MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  curf1cl Structured version   Visualization version   GIF version

Theorem curf1cl 17862
Description: The partially evaluated curry functor is a functor. (Contributed by Mario Carneiro, 13-Jan-2017.)
Hypotheses
Ref Expression
curfval.g 𝐺 = (⟨𝐶, 𝐷⟩ curryF 𝐹)
curfval.a 𝐴 = (Base‘𝐶)
curfval.c (𝜑𝐶 ∈ Cat)
curfval.d (𝜑𝐷 ∈ Cat)
curfval.f (𝜑𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
curfval.b 𝐵 = (Base‘𝐷)
curf1.x (𝜑𝑋𝐴)
curf1.k 𝐾 = ((1st𝐺)‘𝑋)
Assertion
Ref Expression
curf1cl (𝜑𝐾 ∈ (𝐷 Func 𝐸))

Proof of Theorem curf1cl
Dummy variables 𝑔 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 curfval.g . . . 4 𝐺 = (⟨𝐶, 𝐷⟩ curryF 𝐹)
2 curfval.a . . . 4 𝐴 = (Base‘𝐶)
3 curfval.c . . . 4 (𝜑𝐶 ∈ Cat)
4 curfval.d . . . 4 (𝜑𝐷 ∈ Cat)
5 curfval.f . . . 4 (𝜑𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
6 curfval.b . . . 4 𝐵 = (Base‘𝐷)
7 curf1.x . . . 4 (𝜑𝑋𝐴)
8 curf1.k . . . 4 𝐾 = ((1st𝐺)‘𝑋)
9 eqid 2738 . . . 4 (Hom ‘𝐷) = (Hom ‘𝐷)
10 eqid 2738 . . . 4 (Id‘𝐶) = (Id‘𝐶)
111, 2, 3, 4, 5, 6, 7, 8, 9, 10curf1 17859 . . 3 (𝜑𝐾 = ⟨(𝑦𝐵 ↦ (𝑋(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)))⟩)
126fvexi 6770 . . . . . . 7 𝐵 ∈ V
1312mptex 7081 . . . . . 6 (𝑦𝐵 ↦ (𝑋(1st𝐹)𝑦)) ∈ V
1412, 12mpoex 7893 . . . . . 6 (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔))) ∈ V
1513, 14op1std 7814 . . . . 5 (𝐾 = ⟨(𝑦𝐵 ↦ (𝑋(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)))⟩ → (1st𝐾) = (𝑦𝐵 ↦ (𝑋(1st𝐹)𝑦)))
1611, 15syl 17 . . . 4 (𝜑 → (1st𝐾) = (𝑦𝐵 ↦ (𝑋(1st𝐹)𝑦)))
1713, 14op2ndd 7815 . . . . 5 (𝐾 = ⟨(𝑦𝐵 ↦ (𝑋(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)))⟩ → (2nd𝐾) = (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔))))
1811, 17syl 17 . . . 4 (𝜑 → (2nd𝐾) = (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔))))
1916, 18opeq12d 4809 . . 3 (𝜑 → ⟨(1st𝐾), (2nd𝐾)⟩ = ⟨(𝑦𝐵 ↦ (𝑋(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)))⟩)
2011, 19eqtr4d 2781 . 2 (𝜑𝐾 = ⟨(1st𝐾), (2nd𝐾)⟩)
21 eqid 2738 . . . 4 (Base‘𝐸) = (Base‘𝐸)
22 eqid 2738 . . . 4 (Hom ‘𝐸) = (Hom ‘𝐸)
23 eqid 2738 . . . 4 (Id‘𝐷) = (Id‘𝐷)
24 eqid 2738 . . . 4 (Id‘𝐸) = (Id‘𝐸)
25 eqid 2738 . . . 4 (comp‘𝐷) = (comp‘𝐷)
26 eqid 2738 . . . 4 (comp‘𝐸) = (comp‘𝐸)
27 funcrcl 17494 . . . . . 6 (𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸) → ((𝐶 ×c 𝐷) ∈ Cat ∧ 𝐸 ∈ Cat))
285, 27syl 17 . . . . 5 (𝜑 → ((𝐶 ×c 𝐷) ∈ Cat ∧ 𝐸 ∈ Cat))
2928simprd 495 . . . 4 (𝜑𝐸 ∈ Cat)
