MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  curf1cl Structured version   Visualization version   GIF version

Theorem curf1cl 18117
Description: The partially evaluated curry functor is a functor. (Contributed by Mario Carneiro, 13-Jan-2017.)
Hypotheses
Ref Expression
curfval.g 𝐺 = (⟨𝐶, 𝐷⟩ curryF 𝐹)
curfval.a 𝐴 = (Base‘𝐶)
curfval.c (𝜑𝐶 ∈ Cat)
curfval.d (𝜑𝐷 ∈ Cat)
curfval.f (𝜑𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
curfval.b 𝐵 = (Base‘𝐷)
curf1.x (𝜑𝑋𝐴)
curf1.k 𝐾 = ((1st𝐺)‘𝑋)
Assertion
Ref Expression
curf1cl (𝜑𝐾 ∈ (𝐷 Func 𝐸))

Proof of Theorem curf1cl
Dummy variables 𝑔 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 curfval.g . . . 4 𝐺 = (⟨𝐶, 𝐷⟩ curryF 𝐹)
2 curfval.a . . . 4 𝐴 = (Base‘𝐶)
3 curfval.c . . . 4 (𝜑𝐶 ∈ Cat)
4 curfval.d . . . 4 (𝜑𝐷 ∈ Cat)
5 curfval.f . . . 4 (𝜑𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
6 curfval.b . . . 4 𝐵 = (Base‘𝐷)
7 curf1.x . . . 4 (𝜑𝑋𝐴)
8 curf1.k . . . 4 𝐾 = ((1st𝐺)‘𝑋)
9 eqid 2736 . . . 4 (Hom ‘𝐷) = (Hom ‘𝐷)
10 eqid 2736 . . . 4 (Id‘𝐶) = (Id‘𝐶)
111, 2, 3, 4, 5, 6, 7, 8, 9, 10curf1 18114 . . 3 (𝜑𝐾 = ⟨(𝑦𝐵 ↦ (𝑋(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)))⟩)
126fvexi 6856 . . . . . . 7 𝐵 ∈ V
1312mptex 7173 . . . . . 6 (𝑦𝐵 ↦ (𝑋(1st𝐹)𝑦)) ∈ V
1412, 12mpoex 8012 . . . . . 6 (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔))) ∈ V
1513, 14op1std 7931 . . . . 5 (𝐾 = ⟨(𝑦𝐵 ↦ (𝑋(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)))⟩ → (1st𝐾) = (𝑦𝐵 ↦ (𝑋(1st𝐹)𝑦)))
1611, 15syl 17 . . . 4 (𝜑 → (1st𝐾) = (𝑦𝐵 ↦ (𝑋(1st𝐹)𝑦)))
1713, 14op2ndd 7932 . . . . 5 (𝐾 = ⟨(𝑦𝐵 ↦ (𝑋(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)))⟩ → (2nd𝐾) = (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔))))
1811, 17syl 17 . . . 4 (𝜑 → (2nd𝐾) = (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔))))
1916, 18opeq12d 4838 . . 3 (𝜑 → ⟨(1st𝐾), (2nd𝐾)⟩ = ⟨(𝑦𝐵 ↦ (𝑋(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)))⟩)
2011, 19eqtr4d 2779 . 2 (𝜑𝐾 = ⟨(1st𝐾), (2nd𝐾)⟩)
21 eqid 2736 . . . 4 (Base‘𝐸) = (Base‘𝐸)
22 eqid 2736 . . . 4 (Hom ‘𝐸) = (Hom ‘𝐸)
23 eqid 2736 . . . 4 (Id‘𝐷) = (Id‘𝐷)
24 eqid 2736 . . . 4 (Id‘𝐸) = (Id‘𝐸)
25 eqid 2736 . . . 4 (comp‘𝐷) = (comp‘𝐷)
26 eqid 2736 . . . 4 (comp‘𝐸) = (comp‘𝐸)
27 funcrcl 17749 . . . . . 6 (𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸) → ((𝐶 ×c 𝐷) ∈ Cat ∧ 𝐸 ∈ Cat))
285, 27syl 17 . . . . 5 (𝜑 → ((𝐶 ×c 𝐷) ∈ Cat ∧ 𝐸 ∈ Cat))
2928simprd 496 . . . 4 (𝜑𝐸 ∈ Cat)
