)‘𝑧) = (𝑋(1st𝐹)𝑧))
144143, 68eqtrdi 2780 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((1st𝐾)‘𝑧) = ((1st𝐹)‘⟨𝑋, 𝑧⟩))
145142, 144opeq12d 4845 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ⟨((1st𝐾)‘𝑦), ((1st𝐾)‘𝑧)⟩ = ⟨((1st𝐹)‘⟨𝑋, 𝑦⟩), ((1st𝐹)‘⟨𝑋, 𝑧⟩)⟩)
1461, 2, 114, 137, 138, 6, 108, 8, 113curf11 18187 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((1st𝐾)‘𝑤) = (𝑋(1st𝐹)𝑤))
147 df-ov 7390 . . . . . . . 8 (𝑋(1st𝐹)𝑤) = ((1st𝐹)‘⟨𝑋, 𝑤⟩)
148146, 147eqtrdi 2780 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((1st𝐾)‘𝑤) = ((1st𝐹)‘⟨𝑋, 𝑤⟩))
149145, 148oveq12d 7405 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → (⟨((1st𝐾)‘𝑦), ((1st𝐾)‘𝑧)⟩(comp‘𝐸)((1st𝐾)‘𝑤)) = (⟨((1st𝐹)‘⟨𝑋, 𝑦⟩), ((1st𝐹)‘⟨𝑋, 𝑧⟩)⟩(comp‘𝐸)((1st𝐹)‘⟨𝑋, 𝑤⟩)))
1501, 2, 114, 137, 138, 6, 108, 8, 110, 9, 10, 113, 117curf12 18188 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((𝑧(2nd𝐾)𝑤)‘) = (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑋, 𝑤⟩)))
151 df-ov 7390 . . . . . . 7 (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑋, 𝑤⟩)) = ((⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑋, 𝑤⟩)‘⟨((Id‘𝐶)‘𝑋), ⟩)
152150, 151eqtrdi 2780 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((𝑧(2nd𝐾)𝑤)‘) = ((⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑋, 𝑤⟩)‘⟨((Id‘𝐶)‘𝑋), ⟩))
1531, 2, 114, 137, 138, 6, 108, 8, 109, 9, 10, 110, 116curf12 18188 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((𝑦(2nd𝐾)𝑧)‘𝑔) = (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔))
154 df-ov 7390 . . . . . . 7 (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔) = ((⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)‘⟨((Id‘𝐶)‘𝑋), 𝑔⟩)
155153, 154eqtrdi 2780 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((𝑦(2nd𝐾)𝑧)‘𝑔) = ((⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)‘⟨((Id‘𝐶)‘𝑋), 𝑔⟩))
156149, 152, 155oveq123d 7408 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → (((𝑧(2nd𝐾)𝑤)‘)(⟨((1st𝐾)‘𝑦), ((1st𝐾)‘𝑧)⟩(comp‘𝐸)((1st𝐾)‘𝑤))((𝑦(2nd𝐾)𝑧)‘𝑔)) = (((⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑋, 𝑤⟩)‘⟨((Id‘𝐶)‘𝑋), ⟩)(⟨((1st𝐹)‘⟨𝑋, 𝑦⟩), ((1st𝐹)‘⟨𝑋, 𝑧⟩)⟩(comp‘𝐸)((1st𝐹)‘⟨𝑋, 𝑤⟩))((⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)‘⟨((Id‘𝐶)‘𝑋), 𝑔⟩)))
157136, 140, 1563eqtr4d 2774 . . . 4 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((𝑦(2nd𝐾)𝑤)‘((⟨𝑦, 𝑧⟩(comp‘𝐷)𝑤)𝑔)) = (((𝑧(2nd𝐾)𝑤)‘)(⟨((1st𝐾)‘𝑦), ((1st𝐾)‘𝑧)⟩(comp‘𝐸)((1st𝐾)‘𝑤))((𝑦(2nd𝐾)𝑧)‘𝑔)))
1586, 21, 9, 22, 23, 24, 25, 26, 4, 29, 40, 46, 88, 107, 157isfuncd 17827 . . 3 (𝜑 → (1st𝐾)(𝐷 Func 𝐸)(2nd𝐾))
159 df-br 5108 . . 3 ((1st𝐾)(𝐷 Func 𝐸)(2nd𝐾) ↔ ⟨(1st𝐾), (2nd𝐾)⟩ ∈ (𝐷 Func 𝐸))
160158, 159sylib 218 . 2 (𝜑 → ⟨(1st𝐾), (2nd𝐾)⟩ ∈ (𝐷 Func 𝐸))
16120, 160eqeltrd 2828 1 (𝜑𝐾 ∈ (𝐷 Func 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3447  cop 4595   class class class wbr 5107  cmpt 5188   × cxp 5636  Rel wrel 5643   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  cmpo 7389  1st c1st 7966  2nd c2nd 7967  Basecbs 17179  Hom chom 17231  compcco 17232  Catccat 17625  Idccid 17626   Func cfunc 17816   ×c cxpc 18129   curryF ccurf 18171
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-struct 17117  df-slot 17152  df-ndx 17164  df-base 17180  df-hom 17244  df-cco 17245  df-cat 17629  df-cid 17630  df-func 17820  df-xpc 18133  df-curf 18175
This theorem is referenced by:  curf2cl  18192  curfcl  18193  tposcurf1cl  49285  postcofcl  49354
  Copyright terms: Public domain W3C validator