30 eqid 2738 . . . . . . . . 9 (𝐶 ×c 𝐷) = (𝐶 ×c 𝐷)
3130, 2, 6xpcbas 17811 . . . . . . . 8 (𝐴 × 𝐵) = (Base‘(𝐶 ×c 𝐷))
32 relfunc 17493 . . . . . . . . 9 Rel ((𝐶 ×c 𝐷) Func 𝐸)
33 1st2ndbr 7856 . . . . . . . . 9 ((Rel ((𝐶 ×c 𝐷) Func 𝐸) ∧ 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) → (1st𝐹)((𝐶 ×c 𝐷) Func 𝐸)(2nd𝐹))
3432, 5, 33sylancr 586 . . . . . . . 8 (𝜑 → (1st𝐹)((𝐶 ×c 𝐷) Func 𝐸)(2nd𝐹))
3531, 21, 34funcf1 17497 . . . . . . 7 (𝜑 → (1st𝐹):(𝐴 × 𝐵)⟶(Base‘𝐸))
3635adantr 480 . . . . . 6 ((𝜑𝑦𝐵) → (1st𝐹):(𝐴 × 𝐵)⟶(Base‘𝐸))
377adantr 480 . . . . . 6 ((𝜑𝑦𝐵) → 𝑋𝐴)
38 simpr 484 . . . . . 6 ((𝜑𝑦𝐵) → 𝑦𝐵)
3936, 37, 38fovrnd 7422 . . . . 5 ((𝜑𝑦𝐵) → (𝑋(1st𝐹)𝑦) ∈ (Base‘𝐸))
4016, 39fmpt3d 6972 . . . 4 (𝜑 → (1st𝐾):𝐵⟶(Base‘𝐸))
41 eqid 2738 . . . . . 6 (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔))) = (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)))
42 ovex 7288 . . . . . . 7 (𝑦(Hom ‘𝐷)𝑧) ∈ V
4342mptex 7081 . . . . . 6 (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)) ∈ V
4441, 43fnmpoi 7883 . . . . 5 (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔))) Fn (𝐵 × 𝐵)
4518fneq1d 6510 . . . . 5 (𝜑 → ((2nd𝐾) Fn (𝐵 × 𝐵) ↔ (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔))) Fn (𝐵 × 𝐵)))
4644, 45mpbiri 257 . . . 4 (𝜑 → (2nd𝐾) Fn (𝐵 × 𝐵))
4718oveqd 7272 . . . . . 6 (𝜑 → (𝑦(2nd𝐾)𝑧) = (𝑦(𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)))𝑧))
4841ovmpt4g 7398 . . . . . . 7 ((𝑦𝐵𝑧𝐵 ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)) ∈ V) → (𝑦(𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)))𝑧) = (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)))
4943, 48mp3an3 1448 . . . . . 6 ((𝑦𝐵𝑧𝐵) → (𝑦(𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)))𝑧) = (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)))
5047, 49sylan9eq 2799 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑦(2nd𝐾)𝑧) = (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)))
51 eqid 2738 . . . . . . . 8 (Hom ‘(𝐶 ×c 𝐷)) = (Hom ‘(𝐶 ×c 𝐷))
5234ad2antrr 722 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (1st𝐹)((𝐶 ×c 𝐷) Func 𝐸)(2nd𝐹))
537ad2antrr 722 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝑋𝐴)
54 simplrl 773 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝑦𝐵)
5553, 54opelxpd 5618 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ⟨𝑋, 𝑦⟩ ∈ (𝐴 × 𝐵))
56 simplrr 774 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝑧𝐵)
5753, 56opelxpd 5618 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ⟨𝑋, 𝑧⟩ ∈ (𝐴 × 𝐵))