30 eqid 2736 . . . . . . . . 9 (𝐶 ×c 𝐷) = (𝐶 ×c 𝐷)
3130, 2, 6xpcbas 18066 . . . . . . . 8 (𝐴 × 𝐵) = (Base‘(𝐶 ×c 𝐷))
32 relfunc 17748 . . . . . . . . 9 Rel ((𝐶 ×c 𝐷) Func 𝐸)
33 1st2ndbr 7974 . . . . . . . . 9 ((Rel ((𝐶 ×c 𝐷) Func 𝐸) ∧ 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) → (1st𝐹)((𝐶 ×c 𝐷) Func 𝐸)(2nd𝐹))
3432, 5, 33sylancr 587 . . . . . . . 8 (𝜑 → (1st𝐹)((𝐶 ×c 𝐷) Func 𝐸)(2nd𝐹))
3531, 21, 34funcf1 17752 . . . . . . 7 (𝜑 → (1st𝐹):(𝐴 × 𝐵)⟶(Base‘𝐸))
3635adantr 481 . . . . . 6 ((𝜑𝑦𝐵) → (1st𝐹):(𝐴 × 𝐵)⟶(Base‘𝐸))
377adantr 481 . . . . . 6 ((𝜑𝑦𝐵) → 𝑋𝐴)
38 simpr 485 . . . . . 6 ((𝜑𝑦𝐵) → 𝑦𝐵)
3936, 37, 38fovcdmd 7526 . . . . 5 ((𝜑𝑦𝐵) → (𝑋(1st𝐹)𝑦) ∈ (Base‘𝐸))
4016, 39fmpt3d 7064 . . . 4 (𝜑 → (1st𝐾):𝐵⟶(Base‘𝐸))
41 eqid 2736 . . . . . 6 (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔))) = (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)))
42 ovex 7390 . . . . . . 7 (𝑦(Hom ‘𝐷)𝑧) ∈ V
4342mptex 7173 . . . . . 6 (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)) ∈ V
4441, 43fnmpoi 8002 . . . . 5 (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔))) Fn (𝐵 × 𝐵)
4518fneq1d 6595 . . . . 5 (𝜑 → ((2nd𝐾) Fn (𝐵 × 𝐵) ↔ (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔))) Fn (𝐵 × 𝐵)))
4644, 45mpbiri 257 . . . 4 (𝜑 → (2nd𝐾) Fn (𝐵 × 𝐵))
4718oveqd 7374 . . . . . 6 (𝜑 → (𝑦(2nd𝐾)𝑧) = (𝑦(𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)))𝑧))
4841ovmpt4g 7502 . . . . . . 7 ((𝑦𝐵𝑧𝐵 ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)) ∈ V) → (𝑦(𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)))𝑧) = (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)))
4943, 48mp3an3 1450 . . . . . 6 ((𝑦𝐵𝑧𝐵) → (𝑦(𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)))𝑧) = (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)))
5047, 49sylan9eq 2796 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑦(2nd𝐾)𝑧) = (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)))
51 eqid 2736 . . . . . . . 8 (Hom ‘(𝐶 ×c 𝐷)) = (Hom ‘(𝐶 ×c 𝐷))
5234ad2antrr 724 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (1st𝐹)((𝐶 ×c 𝐷) Func 𝐸)(2nd𝐹))
537ad2antrr 724 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝑋𝐴)
54 simplrl 775 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝑦𝐵)
5553, 54opelxpd 5671 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ⟨𝑋, 𝑦⟩ ∈ (𝐴 × 𝐵))
56 simplrr 776 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝑧𝐵)
5753, 56opelxpd 5671 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ⟨𝑋, 𝑧⟩ ∈ (𝐴 × 𝐵))
