MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cusgrfilem3 Structured version   Visualization version   GIF version

Theorem cusgrfilem3 29490
Description: Lemma 3 for cusgrfi 29491. (Contributed by Alexander van der Vekens, 13-Jan-2018.) (Revised by AV, 11-Nov-2020.)
Hypotheses
Ref Expression
cusgrfi.v 𝑉 = (Vtx‘𝐺)
cusgrfi.p 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ ∃𝑎𝑉 (𝑎𝑁𝑥 = {𝑎, 𝑁})}
cusgrfi.f 𝐹 = (𝑥 ∈ (𝑉 ∖ {𝑁}) ↦ {𝑥, 𝑁})
Assertion
Ref Expression
cusgrfilem3 (𝑁𝑉 → (𝑉 ∈ Fin ↔ 𝑃 ∈ Fin))
Distinct variable groups:   𝑥,𝐺   𝑁,𝑎,𝑥   𝑉,𝑎,𝑥   𝑥,𝑃
Allowed substitution hints:   𝑃(𝑎)   𝐹(𝑥,𝑎)   𝐺(𝑎)

Proof of Theorem cusgrfilem3
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 diffi 9214 . . 3 (𝑉 ∈ Fin → (𝑉 ∖ {𝑁}) ∈ Fin)
2 simpr 484 . . . . . 6 ((𝑁𝑉 ∧ ¬ 𝑉 ∈ Fin) → ¬ 𝑉 ∈ Fin)
3 snfi 9082 . . . . . 6 {𝑁} ∈ Fin
4 difinf 9347 . . . . . 6 ((¬ 𝑉 ∈ Fin ∧ {𝑁} ∈ Fin) → ¬ (𝑉 ∖ {𝑁}) ∈ Fin)
52, 3, 4sylancl 586 . . . . 5 ((𝑁𝑉 ∧ ¬ 𝑉 ∈ Fin) → ¬ (𝑉 ∖ {𝑁}) ∈ Fin)
65ex 412 . . . 4 (𝑁𝑉 → (¬ 𝑉 ∈ Fin → ¬ (𝑉 ∖ {𝑁}) ∈ Fin))
76con4d 115 . . 3 (𝑁𝑉 → ((𝑉 ∖ {𝑁}) ∈ Fin → 𝑉 ∈ Fin))
81, 7impbid2 226 . 2 (𝑁𝑉 → (𝑉 ∈ Fin ↔ (𝑉 ∖ {𝑁}) ∈ Fin))
9 cusgrfi.f . . . . . 6 𝐹 = (𝑥 ∈ (𝑉 ∖ {𝑁}) ↦ {𝑥, 𝑁})
10 cusgrfi.v . . . . . . . . 9 𝑉 = (Vtx‘𝐺)
1110fvexi 6921 . . . . . . . 8 𝑉 ∈ V
1211difexi 5336 . . . . . . 7 (𝑉 ∖ {𝑁}) ∈ V
13 mptexg 7241 . . . . . . 7 ((𝑉 ∖ {𝑁}) ∈ V → (𝑥 ∈ (𝑉 ∖ {𝑁}) ↦ {𝑥, 𝑁}) ∈ V)
1412, 13mp1i 13 . . . . . 6 (𝑁𝑉 → (𝑥 ∈ (𝑉 ∖ {𝑁}) ↦ {𝑥, 𝑁}) ∈ V)
159, 14eqeltrid 2843 . . . . 5 (𝑁𝑉𝐹 ∈ V)
16 cusgrfi.p . . . . . 6 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ ∃𝑎𝑉 (𝑎𝑁𝑥 = {𝑎, 𝑁})}
1710, 16, 9cusgrfilem2 29489 . . . . 5 (𝑁𝑉𝐹:(𝑉 ∖ {𝑁})–1-1-onto𝑃)
18 f1oeq1 6837 . . . . 5 (𝑓 = 𝐹 → (𝑓:(𝑉 ∖ {𝑁})–1-1-onto𝑃𝐹:(𝑉 ∖ {𝑁})–1-1-onto𝑃))
1915, 17, 18spcedv 3598 . . . 4 (𝑁𝑉 → ∃𝑓 𝑓:(𝑉 ∖ {𝑁})–1-1-onto𝑃)
20 bren 8994 . . . 4 ((𝑉 ∖ {𝑁}) ≈ 𝑃 ↔ ∃𝑓 𝑓:(𝑉 ∖ {𝑁})–1-1-onto𝑃)
2119, 20sylibr 234 . . 3 (𝑁𝑉 → (𝑉 ∖ {𝑁}) ≈ 𝑃)
22 enfi 9225 . . 3 ((𝑉 ∖ {𝑁}) ≈ 𝑃 → ((𝑉 ∖ {𝑁}) ∈ Fin ↔ 𝑃 ∈ Fin))
2321, 22syl 17 . 2 (𝑁𝑉 → ((𝑉 ∖ {𝑁}) ∈ Fin ↔ 𝑃 ∈ Fin))
248, 23bitrd 279 1 (𝑁𝑉 → (𝑉 ∈ Fin ↔ 𝑃 ∈ Fin))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wex 1776  wcel 2106  wne 2938  wrex 3068  {crab 3433  Vcvv 3478  cdif 3960  𝒫 cpw 4605  {csn 4631  {cpr 4633   class class class wbr 5148  cmpt 5231  1-1-ontowf1o 6562  cfv 6563  cen 8981  Fincfn 8984  Vtxcvtx 29028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-om 7888  df-1o 8505  df-en 8985  df-fin 8988
This theorem is referenced by:  cusgrfi  29491
  Copyright terms: Public domain W3C validator