5831, 51, 22, 52, 55, 57funcf2 17499 . . . . . . 7 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩):(⟨𝑋, 𝑦⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑋, 𝑧⟩)⟶(((1st𝐹)‘⟨𝑋, 𝑦⟩)(Hom ‘𝐸)((1st𝐹)‘⟨𝑋, 𝑧⟩)))
59 eqid 2738 . . . . . . . . 9 (Hom ‘𝐶) = (Hom ‘𝐶)
6030, 31, 59, 9, 51, 55, 57xpchom 17813 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (⟨𝑋, 𝑦⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑋, 𝑧⟩) = (((1st ‘⟨𝑋, 𝑦⟩)(Hom ‘𝐶)(1st ‘⟨𝑋, 𝑧⟩)) × ((2nd ‘⟨𝑋, 𝑦⟩)(Hom ‘𝐷)(2nd ‘⟨𝑋, 𝑧⟩))))
613ad2antrr 722 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝐶 ∈ Cat)
624ad2antrr 722 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝐷 ∈ Cat)
635ad2antrr 722 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
641, 2, 61, 62, 63, 6, 53, 8, 54curf11 17860 . . . . . . . . . 10 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((1st𝐾)‘𝑦) = (𝑋(1st𝐹)𝑦))
65 df-ov 7258 . . . . . . . . . 10 (𝑋(1st𝐹)𝑦) = ((1st𝐹)‘⟨𝑋, 𝑦⟩)
6664, 65eqtr2di 2796 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((1st𝐹)‘⟨𝑋, 𝑦⟩) = ((1st𝐾)‘𝑦))
671, 2, 61, 62, 63, 6, 53, 8, 56curf11 17860 . . . . . . . . . 10 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((1st𝐾)‘𝑧) = (𝑋(1st𝐹)𝑧))
68 df-ov 7258 . . . . . . . . . 10 (𝑋(1st𝐹)𝑧) = ((1st𝐹)‘⟨𝑋, 𝑧⟩)
6967, 68eqtr2di 2796 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((1st𝐹)‘⟨𝑋, 𝑧⟩) = ((1st𝐾)‘𝑧))
7066, 69oveq12d 7273 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (((1st𝐹)‘⟨𝑋, 𝑦⟩)(Hom ‘𝐸)((1st𝐹)‘⟨𝑋, 𝑧⟩)) = (((1st𝐾)‘𝑦)(Hom ‘𝐸)((1st𝐾)‘𝑧)))
7160, 70feq23d 6579 . . . . . . 7 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩):(⟨𝑋, 𝑦⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑋, 𝑧⟩)⟶(((1st𝐹)‘⟨𝑋, 𝑦⟩)(Hom ‘𝐸)((1st𝐹)‘⟨𝑋, 𝑧⟩)) ↔ (⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩):(((1st ‘⟨𝑋, 𝑦⟩)(Hom ‘𝐶)(1st ‘⟨𝑋, 𝑧⟩)) × ((2nd ‘⟨𝑋, 𝑦⟩)(Hom ‘𝐷)(2nd ‘⟨𝑋, 𝑧⟩)))⟶(((1st𝐾)‘𝑦)(Hom ‘𝐸)((1st𝐾)‘𝑧))))
7258, 71mpbid 231 . . . . . 6 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩):(((1st ‘⟨𝑋, 𝑦⟩)(Hom ‘𝐶)(1st ‘⟨𝑋, 𝑧⟩)) × ((2nd ‘⟨𝑋, 𝑦⟩)(Hom ‘𝐷)(2nd ‘⟨𝑋, 𝑧⟩)))⟶(((1st𝐾)‘𝑦)(Hom ‘𝐸)((1st𝐾)‘𝑧)))
732, 59, 10, 61, 53catidcl 17308 . . . . . . 7 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((Id‘𝐶)‘𝑋) ∈ (𝑋(Hom ‘𝐶)𝑋))
74 op1stg 7816 . . . . . . . . 9 ((𝑋𝐴𝑦𝐵) → (1st ‘⟨𝑋, 𝑦⟩) = 𝑋)
7553, 54, 74syl2anc 583 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (1st ‘⟨𝑋, 𝑦⟩) = 𝑋)