5831, 51, 22, 52, 55, 57funcf2 17754 . . . . . . 7 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩):(⟨𝑋, 𝑦⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑋, 𝑧⟩)⟶(((1st𝐹)‘⟨𝑋, 𝑦⟩)(Hom ‘𝐸)((1st𝐹)‘⟨𝑋, 𝑧⟩)))
59 eqid 2736 . . . . . . . . 9 (Hom ‘𝐶) = (Hom ‘𝐶)
6030, 31, 59, 9, 51, 55, 57xpchom 18068 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (⟨𝑋, 𝑦⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑋, 𝑧⟩) = (((1st ‘⟨𝑋, 𝑦⟩)(Hom ‘𝐶)(1st ‘⟨𝑋, 𝑧⟩)) × ((2nd ‘⟨𝑋, 𝑦⟩)(Hom ‘𝐷)(2nd ‘⟨𝑋, 𝑧⟩))))
613ad2antrr 724 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝐶 ∈ Cat)
624ad2antrr 724 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝐷 ∈ Cat)
635ad2antrr 724 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
641, 2, 61, 62, 63, 6, 53, 8, 54curf11 18115 . . . . . . . . . 10 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((1st𝐾)‘𝑦) = (𝑋(1st𝐹)𝑦))
65 df-ov 7360 . . . . . . . . . 10 (𝑋(1st𝐹)𝑦) = ((1st𝐹)‘⟨𝑋, 𝑦⟩)
6664, 65eqtr2di 2793 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((1st𝐹)‘⟨𝑋, 𝑦⟩) = ((1st𝐾)‘𝑦))
671, 2, 61, 62, 63, 6, 53, 8, 56curf11 18115 . . . . . . . . . 10 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((1st𝐾)‘𝑧) = (𝑋(1st𝐹)𝑧))
68 df-ov 7360 . . . . . . . . . 10 (𝑋(1st𝐹)𝑧) = ((1st𝐹)‘⟨𝑋, 𝑧⟩)
6967, 68eqtr2di 2793 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((1st𝐹)‘⟨𝑋, 𝑧⟩) = ((1st𝐾)‘𝑧))
7066, 69oveq12d 7375 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (((1st𝐹)‘⟨𝑋, 𝑦⟩)(Hom ‘𝐸)((1st𝐹)‘⟨𝑋, 𝑧⟩)) = (((1st𝐾)‘𝑦)(Hom ‘𝐸)((1st𝐾)‘𝑧)))
7160, 70feq23d 6663 . . . . . . 7 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩):(⟨𝑋, 𝑦⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑋, 𝑧⟩)⟶(((1st𝐹)‘⟨𝑋, 𝑦⟩)(Hom ‘𝐸)((1st𝐹)‘⟨𝑋, 𝑧⟩)) ↔ (⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩):(((1st ‘⟨𝑋, 𝑦⟩)(Hom ‘𝐶)(1st ‘⟨𝑋, 𝑧⟩)) × ((2nd ‘⟨𝑋, 𝑦⟩)(Hom ‘𝐷)(2nd ‘⟨𝑋, 𝑧⟩)))⟶(((1st𝐾)‘𝑦)(Hom ‘𝐸)((1st𝐾)‘𝑧))))
7258, 71mpbid 231 . . . . . 6 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩):(((1st ‘⟨𝑋, 𝑦⟩)(Hom ‘𝐶)(1st ‘⟨𝑋, 𝑧⟩)) × ((2nd ‘⟨𝑋, 𝑦⟩)(Hom ‘𝐷)(2nd ‘⟨𝑋, 𝑧⟩)))⟶(((1st𝐾)‘𝑦)(Hom ‘𝐸)((1st𝐾)‘𝑧)))
732, 59, 10, 61, 53catidcl 17562 . . . . . . 7 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((Id‘𝐶)‘𝑋) ∈ (𝑋(Hom ‘𝐶)𝑋))
74 op1stg 7933 . . . . . . . . 9 ((𝑋𝐴𝑦𝐵) → (1st ‘⟨𝑋, 𝑦⟩) = 𝑋)
7553, 54, 74syl2anc 584 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (1st ‘⟨𝑋, 𝑦⟩) = 𝑋)
76 op1stg 7933 . . . . . . . . 9 ((𝑋𝐴𝑧𝐵) → (1st ‘⟨𝑋, 𝑧⟩) = 𝑋)
