| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > curf11 | Structured version Visualization version GIF version | ||
| Description: Value of the double evaluated curry functor. (Contributed by Mario Carneiro, 12-Jan-2017.) |
| Ref | Expression |
|---|---|
| curfval.g | ⊢ 𝐺 = (〈𝐶, 𝐷〉 curryF 𝐹) |
| curfval.a | ⊢ 𝐴 = (Base‘𝐶) |
| curfval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| curfval.d | ⊢ (𝜑 → 𝐷 ∈ Cat) |
| curfval.f | ⊢ (𝜑 → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) |
| curfval.b | ⊢ 𝐵 = (Base‘𝐷) |
| curf1.x | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| curf1.k | ⊢ 𝐾 = ((1st ‘𝐺)‘𝑋) |
| curf11.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| curf11 | ⊢ (𝜑 → ((1st ‘𝐾)‘𝑌) = (𝑋(1st ‘𝐹)𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | curfval.g | . . . 4 ⊢ 𝐺 = (〈𝐶, 𝐷〉 curryF 𝐹) | |
| 2 | curfval.a | . . . 4 ⊢ 𝐴 = (Base‘𝐶) | |
| 3 | curfval.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 4 | curfval.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ Cat) | |
| 5 | curfval.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) | |
| 6 | curfval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐷) | |
| 7 | curf1.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 8 | curf1.k | . . . 4 ⊢ 𝐾 = ((1st ‘𝐺)‘𝑋) | |
| 9 | eqid 2736 | . . . 4 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
| 10 | eqid 2736 | . . . 4 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
| 11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | curf1 18242 | . . 3 ⊢ (𝜑 → 𝐾 = 〈(𝑦 ∈ 𝐵 ↦ (𝑋(1st ‘𝐹)𝑦)), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(〈𝑋, 𝑦〉(2nd ‘𝐹)〈𝑋, 𝑧〉)𝑔)))〉) |
| 12 | 6 | fvexi 6895 | . . . . 5 ⊢ 𝐵 ∈ V |
| 13 | 12 | mptex 7220 | . . . 4 ⊢ (𝑦 ∈ 𝐵 ↦ (𝑋(1st ‘𝐹)𝑦)) ∈ V |
| 14 | 12, 12 | mpoex 8083 | . . . 4 ⊢ (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(〈𝑋, 𝑦〉(2nd ‘𝐹)〈𝑋, 𝑧〉)𝑔))) ∈ V |
| 15 | 13, 14 | op1std 8003 | . . 3 ⊢ (𝐾 = 〈(𝑦 ∈ 𝐵 ↦ (𝑋(1st ‘𝐹)𝑦)), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(〈𝑋, 𝑦〉(2nd ‘𝐹)〈𝑋, 𝑧〉)𝑔)))〉 → (1st ‘𝐾) = (𝑦 ∈ 𝐵 ↦ (𝑋(1st ‘𝐹)𝑦))) |
| 16 | 11, 15 | syl 17 | . 2 ⊢ (𝜑 → (1st ‘𝐾) = (𝑦 ∈ 𝐵 ↦ (𝑋(1st ‘𝐹)𝑦))) |
| 17 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑦 = 𝑌) → 𝑦 = 𝑌) | |
| 18 | 17 | oveq2d 7426 | . 2 ⊢ ((𝜑 ∧ 𝑦 = 𝑌) → (𝑋(1st ‘𝐹)𝑦) = (𝑋(1st ‘𝐹)𝑌)) |
| 19 | curf11.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 20 | ovexd 7445 | . 2 ⊢ (𝜑 → (𝑋(1st ‘𝐹)𝑌) ∈ V) | |
| 21 | 16, 18, 19, 20 | fvmptd 6998 | 1 ⊢ (𝜑 → ((1st ‘𝐾)‘𝑌) = (𝑋(1st ‘𝐹)𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3464 〈cop 4612 ↦ cmpt 5206 ‘cfv 6536 (class class class)co 7410 ∈ cmpo 7412 1st c1st 7991 2nd c2nd 7992 Basecbs 17233 Hom chom 17287 Catccat 17681 Idccid 17682 Func cfunc 17872 ×c cxpc 18185 curryF ccurf 18227 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-1st 7993 df-2nd 7994 df-curf 18231 |
| This theorem is referenced by: curf1cl 18245 curf2cl 18248 curfcl 18249 uncfcurf 18256 diag11 18260 yon11 18281 tposcurf11 49188 |
| Copyright terms: Public domain | W3C validator |