76 op1stg 7816 . . . . . . . . 9 ((𝑋𝐴𝑧𝐵) → (1st ‘⟨𝑋, 𝑧⟩) = 𝑋)
7753, 56, 76syl2anc 583 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (1st ‘⟨𝑋, 𝑧⟩) = 𝑋)
7875, 77oveq12d 7273 . . . . . . 7 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((1st ‘⟨𝑋, 𝑦⟩)(Hom ‘𝐶)(1st ‘⟨𝑋, 𝑧⟩)) = (𝑋(Hom ‘𝐶)𝑋))
7973, 78eleqtrrd 2842 . . . . . 6 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((Id‘𝐶)‘𝑋) ∈ ((1st ‘⟨𝑋, 𝑦⟩)(Hom ‘𝐶)(1st ‘⟨𝑋, 𝑧⟩)))
80 simpr 484 . . . . . . 7 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))
81 op2ndg 7817 . . . . . . . . 9 ((𝑋𝐴𝑦𝐵) → (2nd ‘⟨𝑋, 𝑦⟩) = 𝑦)
8253, 54, 81syl2anc 583 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (2nd ‘⟨𝑋, 𝑦⟩) = 𝑦)
83 op2ndg 7817 . . . . . . . . 9 ((𝑋𝐴𝑧𝐵) → (2nd ‘⟨𝑋, 𝑧⟩) = 𝑧)
8453, 56, 83syl2anc 583 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (2nd ‘⟨𝑋, 𝑧⟩) = 𝑧)
8582, 84oveq12d 7273 . . . . . . 7 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((2nd ‘⟨𝑋, 𝑦⟩)(Hom ‘𝐷)(2nd ‘⟨𝑋, 𝑧⟩)) = (𝑦(Hom ‘𝐷)𝑧))
8680, 85eleqtrrd 2842 . . . . . 6 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝑔 ∈ ((2nd ‘⟨𝑋, 𝑦⟩)(Hom ‘𝐷)(2nd ‘⟨𝑋, 𝑧⟩)))
8772, 79, 86fovrnd 7422 . . . . 5 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔) ∈ (((1st𝐾)‘𝑦)(Hom ‘𝐸)((1st𝐾)‘𝑧)))
8850, 87fmpt3d 6972 . . . 4 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑦(2nd𝐾)𝑧):(𝑦(Hom ‘𝐷)𝑧)⟶(((1st𝐾)‘𝑦)(Hom ‘𝐸)((1st𝐾)‘𝑧)))
893adantr 480 . . . . . . . . 9 ((𝜑𝑦𝐵) → 𝐶 ∈ Cat)
904adantr 480 . . . . . . . . 9 ((𝜑𝑦𝐵) → 𝐷 ∈ Cat)
91 eqid 2738 . . . . . . . . 9 (Id‘(𝐶 ×c 𝐷)) = (Id‘(𝐶 ×c 𝐷))
9230, 89, 90, 2, 6, 10, 23, 91, 37, 38xpcid 17822 . . . . . . . 8 ((𝜑𝑦𝐵) → ((Id‘(𝐶 ×c 𝐷))‘⟨𝑋, 𝑦⟩) = ⟨((Id‘𝐶)‘𝑋), ((Id‘𝐷)‘𝑦)⟩)
9392fveq2d 6760 . . . . . . 7 ((𝜑𝑦𝐵) → ((⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑦⟩)‘((Id‘(𝐶 ×c 𝐷))‘⟨𝑋, 𝑦⟩)) = ((⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑦⟩)‘⟨((Id‘𝐶)‘𝑋), ((Id‘𝐷)‘𝑦)⟩))
94 df-ov 7258 . . . . . . 7 (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑦⟩)((Id‘𝐷)‘𝑦)) = ((⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑦⟩)‘⟨((Id‘𝐶)‘𝑋), ((Id‘𝐷)‘𝑦)⟩)
9593, 94eqtr4di 2797 . . . . . 6 ((𝜑𝑦𝐵) → ((⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑦⟩)‘((Id‘(𝐶 ×c 𝐷))‘⟨𝑋, 𝑦⟩)) = (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑦⟩)((Id‘𝐷)‘𝑦)))
9634adantr 480 . . . . . . 7 ((𝜑𝑦𝐵) → (1st𝐹)((𝐶 ×c 𝐷) Func 𝐸)(2nd𝐹))
97 opelxpi 5617 . . . . . . . 8 ((𝑋𝐴𝑦𝐵) → ⟨𝑋, 𝑦⟩ ∈ (𝐴 × 𝐵))
987, 97sylan 579 . . . . . . 7 ((𝜑𝑦𝐵) → ⟨𝑋, 𝑦⟩ ∈ (𝐴 × 𝐵))