7753, 56, 76syl2anc 584 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (1st ‘⟨𝑋, 𝑧⟩) = 𝑋)
7875, 77oveq12d 7375 . . . . . . 7 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((1st ‘⟨𝑋, 𝑦⟩)(Hom ‘𝐶)(1st ‘⟨𝑋, 𝑧⟩)) = (𝑋(Hom ‘𝐶)𝑋))
7973, 78eleqtrrd 2841 . . . . . 6 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((Id‘𝐶)‘𝑋) ∈ ((1st ‘⟨𝑋, 𝑦⟩)(Hom ‘𝐶)(1st ‘⟨𝑋, 𝑧⟩)))
80 simpr 485 . . . . . . 7 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))
81 op2ndg 7934 . . . . . . . . 9 ((𝑋𝐴𝑦𝐵) → (2nd ‘⟨𝑋, 𝑦⟩) = 𝑦)
8253, 54, 81syl2anc 584 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (2nd ‘⟨𝑋, 𝑦⟩) = 𝑦)
83 op2ndg 7934 . . . . . . . . 9 ((𝑋𝐴𝑧𝐵) → (2nd ‘⟨𝑋, 𝑧⟩) = 𝑧)
8453, 56, 83syl2anc 584 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (2nd ‘⟨𝑋, 𝑧⟩) = 𝑧)
8582, 84oveq12d 7375 . . . . . . 7 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((2nd ‘⟨𝑋, 𝑦⟩)(Hom ‘𝐷)(2nd ‘⟨𝑋, 𝑧⟩)) = (𝑦(Hom ‘𝐷)𝑧))
8680, 85eleqtrrd 2841 . . . . . 6 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝑔 ∈ ((2nd ‘⟨𝑋, 𝑦⟩)(Hom ‘𝐷)(2nd ‘⟨𝑋, 𝑧⟩)))
8772, 79, 86fovcdmd 7526 . . . . 5 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔) ∈ (((1st𝐾)‘𝑦)(Hom ‘𝐸)((1st𝐾)‘𝑧)))
8850, 87fmpt3d 7064 . . . 4 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑦(2nd𝐾)𝑧):(𝑦(Hom ‘𝐷)𝑧)⟶(((1st𝐾)‘𝑦)(Hom ‘𝐸)((1st𝐾)‘𝑧)))
893adantr 481 . . . . . . . . 9 ((𝜑𝑦𝐵) → 𝐶 ∈ Cat)
904adantr 481 . . . . . . . . 9 ((𝜑𝑦𝐵) → 𝐷 ∈ Cat)
91 eqid 2736 . . . . . . . . 9 (Id‘(𝐶 ×c 𝐷)) = (Id‘(𝐶 ×c 𝐷))
9230, 89, 90, 2, 6, 10, 23, 91, 37, 38xpcid 18077 . . . . . . . 8 ((𝜑𝑦𝐵) → ((Id‘(𝐶 ×c 𝐷))‘⟨𝑋, 𝑦⟩) = ⟨((Id‘𝐶)‘𝑋), ((Id‘𝐷)‘𝑦)⟩)
9392fveq2d 6846 . . . . . . 7 ((𝜑𝑦𝐵) → ((⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑦⟩)‘((Id‘(𝐶 ×c 𝐷))‘⟨𝑋, 𝑦⟩)) = ((⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑦⟩)‘⟨((Id‘𝐶)‘𝑋), ((Id‘𝐷)‘𝑦)⟩))
94 df-ov 7360 . . . . . . 7 (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑦⟩)((Id‘𝐷)‘𝑦)) = ((⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑦⟩)‘⟨((Id‘𝐶)‘𝑋), ((Id‘𝐷)‘𝑦)⟩)
9593, 94eqtr4di 2794 . . . . . 6 ((𝜑𝑦𝐵) → ((⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑦⟩)‘((Id‘(𝐶 ×c 𝐷))‘⟨𝑋, 𝑦⟩)) = (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑦⟩)((Id‘𝐷)‘𝑦)))
9634adantr 481 . . . . . . 7 ((𝜑𝑦𝐵) → (1st𝐹)((𝐶 ×c 𝐷) Func 𝐸)(2nd𝐹))
97 opelxpi 5670 . . . . . . . 8 ((𝑋𝐴𝑦𝐵) → ⟨𝑋, 𝑦⟩ ∈ (𝐴 × 𝐵))
987, 97sylan 580 . . . . . . 7 ((𝜑𝑦𝐵) → ⟨𝑋, 𝑦⟩ ∈ (𝐴 × 𝐵))
