![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cusgrfilem3 | Structured version Visualization version GIF version |
Description: Lemma 3 for cusgrfi 29491. (Contributed by Alexander van der Vekens, 13-Jan-2018.) (Revised by AV, 11-Nov-2020.) |
Ref | Expression |
---|---|
cusgrfi.v | ⊢ 𝑉 = (Vtx‘𝐺) |
cusgrfi.p | ⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ ∃𝑎 ∈ 𝑉 (𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁})} |
cusgrfi.f | ⊢ 𝐹 = (𝑥 ∈ (𝑉 ∖ {𝑁}) ↦ {𝑥, 𝑁}) |
Ref | Expression |
---|---|
cusgrfilem3 | ⊢ (𝑁 ∈ 𝑉 → (𝑉 ∈ Fin ↔ 𝑃 ∈ Fin)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | diffi 9214 | . . 3 ⊢ (𝑉 ∈ Fin → (𝑉 ∖ {𝑁}) ∈ Fin) | |
2 | simpr 484 | . . . . . 6 ⊢ ((𝑁 ∈ 𝑉 ∧ ¬ 𝑉 ∈ Fin) → ¬ 𝑉 ∈ Fin) | |
3 | snfi 9082 | . . . . . 6 ⊢ {𝑁} ∈ Fin | |
4 | difinf 9347 | . . . . . 6 ⊢ ((¬ 𝑉 ∈ Fin ∧ {𝑁} ∈ Fin) → ¬ (𝑉 ∖ {𝑁}) ∈ Fin) | |
5 | 2, 3, 4 | sylancl 586 | . . . . 5 ⊢ ((𝑁 ∈ 𝑉 ∧ ¬ 𝑉 ∈ Fin) → ¬ (𝑉 ∖ {𝑁}) ∈ Fin) |
6 | 5 | ex 412 | . . . 4 ⊢ (𝑁 ∈ 𝑉 → (¬ 𝑉 ∈ Fin → ¬ (𝑉 ∖ {𝑁}) ∈ Fin)) |
7 | 6 | con4d 115 | . . 3 ⊢ (𝑁 ∈ 𝑉 → ((𝑉 ∖ {𝑁}) ∈ Fin → 𝑉 ∈ Fin)) |
8 | 1, 7 | impbid2 226 | . 2 ⊢ (𝑁 ∈ 𝑉 → (𝑉 ∈ Fin ↔ (𝑉 ∖ {𝑁}) ∈ Fin)) |
9 | cusgrfi.f | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ (𝑉 ∖ {𝑁}) ↦ {𝑥, 𝑁}) | |
10 | cusgrfi.v | . . . . . . . . 9 ⊢ 𝑉 = (Vtx‘𝐺) | |
11 | 10 | fvexi 6921 | . . . . . . . 8 ⊢ 𝑉 ∈ V |
12 | 11 | difexi 5336 | . . . . . . 7 ⊢ (𝑉 ∖ {𝑁}) ∈ V |
13 | mptexg 7241 | . . . . . . 7 ⊢ ((𝑉 ∖ {𝑁}) ∈ V → (𝑥 ∈ (𝑉 ∖ {𝑁}) ↦ {𝑥, 𝑁}) ∈ V) | |
14 | 12, 13 | mp1i 13 | . . . . . 6 ⊢ (𝑁 ∈ 𝑉 → (𝑥 ∈ (𝑉 ∖ {𝑁}) ↦ {𝑥, 𝑁}) ∈ V) |
15 | 9, 14 | eqeltrid 2843 | . . . . 5 ⊢ (𝑁 ∈ 𝑉 → 𝐹 ∈ V) |
16 | cusgrfi.p | . . . . . 6 ⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ ∃𝑎 ∈ 𝑉 (𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁})} | |
17 | 10, 16, 9 | cusgrfilem2 29489 | . . . . 5 ⊢ (𝑁 ∈ 𝑉 → 𝐹:(𝑉 ∖ {𝑁})–1-1-onto→𝑃) |
18 | f1oeq1 6837 | . . . . 5 ⊢ (𝑓 = 𝐹 → (𝑓:(𝑉 ∖ {𝑁})–1-1-onto→𝑃 ↔ 𝐹:(𝑉 ∖ {𝑁})–1-1-onto→𝑃)) | |
19 | 15, 17, 18 | spcedv 3598 | . . . 4 ⊢ (𝑁 ∈ 𝑉 → ∃𝑓 𝑓:(𝑉 ∖ {𝑁})–1-1-onto→𝑃) |
20 | bren 8994 | . . . 4 ⊢ ((𝑉 ∖ {𝑁}) ≈ 𝑃 ↔ ∃𝑓 𝑓:(𝑉 ∖ {𝑁})–1-1-onto→𝑃) | |
21 | 19, 20 | sylibr 234 | . . 3 ⊢ (𝑁 ∈ 𝑉 → (𝑉 ∖ {𝑁}) ≈ 𝑃) |
22 | enfi 9225 | . . 3 ⊢ ((𝑉 ∖ {𝑁}) ≈ 𝑃 → ((𝑉 ∖ {𝑁}) ∈ Fin ↔ 𝑃 ∈ Fin)) | |
23 | 21, 22 | syl 17 | . 2 ⊢ (𝑁 ∈ 𝑉 → ((𝑉 ∖ {𝑁}) ∈ Fin ↔ 𝑃 ∈ Fin)) |
24 | 8, 23 | bitrd 279 | 1 ⊢ (𝑁 ∈ 𝑉 → (𝑉 ∈ Fin ↔ 𝑃 ∈ Fin)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∃wex 1776 ∈ wcel 2106 ≠ wne 2938 ∃wrex 3068 {crab 3433 Vcvv 3478 ∖ cdif 3960 𝒫 cpw 4605 {csn 4631 {cpr 4633 class class class wbr 5148 ↦ cmpt 5231 –1-1-onto→wf1o 6562 ‘cfv 6563 ≈ cen 8981 Fincfn 8984 Vtxcvtx 29028 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-om 7888 df-1o 8505 df-en 8985 df-fin 8988 |
This theorem is referenced by: cusgrfi 29491 |
Copyright terms: Public domain | W3C validator |