|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > curf11 | Structured version Visualization version GIF version | ||
| Description: Value of the double evaluated curry functor. (Contributed by Mario Carneiro, 12-Jan-2017.) | 
| Ref | Expression | 
|---|---|
| curfval.g | ⊢ 𝐺 = (〈𝐶, 𝐷〉 curryF 𝐹) | 
| curfval.a | ⊢ 𝐴 = (Base‘𝐶) | 
| curfval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) | 
| curfval.d | ⊢ (𝜑 → 𝐷 ∈ Cat) | 
| curfval.f | ⊢ (𝜑 → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) | 
| curfval.b | ⊢ 𝐵 = (Base‘𝐷) | 
| curf1.x | ⊢ (𝜑 → 𝑋 ∈ 𝐴) | 
| curf1.k | ⊢ 𝐾 = ((1st ‘𝐺)‘𝑋) | 
| curf11.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) | 
| Ref | Expression | 
|---|---|
| curf11 | ⊢ (𝜑 → ((1st ‘𝐾)‘𝑌) = (𝑋(1st ‘𝐹)𝑌)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | curfval.g | . . . 4 ⊢ 𝐺 = (〈𝐶, 𝐷〉 curryF 𝐹) | |
| 2 | curfval.a | . . . 4 ⊢ 𝐴 = (Base‘𝐶) | |
| 3 | curfval.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 4 | curfval.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ Cat) | |
| 5 | curfval.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) | |
| 6 | curfval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐷) | |
| 7 | curf1.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 8 | curf1.k | . . . 4 ⊢ 𝐾 = ((1st ‘𝐺)‘𝑋) | |
| 9 | eqid 2736 | . . . 4 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
| 10 | eqid 2736 | . . . 4 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
| 11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | curf1 18271 | . . 3 ⊢ (𝜑 → 𝐾 = 〈(𝑦 ∈ 𝐵 ↦ (𝑋(1st ‘𝐹)𝑦)), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(〈𝑋, 𝑦〉(2nd ‘𝐹)〈𝑋, 𝑧〉)𝑔)))〉) | 
| 12 | 6 | fvexi 6919 | . . . . 5 ⊢ 𝐵 ∈ V | 
| 13 | 12 | mptex 7244 | . . . 4 ⊢ (𝑦 ∈ 𝐵 ↦ (𝑋(1st ‘𝐹)𝑦)) ∈ V | 
| 14 | 12, 12 | mpoex 8105 | . . . 4 ⊢ (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(〈𝑋, 𝑦〉(2nd ‘𝐹)〈𝑋, 𝑧〉)𝑔))) ∈ V | 
| 15 | 13, 14 | op1std 8025 | . . 3 ⊢ (𝐾 = 〈(𝑦 ∈ 𝐵 ↦ (𝑋(1st ‘𝐹)𝑦)), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(〈𝑋, 𝑦〉(2nd ‘𝐹)〈𝑋, 𝑧〉)𝑔)))〉 → (1st ‘𝐾) = (𝑦 ∈ 𝐵 ↦ (𝑋(1st ‘𝐹)𝑦))) | 
| 16 | 11, 15 | syl 17 | . 2 ⊢ (𝜑 → (1st ‘𝐾) = (𝑦 ∈ 𝐵 ↦ (𝑋(1st ‘𝐹)𝑦))) | 
| 17 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑦 = 𝑌) → 𝑦 = 𝑌) | |
| 18 | 17 | oveq2d 7448 | . 2 ⊢ ((𝜑 ∧ 𝑦 = 𝑌) → (𝑋(1st ‘𝐹)𝑦) = (𝑋(1st ‘𝐹)𝑌)) | 
| 19 | curf11.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 20 | ovexd 7467 | . 2 ⊢ (𝜑 → (𝑋(1st ‘𝐹)𝑌) ∈ V) | |
| 21 | 16, 18, 19, 20 | fvmptd 7022 | 1 ⊢ (𝜑 → ((1st ‘𝐾)‘𝑌) = (𝑋(1st ‘𝐹)𝑌)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 Vcvv 3479 〈cop 4631 ↦ cmpt 5224 ‘cfv 6560 (class class class)co 7432 ∈ cmpo 7434 1st c1st 8013 2nd c2nd 8014 Basecbs 17248 Hom chom 17309 Catccat 17708 Idccid 17709 Func cfunc 17900 ×c cxpc 18214 curryF ccurf 18256 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-ov 7435 df-oprab 7436 df-mpo 7437 df-1st 8015 df-2nd 8016 df-curf 18260 | 
| This theorem is referenced by: curf1cl 18274 curf2cl 18277 curfcl 18278 uncfcurf 18285 diag11 18289 yon11 18310 tposcurf11 49015 | 
| Copyright terms: Public domain | W3C validator |