9931, 91, 24, 96, 98funcid 17756 . . . . . 6 ((𝜑𝑦𝐵) → ((⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑦⟩)‘((Id‘(𝐶 ×c 𝐷))‘⟨𝑋, 𝑦⟩)) = ((Id‘𝐸)‘((1st𝐹)‘⟨𝑋, 𝑦⟩)))
10095, 99eqtr3d 2778 . . . . 5 ((𝜑𝑦𝐵) → (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑦⟩)((Id‘𝐷)‘𝑦)) = ((Id‘𝐸)‘((1st𝐹)‘⟨𝑋, 𝑦⟩)))
1015adantr 481 . . . . . 6 ((𝜑𝑦𝐵) → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
1026, 9, 23, 90, 38catidcl 17562 . . . . . 6 ((𝜑𝑦𝐵) → ((Id‘𝐷)‘𝑦) ∈ (𝑦(Hom ‘𝐷)𝑦))
1031, 2, 89, 90, 101, 6, 37, 8, 38, 9, 10, 38, 102curf12 18116 . . . . 5 ((𝜑𝑦𝐵) → ((𝑦(2nd𝐾)𝑦)‘((Id‘𝐷)‘𝑦)) = (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑦⟩)((Id‘𝐷)‘𝑦)))
1041, 2, 89, 90, 101, 6, 37, 8, 38curf11 18115 . . . . . . 7 ((𝜑𝑦𝐵) → ((1st𝐾)‘𝑦) = (𝑋(1st𝐹)𝑦))
105104, 65eqtrdi 2792 . . . . . 6 ((𝜑𝑦𝐵) → ((1st𝐾)‘𝑦) = ((1st𝐹)‘⟨𝑋, 𝑦⟩))
106105fveq2d 6846 . . . . 5 ((𝜑𝑦𝐵) → ((Id‘𝐸)‘((1st𝐾)‘𝑦)) = ((Id‘𝐸)‘((1st𝐹)‘⟨𝑋, 𝑦⟩)))
107100, 103, 1063eqtr4d 2786 . . . 4 ((𝜑𝑦𝐵) → ((𝑦(2nd𝐾)𝑦)‘((Id‘𝐷)‘𝑦)) = ((Id‘𝐸)‘((1st𝐾)‘𝑦)))
10873ad2ant1 1133 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → 𝑋𝐴)
109 simp21 1206 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → 𝑦𝐵)
110 simp22 1207 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → 𝑧𝐵)
111 eqid 2736 . . . . . . . . . 10 (comp‘𝐶) = (comp‘𝐶)
112 eqid 2736 . . . . . . . . . 10 (comp‘(𝐶 ×c 𝐷)) = (comp‘(𝐶 ×c 𝐷))
113 simp23 1208 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → 𝑤𝐵)
11433ad2ant1 1133 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → 𝐶 ∈ Cat)
1152, 59, 10, 114, 108catidcl 17562 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((Id‘𝐶)‘𝑋) ∈ (𝑋(Hom ‘𝐶)𝑋))
116 simp3l 1201 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))
117 simp3r 1202 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ∈ (𝑧(Hom ‘𝐷)𝑤))
11830, 2, 6, 59, 9, 108, 109, 108, 110, 111, 25, 112, 108, 113, 115, 116, 115, 117xpcco2 18075 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → (⟨((Id‘𝐶)‘𝑋), ⟩(⟨⟨𝑋, 𝑦⟩, ⟨𝑋, 𝑧⟩⟩(comp‘(𝐶 ×c 𝐷))⟨𝑋, 𝑤⟩)⟨((Id‘𝐶)‘𝑋), 𝑔⟩) = ⟨(((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑋)((Id‘𝐶)‘𝑋)), ((⟨𝑦, 𝑧⟩(comp‘𝐷)𝑤)𝑔)⟩)
1192, 59, 10, 114, 108, 111, 108, 115catlid 17563 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑋)((Id‘𝐶)‘𝑋)) = ((Id‘𝐶)‘𝑋))
120119opeq1d 4836 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ⟨(((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑋)((Id‘𝐶)‘𝑋)), ((⟨𝑦, 𝑧⟩(comp‘𝐷)𝑤)𝑔)⟩ = ⟨((Id‘𝐶)‘𝑋), ((⟨𝑦, 𝑧⟩(comp‘𝐷)𝑤)𝑔)⟩)