9931, 91, 24, 96, 98funcid 17501 . . . . . 6 ((𝜑𝑦𝐵) → ((⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑦⟩)‘((Id‘(𝐶 ×c 𝐷))‘⟨𝑋, 𝑦⟩)) = ((Id‘𝐸)‘((1st𝐹)‘⟨𝑋, 𝑦⟩)))
10095, 99eqtr3d 2780 . . . . 5 ((𝜑𝑦𝐵) → (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑦⟩)((Id‘𝐷)‘𝑦)) = ((Id‘𝐸)‘((1st𝐹)‘⟨𝑋, 𝑦⟩)))
1015adantr 480 . . . . . 6 ((𝜑𝑦𝐵) → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
1026, 9, 23, 90, 38catidcl 17308 . . . . . 6 ((𝜑𝑦𝐵) → ((Id‘𝐷)‘𝑦) ∈ (𝑦(Hom ‘𝐷)𝑦))
1031, 2, 89, 90, 101, 6, 37, 8, 38, 9, 10, 38, 102curf12 17861 . . . . 5 ((𝜑𝑦𝐵) → ((𝑦(2nd𝐾)𝑦)‘((Id‘𝐷)‘𝑦)) = (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑦⟩)((Id‘𝐷)‘𝑦)))
1041, 2, 89, 90, 101, 6, 37, 8, 38curf11 17860 . . . . . . 7 ((𝜑𝑦𝐵) → ((1st𝐾)‘𝑦) = (𝑋(1st𝐹)𝑦))
105104, 65eqtrdi 2795 . . . . . 6 ((𝜑𝑦𝐵) → ((1st𝐾)‘𝑦) = ((1st𝐹)‘⟨𝑋, 𝑦⟩))
106105fveq2d 6760 . . . . 5 ((𝜑𝑦𝐵) → ((Id‘𝐸)‘((1st𝐾)‘𝑦)) = ((Id‘𝐸)‘((1st𝐹)‘⟨𝑋, 𝑦⟩)))
107100, 103, 1063eqtr4d 2788 . . . 4 ((𝜑𝑦𝐵) → ((𝑦(2nd𝐾)𝑦)‘((Id‘𝐷)‘𝑦)) = ((Id‘𝐸)‘((1st𝐾)‘𝑦)))
10873ad2ant1 1131 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → 𝑋𝐴)
109 simp21 1204 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → 𝑦𝐵)
110 simp22 1205 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → 𝑧𝐵)
111 eqid 2738 . . . . . . . . . 10 (comp‘𝐶) = (comp‘𝐶)
112 eqid 2738 . . . . . . . . . 10 (comp‘(𝐶 ×c 𝐷)) = (comp‘(𝐶 ×c 𝐷))
113 simp23 1206 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → 𝑤𝐵)
11433ad2ant1 1131 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → 𝐶 ∈ Cat)
1152, 59, 10, 114, 108catidcl 17308 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((Id‘𝐶)‘𝑋) ∈ (𝑋(Hom ‘𝐶)𝑋))
116 simp3l 1199 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))
117 simp3r 1200 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ∈ (𝑧(Hom ‘𝐷)𝑤))
11830, 2, 6, 59, 9, 108, 109, 108, 110, 111, 25, 112, 108, 113, 115, 116, 115, 117xpcco2 17820 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → (⟨((Id‘𝐶)‘𝑋), ⟩(⟨⟨𝑋, 𝑦⟩, ⟨𝑋, 𝑧⟩⟩(comp‘(𝐶 ×c 𝐷))⟨𝑋, 𝑤⟩)⟨((Id‘𝐶)‘𝑋), 𝑔⟩) = ⟨(((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑋)((Id‘𝐶)‘𝑋)), ((⟨𝑦, 𝑧⟩(comp‘𝐷)𝑤)𝑔)⟩)
1192, 59, 10, 114, 108, 111, 108, 115catlid 17309 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑋)((Id‘𝐶)‘𝑋)) = ((Id‘𝐶)‘𝑋))
120119opeq1d 4807 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ⟨(((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑋)((Id‘𝐶)‘𝑋)), ((⟨𝑦, 𝑧⟩(comp‘𝐷)𝑤)𝑔)⟩ = ⟨((Id‘𝐶)‘𝑋), ((⟨𝑦, 𝑧⟩(comp‘𝐷)𝑤)𝑔)⟩)
