MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  curf11 Structured version   Visualization version   GIF version

Theorem curf11 18194
Description: Value of the double evaluated curry functor. (Contributed by Mario Carneiro, 12-Jan-2017.)
Hypotheses
Ref Expression
curfval.g 𝐺 = (⟨𝐶, 𝐷⟩ curryF 𝐹)
curfval.a 𝐴 = (Base‘𝐶)
curfval.c (𝜑𝐶 ∈ Cat)
curfval.d (𝜑𝐷 ∈ Cat)
curfval.f (𝜑𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
curfval.b 𝐵 = (Base‘𝐷)
curf1.x (𝜑𝑋𝐴)
curf1.k 𝐾 = ((1st𝐺)‘𝑋)
curf11.y (𝜑𝑌𝐵)
Assertion
Ref Expression
curf11 (𝜑 → ((1st𝐾)‘𝑌) = (𝑋(1st𝐹)𝑌))

Proof of Theorem curf11
Dummy variables 𝑔 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 curfval.g . . . 4 𝐺 = (⟨𝐶, 𝐷⟩ curryF 𝐹)
2 curfval.a . . . 4 𝐴 = (Base‘𝐶)
3 curfval.c . . . 4 (𝜑𝐶 ∈ Cat)
4 curfval.d . . . 4 (𝜑𝐷 ∈ Cat)
5 curfval.f . . . 4 (𝜑𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
6 curfval.b . . . 4 𝐵 = (Base‘𝐷)
7 curf1.x . . . 4 (𝜑𝑋𝐴)
8 curf1.k . . . 4 𝐾 = ((1st𝐺)‘𝑋)
9 eqid 2730 . . . 4 (Hom ‘𝐷) = (Hom ‘𝐷)
10 eqid 2730 . . . 4 (Id‘𝐶) = (Id‘𝐶)
111, 2, 3, 4, 5, 6, 7, 8, 9, 10curf1 18193 . . 3 (𝜑𝐾 = ⟨(𝑦𝐵 ↦ (𝑋(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)))⟩)
126fvexi 6875 . . . . 5 𝐵 ∈ V
1312mptex 7200 . . . 4 (𝑦𝐵 ↦ (𝑋(1st𝐹)𝑦)) ∈ V
1412, 12mpoex 8061 . . . 4 (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔))) ∈ V
1513, 14op1std 7981 . . 3 (𝐾 = ⟨(𝑦𝐵 ↦ (𝑋(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)))⟩ → (1st𝐾) = (𝑦𝐵 ↦ (𝑋(1st𝐹)𝑦)))
1611, 15syl 17 . 2 (𝜑 → (1st𝐾) = (𝑦𝐵 ↦ (𝑋(1st𝐹)𝑦)))
17 simpr 484 . . 3 ((𝜑𝑦 = 𝑌) → 𝑦 = 𝑌)
1817oveq2d 7406 . 2 ((𝜑𝑦 = 𝑌) → (𝑋(1st𝐹)𝑦) = (𝑋(1st𝐹)𝑌))
19 curf11.y . 2 (𝜑𝑌𝐵)
20 ovexd 7425 . 2 (𝜑 → (𝑋(1st𝐹)𝑌) ∈ V)
2116, 18, 19, 20fvmptd 6978 1 (𝜑 → ((1st𝐾)‘𝑌) = (𝑋(1st𝐹)𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  cop 4598  cmpt 5191  cfv 6514  (class class class)co 7390  cmpo 7392  1st c1st 7969  2nd c2nd 7970  Basecbs 17186  Hom chom 17238  Catccat 17632  Idccid 17633   Func cfunc 17823   ×c cxpc 18136   curryF ccurf 18178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-curf 18182
This theorem is referenced by:  curf1cl  18196  curf2cl  18199  curfcl  18200  uncfcurf  18207  diag11  18211  yon11  18232  tposcurf11  49290
  Copyright terms: Public domain W3C validator