121118, 120eqtrd 2776 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → (⟨((Id‘𝐶)‘𝑋), ⟩(⟨⟨𝑋, 𝑦⟩, ⟨𝑋, 𝑧⟩⟩(comp‘(𝐶 ×c 𝐷))⟨𝑋, 𝑤⟩)⟨((Id‘𝐶)‘𝑋), 𝑔⟩) = ⟨((Id‘𝐶)‘𝑋), ((⟨𝑦, 𝑧⟩(comp‘𝐷)𝑤)𝑔)⟩)
122121fveq2d 6846 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑤⟩)‘(⟨((Id‘𝐶)‘𝑋), ⟩(⟨⟨𝑋, 𝑦⟩, ⟨𝑋, 𝑧⟩⟩(comp‘(𝐶 ×c 𝐷))⟨𝑋, 𝑤⟩)⟨((Id‘𝐶)‘𝑋), 𝑔⟩)) = ((⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑤⟩)‘⟨((Id‘𝐶)‘𝑋), ((⟨𝑦, 𝑧⟩(comp‘𝐷)𝑤)𝑔)⟩))
123 df-ov 7360 . . . . . . 7 (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑤⟩)((⟨𝑦, 𝑧⟩(comp‘𝐷)𝑤)𝑔)) = ((⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑤⟩)‘⟨((Id‘𝐶)‘𝑋), ((⟨𝑦, 𝑧⟩(comp‘𝐷)𝑤)𝑔)⟩)
124122, 123eqtr4di 2794 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑤⟩)‘(⟨((Id‘𝐶)‘𝑋), ⟩(⟨⟨𝑋, 𝑦⟩, ⟨𝑋, 𝑧⟩⟩(comp‘(𝐶 ×c 𝐷))⟨𝑋, 𝑤⟩)⟨((Id‘𝐶)‘𝑋), 𝑔⟩)) = (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑤⟩)((⟨𝑦, 𝑧⟩(comp‘𝐷)𝑤)𝑔)))
125343ad2ant1 1133 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → (1st𝐹)((𝐶 ×c 𝐷) Func 𝐸)(2nd𝐹))
126108, 109opelxpd 5671 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ⟨𝑋, 𝑦⟩ ∈ (𝐴 × 𝐵))
127108, 110opelxpd 5671 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ⟨𝑋, 𝑧⟩ ∈ (𝐴 × 𝐵))
128108, 113opelxpd 5671 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ⟨𝑋, 𝑤⟩ ∈ (𝐴 × 𝐵))
129115, 116opelxpd 5671 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ⟨((Id‘𝐶)‘𝑋), 𝑔⟩ ∈ ((𝑋(Hom ‘𝐶)𝑋) × (𝑦(Hom ‘𝐷)𝑧)))
13030, 2, 6, 59, 9, 108, 109, 108, 110, 51xpchom2 18074 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → (⟨𝑋, 𝑦⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑋, 𝑧⟩) = ((𝑋(Hom ‘𝐶)𝑋) × (𝑦(Hom ‘𝐷)𝑧)))
131129, 130eleqtrrd 2841 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ⟨((Id‘𝐶)‘𝑋), 𝑔⟩ ∈ (⟨𝑋, 𝑦⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑋, 𝑧⟩))
132115, 117opelxpd 5671 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ⟨((Id‘𝐶)‘𝑋), ⟩ ∈ ((𝑋(Hom ‘𝐶)𝑋) × (𝑧(Hom ‘𝐷)𝑤)))
13330, 2, 6, 59, 9, 108, 110, 108, 113, 51xpchom2 18074 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → (⟨𝑋, 𝑧⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑋, 𝑤⟩) = ((𝑋(Hom ‘𝐶)𝑋) × (𝑧(Hom ‘𝐷)𝑤)))
134132, 133eleqtrrd 2841 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ⟨((Id‘𝐶)‘𝑋), ⟩ ∈ (⟨𝑋, 𝑧⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑋, 𝑤⟩))