121118, 120eqtrd 2778 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → (⟨((Id‘𝐶)‘𝑋), ⟩(⟨⟨𝑋, 𝑦⟩, ⟨𝑋, 𝑧⟩⟩(comp‘(𝐶 ×c 𝐷))⟨𝑋, 𝑤⟩)⟨((Id‘𝐶)‘𝑋), 𝑔⟩) = ⟨((Id‘𝐶)‘𝑋), ((⟨𝑦, 𝑧⟩(comp‘𝐷)𝑤)𝑔)⟩)
122121fveq2d 6760 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑤⟩)‘(⟨((Id‘𝐶)‘𝑋), ⟩(⟨⟨𝑋, 𝑦⟩, ⟨𝑋, 𝑧⟩⟩(comp‘(𝐶 ×c 𝐷))⟨𝑋, 𝑤⟩)⟨((Id‘𝐶)‘𝑋), 𝑔⟩)) = ((⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑤⟩)‘⟨((Id‘𝐶)‘𝑋), ((⟨𝑦, 𝑧⟩(comp‘𝐷)𝑤)𝑔)⟩))
123 df-ov 7258 . . . . . . 7 (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑤⟩)((⟨𝑦, 𝑧⟩(comp‘𝐷)𝑤)𝑔)) = ((⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑤⟩)‘⟨((Id‘𝐶)‘𝑋), ((⟨𝑦, 𝑧⟩(comp‘𝐷)𝑤)𝑔)⟩)
124122, 123eqtr4di 2797 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑤⟩)‘(⟨((Id‘𝐶)‘𝑋), ⟩(⟨⟨𝑋, 𝑦⟩, ⟨𝑋, 𝑧⟩⟩(comp‘(𝐶 ×c 𝐷))⟨𝑋, 𝑤⟩)⟨((Id‘𝐶)‘𝑋), 𝑔⟩)) = (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑤⟩)((⟨𝑦, 𝑧⟩(comp‘𝐷)𝑤)𝑔)))
125343ad2ant1 1131 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → (1st𝐹)((𝐶 ×c 𝐷) Func 𝐸)(2nd𝐹))
126108, 109opelxpd 5618 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ⟨𝑋, 𝑦⟩ ∈ (𝐴 × 𝐵))
127108, 110opelxpd 5618 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ⟨𝑋, 𝑧⟩ ∈ (𝐴 × 𝐵))
128108, 113opelxpd 5618 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ⟨𝑋, 𝑤⟩ ∈ (𝐴 × 𝐵))
129115, 116opelxpd 5618 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ⟨((Id‘𝐶)‘𝑋), 𝑔⟩ ∈ ((𝑋(Hom ‘𝐶)𝑋) × (𝑦(Hom ‘𝐷)𝑧)))
13030, 2, 6, 59, 9, 108, 109, 108, 110, 51xpchom2 17819 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → (⟨𝑋, 𝑦⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑋, 𝑧⟩) = ((𝑋(Hom ‘𝐶)𝑋) × (𝑦(Hom ‘𝐷)𝑧)))
131129, 130eleqtrrd 2842 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ⟨((Id‘𝐶)‘𝑋), 𝑔⟩ ∈ (⟨𝑋, 𝑦⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑋, 𝑧⟩))
132115, 117opelxpd 5618 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ⟨((Id‘𝐶)‘𝑋), ⟩ ∈ ((𝑋(Hom ‘𝐶)𝑋) × (𝑧(Hom ‘𝐷)𝑤)))
13330, 2, 6, 59, 9, 108, 110, 108, 113, 51xpchom2 17819 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → (⟨𝑋, 𝑧⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑋, 𝑤⟩) = ((𝑋(Hom ‘𝐶)𝑋) × (𝑧(Hom ‘𝐷)𝑤)))
134132, 133eleqtrrd 2842 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ⟨((Id‘𝐶)‘𝑋), ⟩ ∈ (⟨𝑋, 𝑧⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑋, 𝑤⟩))
