![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > curf11 | Structured version Visualization version GIF version |
Description: Value of the double evaluated curry functor. (Contributed by Mario Carneiro, 12-Jan-2017.) |
Ref | Expression |
---|---|
curfval.g | ⊢ 𝐺 = (⟨𝐶, 𝐷⟩ curryF 𝐹) |
curfval.a | ⊢ 𝐴 = (Base‘𝐶) |
curfval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
curfval.d | ⊢ (𝜑 → 𝐷 ∈ Cat) |
curfval.f | ⊢ (𝜑 → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) |
curfval.b | ⊢ 𝐵 = (Base‘𝐷) |
curf1.x | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
curf1.k | ⊢ 𝐾 = ((1st ‘𝐺)‘𝑋) |
curf11.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
curf11 | ⊢ (𝜑 → ((1st ‘𝐾)‘𝑌) = (𝑋(1st ‘𝐹)𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | curfval.g | . . . 4 ⊢ 𝐺 = (⟨𝐶, 𝐷⟩ curryF 𝐹) | |
2 | curfval.a | . . . 4 ⊢ 𝐴 = (Base‘𝐶) | |
3 | curfval.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
4 | curfval.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ Cat) | |
5 | curfval.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) | |
6 | curfval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐷) | |
7 | curf1.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
8 | curf1.k | . . . 4 ⊢ 𝐾 = ((1st ‘𝐺)‘𝑋) | |
9 | eqid 2732 | . . . 4 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
10 | eqid 2732 | . . . 4 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | curf1 18174 | . . 3 ⊢ (𝜑 → 𝐾 = ⟨(𝑦 ∈ 𝐵 ↦ (𝑋(1st ‘𝐹)𝑦)), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd ‘𝐹)⟨𝑋, 𝑧⟩)𝑔)))⟩) |
12 | 6 | fvexi 6902 | . . . . 5 ⊢ 𝐵 ∈ V |
13 | 12 | mptex 7221 | . . . 4 ⊢ (𝑦 ∈ 𝐵 ↦ (𝑋(1st ‘𝐹)𝑦)) ∈ V |
14 | 12, 12 | mpoex 8062 | . . . 4 ⊢ (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd ‘𝐹)⟨𝑋, 𝑧⟩)𝑔))) ∈ V |
15 | 13, 14 | op1std 7981 | . . 3 ⊢ (𝐾 = ⟨(𝑦 ∈ 𝐵 ↦ (𝑋(1st ‘𝐹)𝑦)), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd ‘𝐹)⟨𝑋, 𝑧⟩)𝑔)))⟩ → (1st ‘𝐾) = (𝑦 ∈ 𝐵 ↦ (𝑋(1st ‘𝐹)𝑦))) |
16 | 11, 15 | syl 17 | . 2 ⊢ (𝜑 → (1st ‘𝐾) = (𝑦 ∈ 𝐵 ↦ (𝑋(1st ‘𝐹)𝑦))) |
17 | simpr 485 | . . 3 ⊢ ((𝜑 ∧ 𝑦 = 𝑌) → 𝑦 = 𝑌) | |
18 | 17 | oveq2d 7421 | . 2 ⊢ ((𝜑 ∧ 𝑦 = 𝑌) → (𝑋(1st ‘𝐹)𝑦) = (𝑋(1st ‘𝐹)𝑌)) |
19 | curf11.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
20 | ovexd 7440 | . 2 ⊢ (𝜑 → (𝑋(1st ‘𝐹)𝑌) ∈ V) | |
21 | 16, 18, 19, 20 | fvmptd 7002 | 1 ⊢ (𝜑 → ((1st ‘𝐾)‘𝑌) = (𝑋(1st ‘𝐹)𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 Vcvv 3474 ⟨cop 4633 ↦ cmpt 5230 ‘cfv 6540 (class class class)co 7405 ∈ cmpo 7407 1st c1st 7969 2nd c2nd 7970 Basecbs 17140 Hom chom 17204 Catccat 17604 Idccid 17605 Func cfunc 17800 ×c cxpc 18116 curryF ccurf 18159 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7971 df-2nd 7972 df-curf 18163 |
This theorem is referenced by: curf1cl 18177 curf2cl 18180 curfcl 18181 uncfcurf 18188 diag11 18192 yon11 18213 |
Copyright terms: Public domain | W3C validator |