13531, 51, 112, 26, 125, 126, 127, 128, 131, 134funcco 17757 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑤⟩)‘(⟨((Id‘𝐶)‘𝑋), ⟩(⟨⟨𝑋, 𝑦⟩, ⟨𝑋, 𝑧⟩⟩(comp‘(𝐶 ×c 𝐷))⟨𝑋, 𝑤⟩)⟨((Id‘𝐶)‘𝑋), 𝑔⟩)) = (((⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑋, 𝑤⟩)‘⟨((Id‘𝐶)‘𝑋), ⟩)(⟨((1st𝐹)‘⟨𝑋, 𝑦⟩), ((1st𝐹)‘⟨𝑋, 𝑧⟩)⟩(comp‘𝐸)((1st𝐹)‘⟨𝑋, 𝑤⟩))((⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)‘⟨((Id‘𝐶)‘𝑋), 𝑔⟩)))
136124, 135eqtr3d 2778 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑤⟩)((⟨𝑦, 𝑧⟩(comp‘𝐷)𝑤)𝑔)) = (((⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑋, 𝑤⟩)‘⟨((Id‘𝐶)‘𝑋), ⟩)(⟨((1st𝐹)‘⟨𝑋, 𝑦⟩), ((1st𝐹)‘⟨𝑋, 𝑧⟩)⟩(comp‘𝐸)((1st𝐹)‘⟨𝑋, 𝑤⟩))((⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)‘⟨((Id‘𝐶)‘𝑋), 𝑔⟩)))
13743ad2ant1 1133 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → 𝐷 ∈ Cat)
13853ad2ant1 1133 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
1396, 9, 25, 137, 109, 110, 113, 116, 117catcocl 17565 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((⟨𝑦, 𝑧⟩(comp‘𝐷)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐷)𝑤))
1401, 2, 114, 137, 138, 6, 108, 8, 109, 9, 10, 113, 139curf12 18116 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((𝑦(2nd𝐾)𝑤)‘((⟨𝑦, 𝑧⟩(comp‘𝐷)𝑤)𝑔)) = (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑤⟩)((⟨𝑦, 𝑧⟩(comp‘𝐷)𝑤)𝑔)))
1411, 2, 114, 137, 138, 6, 108, 8, 109curf11 18115 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((1st𝐾)‘𝑦) = (𝑋(1st𝐹)𝑦))
142141, 65eqtrdi 2792 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((1st𝐾)‘𝑦) = ((1st𝐹)‘⟨𝑋, 𝑦⟩))
1431, 2, 114, 137, 138, 6, 108, 8, 110curf11 18115 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((1st𝐾)‘𝑧) = (𝑋(1st𝐹)𝑧))
144143, 68eqtrdi 2792 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((1st𝐾)‘𝑧) = ((1st𝐹)‘⟨𝑋, 𝑧⟩))
145142, 144opeq12d 4838 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ⟨((1st𝐾)‘𝑦), ((1st𝐾)‘𝑧)⟩ = ⟨((1st𝐹)‘⟨𝑋, 𝑦⟩), ((1st𝐹)‘⟨𝑋, 𝑧⟩)⟩)
1461, 2, 114, 137, 138, 6, 108, 8, 113curf11 18115 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((1st𝐾)‘𝑤) = (𝑋(1st𝐹)𝑤))
147 df-ov 7360 . . . . . . . 8 (𝑋(1st𝐹)𝑤) = ((1st𝐹)‘⟨𝑋, 𝑤⟩)
148146, 147eqtrdi 2792 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((1st𝐾)‘𝑤) = ((1st𝐹)‘⟨𝑋, 𝑤⟩))
149145, 148oveq12d 7375 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → (⟨((1st𝐾)‘𝑦), ((1st𝐾)‘𝑧)⟩(comp‘𝐸)((1st𝐾)‘𝑤)) = (⟨((1st𝐹)‘⟨𝑋, 𝑦⟩), ((1st𝐹)‘⟨𝑋, 𝑧⟩)⟩(comp‘𝐸)((1st𝐹)‘⟨𝑋, 𝑤⟩)))
1501, 2, 114, 137, 138, 6, 108, 8, 110, 9, 10, 113, 117curf12 18116 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((𝑧(2nd𝐾)𝑤)‘) = (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑋, 𝑤⟩)))