13531, 51, 112, 26, 125, 126, 127, 128, 131, 134funcco 17502 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑤⟩)‘(⟨((Id‘𝐶)‘𝑋), ⟩(⟨⟨𝑋, 𝑦⟩, ⟨𝑋, 𝑧⟩⟩(comp‘(𝐶 ×c 𝐷))⟨𝑋, 𝑤⟩)⟨((Id‘𝐶)‘𝑋), 𝑔⟩)) = (((⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑋, 𝑤⟩)‘⟨((Id‘𝐶)‘𝑋), ⟩)(⟨((1st𝐹)‘⟨𝑋, 𝑦⟩), ((1st𝐹)‘⟨𝑋, 𝑧⟩)⟩(comp‘𝐸)((1st𝐹)‘⟨𝑋, 𝑤⟩))((⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)‘⟨((Id‘𝐶)‘𝑋), 𝑔⟩)))
136124, 135eqtr3d 2780 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑤⟩)((⟨𝑦, 𝑧⟩(comp‘𝐷)𝑤)𝑔)) = (((⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑋, 𝑤⟩)‘⟨((Id‘𝐶)‘𝑋), ⟩)(⟨((1st𝐹)‘⟨𝑋, 𝑦⟩), ((1st𝐹)‘⟨𝑋, 𝑧⟩)⟩(comp‘𝐸)((1st𝐹)‘⟨𝑋, 𝑤⟩))((⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)‘⟨((Id‘𝐶)‘𝑋), 𝑔⟩)))
13743ad2ant1 1131 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → 𝐷 ∈ Cat)
13853ad2ant1 1131 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
1396, 9, 25, 137, 109, 110, 113, 116, 117catcocl 17311 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((⟨𝑦, 𝑧⟩(comp‘𝐷)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐷)𝑤))
1401, 2, 114, 137, 138, 6, 108, 8, 109, 9, 10, 113, 139curf12 17861 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((𝑦(2nd𝐾)𝑤)‘((⟨𝑦, 𝑧⟩(comp‘𝐷)𝑤)𝑔)) = (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑤⟩)((⟨𝑦, 𝑧⟩(comp‘𝐷)𝑤)𝑔)))
1411, 2, 114, 137, 138, 6, 108, 8, 109curf11 17860 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((1st𝐾)‘𝑦) = (𝑋(1st𝐹)𝑦))
142141, 65eqtrdi 2795 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((1st𝐾)‘𝑦) = ((1st𝐹)‘⟨𝑋, 𝑦⟩))
1431, 2, 114, 137, 138, 6, 108, 8, 110curf11 17860 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((1st𝐾)‘𝑧) = (𝑋(1st𝐹)𝑧))
144143, 68eqtrdi 2795 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((1st𝐾)‘𝑧) = ((1st𝐹)‘⟨𝑋, 𝑧⟩))
145142, 144opeq12d 4809 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ⟨((1st𝐾)‘𝑦), ((1st𝐾)‘𝑧)⟩ = ⟨((1st𝐹)‘⟨𝑋, 𝑦⟩), ((1st𝐹)‘⟨𝑋, 𝑧⟩)⟩)
1461, 2, 114, 137, 138, 6, 108, 8, 113curf11 17860 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((1st𝐾)‘𝑤) = (𝑋(1st𝐹)𝑤))
147 df-ov 7258 . . . . . . . 8 (𝑋(1st𝐹)𝑤) = ((1st𝐹)‘⟨𝑋, 𝑤⟩)
148146, 147eqtrdi 2795 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((1st𝐾)‘𝑤) = ((1st𝐹)‘⟨𝑋, 𝑤⟩))
149145, 148oveq12d 7273 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → (⟨((1st𝐾)‘𝑦), ((1st𝐾)‘𝑧)⟩(comp‘𝐸)((1st𝐾)‘𝑤)) = (⟨((1st𝐹)‘⟨𝑋, 𝑦⟩), ((1st𝐹)‘⟨𝑋, 𝑧⟩)⟩(comp‘𝐸)((1st𝐹)‘⟨𝑋, 𝑤⟩)))
1501, 2, 114, 137, 138, 6, 108, 8, 110, 9, 10, 113, 117curf12 17861 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((𝑧(2nd𝐾)𝑤)‘) = (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑋, 𝑤⟩)))
