Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cusgrfilem3 | Structured version Visualization version GIF version |
Description: Lemma 3 for cusgrfi 27825. (Contributed by Alexander van der Vekens, 13-Jan-2018.) (Revised by AV, 11-Nov-2020.) |
Ref | Expression |
---|---|
cusgrfi.v | ⊢ 𝑉 = (Vtx‘𝐺) |
cusgrfi.p | ⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ ∃𝑎 ∈ 𝑉 (𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁})} |
cusgrfi.f | ⊢ 𝐹 = (𝑥 ∈ (𝑉 ∖ {𝑁}) ↦ {𝑥, 𝑁}) |
Ref | Expression |
---|---|
cusgrfilem3 | ⊢ (𝑁 ∈ 𝑉 → (𝑉 ∈ Fin ↔ 𝑃 ∈ Fin)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | diffi 8962 | . . 3 ⊢ (𝑉 ∈ Fin → (𝑉 ∖ {𝑁}) ∈ Fin) | |
2 | simpr 485 | . . . . . 6 ⊢ ((𝑁 ∈ 𝑉 ∧ ¬ 𝑉 ∈ Fin) → ¬ 𝑉 ∈ Fin) | |
3 | snfi 8834 | . . . . . 6 ⊢ {𝑁} ∈ Fin | |
4 | difinf 9084 | . . . . . 6 ⊢ ((¬ 𝑉 ∈ Fin ∧ {𝑁} ∈ Fin) → ¬ (𝑉 ∖ {𝑁}) ∈ Fin) | |
5 | 2, 3, 4 | sylancl 586 | . . . . 5 ⊢ ((𝑁 ∈ 𝑉 ∧ ¬ 𝑉 ∈ Fin) → ¬ (𝑉 ∖ {𝑁}) ∈ Fin) |
6 | 5 | ex 413 | . . . 4 ⊢ (𝑁 ∈ 𝑉 → (¬ 𝑉 ∈ Fin → ¬ (𝑉 ∖ {𝑁}) ∈ Fin)) |
7 | 6 | con4d 115 | . . 3 ⊢ (𝑁 ∈ 𝑉 → ((𝑉 ∖ {𝑁}) ∈ Fin → 𝑉 ∈ Fin)) |
8 | 1, 7 | impbid2 225 | . 2 ⊢ (𝑁 ∈ 𝑉 → (𝑉 ∈ Fin ↔ (𝑉 ∖ {𝑁}) ∈ Fin)) |
9 | cusgrfi.f | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ (𝑉 ∖ {𝑁}) ↦ {𝑥, 𝑁}) | |
10 | cusgrfi.v | . . . . . . . . 9 ⊢ 𝑉 = (Vtx‘𝐺) | |
11 | 10 | fvexi 6788 | . . . . . . . 8 ⊢ 𝑉 ∈ V |
12 | 11 | difexi 5252 | . . . . . . 7 ⊢ (𝑉 ∖ {𝑁}) ∈ V |
13 | mptexg 7097 | . . . . . . 7 ⊢ ((𝑉 ∖ {𝑁}) ∈ V → (𝑥 ∈ (𝑉 ∖ {𝑁}) ↦ {𝑥, 𝑁}) ∈ V) | |
14 | 12, 13 | mp1i 13 | . . . . . 6 ⊢ (𝑁 ∈ 𝑉 → (𝑥 ∈ (𝑉 ∖ {𝑁}) ↦ {𝑥, 𝑁}) ∈ V) |
15 | 9, 14 | eqeltrid 2843 | . . . . 5 ⊢ (𝑁 ∈ 𝑉 → 𝐹 ∈ V) |
16 | cusgrfi.p | . . . . . 6 ⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ ∃𝑎 ∈ 𝑉 (𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁})} | |
17 | 10, 16, 9 | cusgrfilem2 27823 | . . . . 5 ⊢ (𝑁 ∈ 𝑉 → 𝐹:(𝑉 ∖ {𝑁})–1-1-onto→𝑃) |
18 | f1oeq1 6704 | . . . . 5 ⊢ (𝑓 = 𝐹 → (𝑓:(𝑉 ∖ {𝑁})–1-1-onto→𝑃 ↔ 𝐹:(𝑉 ∖ {𝑁})–1-1-onto→𝑃)) | |
19 | 15, 17, 18 | spcedv 3537 | . . . 4 ⊢ (𝑁 ∈ 𝑉 → ∃𝑓 𝑓:(𝑉 ∖ {𝑁})–1-1-onto→𝑃) |
20 | bren 8743 | . . . 4 ⊢ ((𝑉 ∖ {𝑁}) ≈ 𝑃 ↔ ∃𝑓 𝑓:(𝑉 ∖ {𝑁})–1-1-onto→𝑃) | |
21 | 19, 20 | sylibr 233 | . . 3 ⊢ (𝑁 ∈ 𝑉 → (𝑉 ∖ {𝑁}) ≈ 𝑃) |
22 | enfi 8973 | . . 3 ⊢ ((𝑉 ∖ {𝑁}) ≈ 𝑃 → ((𝑉 ∖ {𝑁}) ∈ Fin ↔ 𝑃 ∈ Fin)) | |
23 | 21, 22 | syl 17 | . 2 ⊢ (𝑁 ∈ 𝑉 → ((𝑉 ∖ {𝑁}) ∈ Fin ↔ 𝑃 ∈ Fin)) |
24 | 8, 23 | bitrd 278 | 1 ⊢ (𝑁 ∈ 𝑉 → (𝑉 ∈ Fin ↔ 𝑃 ∈ Fin)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∃wex 1782 ∈ wcel 2106 ≠ wne 2943 ∃wrex 3065 {crab 3068 Vcvv 3432 ∖ cdif 3884 𝒫 cpw 4533 {csn 4561 {cpr 4563 class class class wbr 5074 ↦ cmpt 5157 –1-1-onto→wf1o 6432 ‘cfv 6433 ≈ cen 8730 Fincfn 8733 Vtxcvtx 27366 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-om 7713 df-1o 8297 df-en 8734 df-fin 8737 |
This theorem is referenced by: cusgrfi 27825 |
Copyright terms: Public domain | W3C validator |