151 df-ov 7360 . . . . . . 7 (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑋, 𝑤⟩)) = ((⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑋, 𝑤⟩)‘⟨((Id‘𝐶)‘𝑋), ⟩)
152150, 151eqtrdi 2792 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((𝑧(2nd𝐾)𝑤)‘) = ((⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑋, 𝑤⟩)‘⟨((Id‘𝐶)‘𝑋), ⟩))
1531, 2, 114, 137, 138, 6, 108, 8, 109, 9, 10, 110, 116curf12 18116 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((𝑦(2nd𝐾)𝑧)‘𝑔) = (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔))
154 df-ov 7360 . . . . . . 7 (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔) = ((⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)‘⟨((Id‘𝐶)‘𝑋), 𝑔⟩)
155153, 154eqtrdi 2792 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((𝑦(2nd𝐾)𝑧)‘𝑔) = ((⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)‘⟨((Id‘𝐶)‘𝑋), 𝑔⟩))
156149, 152, 155oveq123d 7378 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → (((𝑧(2nd𝐾)𝑤)‘)(⟨((1st𝐾)‘𝑦), ((1st𝐾)‘𝑧)⟩(comp‘𝐸)((1st𝐾)‘𝑤))((𝑦(2nd𝐾)𝑧)‘𝑔)) = (((⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑋, 𝑤⟩)‘⟨((Id‘𝐶)‘𝑋), ⟩)(⟨((1st𝐹)‘⟨𝑋, 𝑦⟩), ((1st𝐹)‘⟨𝑋, 𝑧⟩)⟩(comp‘𝐸)((1st𝐹)‘⟨𝑋, 𝑤⟩))((⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)‘⟨((Id‘𝐶)‘𝑋), 𝑔⟩)))
157136, 140, 1563eqtr4d 2786 . . . 4 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((𝑦(2nd𝐾)𝑤)‘((⟨𝑦, 𝑧⟩(comp‘𝐷)𝑤)𝑔)) = (((𝑧(2nd𝐾)𝑤)‘)(⟨((1st𝐾)‘𝑦), ((1st𝐾)‘𝑧)⟩(comp‘𝐸)((1st𝐾)‘𝑤))((𝑦(2nd𝐾)𝑧)‘𝑔)))
1586, 21, 9, 22, 23, 24, 25, 26, 4, 29, 40, 46, 88, 107, 157isfuncd 17751 . . 3 (𝜑 → (1st𝐾)(𝐷 Func 𝐸)(2nd𝐾))
159 df-br 5106 . . 3 ((1st𝐾)(𝐷 Func 𝐸)(2nd𝐾) ↔ ⟨(1st𝐾), (2nd𝐾)⟩ ∈ (𝐷 Func 𝐸))
160158, 159sylib 217 . 2 (𝜑 → ⟨(1st𝐾), (2nd𝐾)⟩ ∈ (𝐷 Func 𝐸))
16120, 160eqeltrd 2838 1 (𝜑𝐾 ∈ (𝐷 Func 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  Vcvv 3445  cop 4592   class class class wbr 5105  cmpt 5188   × cxp 5631  Rel wrel 5638   Fn wfn 6491  wf 6492  cfv 6496  (class class class)co 7357  cmpo 7359  1st c1st 7919  2nd c2nd 7920  Basecbs 17083  Hom chom 17144  compcco 17145  Catccat 17544  Idccid 17545   Func cfunc 17740   ×c cxpc 18056   curryF ccurf 18099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-fz 13425  df-struct 17019  df-slot 17054  df-ndx 17066  df-base 17084  df-hom 17157  df-cco 17158  df-cat 17548  df-cid 17549  df-func 17744  df-xpc 18060  df-curf 18103
This theorem is referenced by:  curf2cl  18120  curfcl  18121
  Copyright terms: Public domain W3C validator