151 df-ov 7258 . . . . . . 7 (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑋, 𝑤⟩)) = ((⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑋, 𝑤⟩)‘⟨((Id‘𝐶)‘𝑋), ⟩)
152150, 151eqtrdi 2795 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((𝑧(2nd𝐾)𝑤)‘) = ((⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑋, 𝑤⟩)‘⟨((Id‘𝐶)‘𝑋), ⟩))
1531, 2, 114, 137, 138, 6, 108, 8, 109, 9, 10, 110, 116curf12 17861 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((𝑦(2nd𝐾)𝑧)‘𝑔) = (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔))
154 df-ov 7258 . . . . . . 7 (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔) = ((⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)‘⟨((Id‘𝐶)‘𝑋), 𝑔⟩)
155153, 154eqtrdi 2795 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((𝑦(2nd𝐾)𝑧)‘𝑔) = ((⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)‘⟨((Id‘𝐶)‘𝑋), 𝑔⟩))
156149, 152, 155oveq123d 7276 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → (((𝑧(2nd𝐾)𝑤)‘)(⟨((1st𝐾)‘𝑦), ((1st𝐾)‘𝑧)⟩(comp‘𝐸)((1st𝐾)‘𝑤))((𝑦(2nd𝐾)𝑧)‘𝑔)) = (((⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑋, 𝑤⟩)‘⟨((Id‘𝐶)‘𝑋), ⟩)(⟨((1st𝐹)‘⟨𝑋, 𝑦⟩), ((1st𝐹)‘⟨𝑋, 𝑧⟩)⟩(comp‘𝐸)((1st𝐹)‘⟨𝑋, 𝑤⟩))((⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)‘⟨((Id‘𝐶)‘𝑋), 𝑔⟩)))
157136, 140, 1563eqtr4d 2788 . . . 4 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((𝑦(2nd𝐾)𝑤)‘((⟨𝑦, 𝑧⟩(comp‘𝐷)𝑤)𝑔)) = (((𝑧(2nd𝐾)𝑤)‘)(⟨((1st𝐾)‘𝑦), ((1st𝐾)‘𝑧)⟩(comp‘𝐸)((1st𝐾)‘𝑤))((𝑦(2nd𝐾)𝑧)‘𝑔)))
1586, 21, 9, 22, 23, 24, 25, 26, 4, 29, 40, 46, 88, 107, 157isfuncd 17496 . . 3 (𝜑 → (1st𝐾)(𝐷 Func 𝐸)(2nd𝐾))
159 df-br 5071 . . 3 ((1st𝐾)(𝐷 Func 𝐸)(2nd𝐾) ↔ ⟨(1st𝐾), (2nd𝐾)⟩ ∈ (𝐷 Func 𝐸))
160158, 159sylib 217 . 2 (𝜑 → ⟨(1st𝐾), (2nd𝐾)⟩ ∈ (𝐷 Func 𝐸))
16120, 160eqeltrd 2839 1 (𝜑𝐾 ∈ (𝐷 Func 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  Vcvv 3422  cop 4564   class class class wbr 5070  cmpt 5153   × cxp 5578  Rel wrel 5585   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  cmpo 7257  1st c1st 7802  2nd c2nd 7803  Basecbs 16840  Hom chom 16899  compcco 16900  Catccat 17290  Idccid 17291   Func cfunc 17485   ×c cxpc 17801   curryF ccurf 17844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-struct 16776  df-slot 16811  df-ndx 16823  df-base 16841  df-hom 16912  df-cco 16913  df-cat 17294  df-cid 17295  df-func 17489  df-xpc 17805  df-curf 17848
This theorem is referenced by:  curf2cl  17865  curfcl  17866
  Copyright terms: Public domain W3C validator