MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cusgrfilem3 Structured version   Visualization version   GIF version

Theorem cusgrfilem3 29245
Description: Lemma 3 for cusgrfi 29246. (Contributed by Alexander van der Vekens, 13-Jan-2018.) (Revised by AV, 11-Nov-2020.)
Hypotheses
Ref Expression
cusgrfi.v 𝑉 = (Vtx‘𝐺)
cusgrfi.p 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ ∃𝑎 ∈ 𝑉 (𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁})}
cusgrfi.f 𝐹 = (𝑥 ∈ (𝑉 ∖ {𝑁}) ↩ {𝑥, 𝑁})
Assertion
Ref Expression
cusgrfilem3 (𝑁 ∈ 𝑉 → (𝑉 ∈ Fin ↔ 𝑃 ∈ Fin))
Distinct variable groups:   𝑥,𝐺   𝑁,𝑎,𝑥   𝑉,𝑎,𝑥   𝑥,𝑃
Allowed substitution hints:   𝑃(𝑎)   𝐹(𝑥,𝑎)   𝐺(𝑎)

Proof of Theorem cusgrfilem3
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 diffi 9193 . . 3 (𝑉 ∈ Fin → (𝑉 ∖ {𝑁}) ∈ Fin)
2 simpr 484 . . . . . 6 ((𝑁 ∈ 𝑉 ∧ ¬ 𝑉 ∈ Fin) → ¬ 𝑉 ∈ Fin)
3 snfi 9058 . . . . . 6 {𝑁} ∈ Fin
4 difinf 9330 . . . . . 6 ((¬ 𝑉 ∈ Fin ∧ {𝑁} ∈ Fin) → ¬ (𝑉 ∖ {𝑁}) ∈ Fin)
52, 3, 4sylancl 585 . . . . 5 ((𝑁 ∈ 𝑉 ∧ ¬ 𝑉 ∈ Fin) → ¬ (𝑉 ∖ {𝑁}) ∈ Fin)
65ex 412 . . . 4 (𝑁 ∈ 𝑉 → (¬ 𝑉 ∈ Fin → ¬ (𝑉 ∖ {𝑁}) ∈ Fin))
76con4d 115 . . 3 (𝑁 ∈ 𝑉 → ((𝑉 ∖ {𝑁}) ∈ Fin → 𝑉 ∈ Fin))
81, 7impbid2 225 . 2 (𝑁 ∈ 𝑉 → (𝑉 ∈ Fin ↔ (𝑉 ∖ {𝑁}) ∈ Fin))
9 cusgrfi.f . . . . . 6 𝐹 = (𝑥 ∈ (𝑉 ∖ {𝑁}) ↩ {𝑥, 𝑁})
10 cusgrfi.v . . . . . . . . 9 𝑉 = (Vtx‘𝐺)
1110fvexi 6905 . . . . . . . 8 𝑉 ∈ V
1211difexi 5324 . . . . . . 7 (𝑉 ∖ {𝑁}) ∈ V
13 mptexg 7227 . . . . . . 7 ((𝑉 ∖ {𝑁}) ∈ V → (𝑥 ∈ (𝑉 ∖ {𝑁}) ↩ {𝑥, 𝑁}) ∈ V)
1412, 13mp1i 13 . . . . . 6 (𝑁 ∈ 𝑉 → (𝑥 ∈ (𝑉 ∖ {𝑁}) ↩ {𝑥, 𝑁}) ∈ V)
159, 14eqeltrid 2832 . . . . 5 (𝑁 ∈ 𝑉 → 𝐹 ∈ V)
16 cusgrfi.p . . . . . 6 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ ∃𝑎 ∈ 𝑉 (𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁})}
1710, 16, 9cusgrfilem2 29244 . . . . 5 (𝑁 ∈ 𝑉 → 𝐹:(𝑉 ∖ {𝑁})–1-1-onto→𝑃)
18 f1oeq1 6821 . . . . 5 (𝑓 = 𝐹 → (𝑓:(𝑉 ∖ {𝑁})–1-1-onto→𝑃 ↔ 𝐹:(𝑉 ∖ {𝑁})–1-1-onto→𝑃))
1915, 17, 18spcedv 3583 . . . 4 (𝑁 ∈ 𝑉 → ∃𝑓 𝑓:(𝑉 ∖ {𝑁})–1-1-onto→𝑃)
20 bren 8963 . . . 4 ((𝑉 ∖ {𝑁}) ≈ 𝑃 ↔ ∃𝑓 𝑓:(𝑉 ∖ {𝑁})–1-1-onto→𝑃)
2119, 20sylibr 233 . . 3 (𝑁 ∈ 𝑉 → (𝑉 ∖ {𝑁}) ≈ 𝑃)
22 enfi 9204 . . 3 ((𝑉 ∖ {𝑁}) ≈ 𝑃 → ((𝑉 ∖ {𝑁}) ∈ Fin ↔ 𝑃 ∈ Fin))
2321, 22syl 17 . 2 (𝑁 ∈ 𝑉 → ((𝑉 ∖ {𝑁}) ∈ Fin ↔ 𝑃 ∈ Fin))
248, 23bitrd 279 1 (𝑁 ∈ 𝑉 → (𝑉 ∈ Fin ↔ 𝑃 ∈ Fin))
Colors of variables: wff setvar class
Syntax hints:  Â¬ wn 3   → wi 4   ↔ wb 205   ∧ wa 395   = wceq 1534  âˆƒwex 1774   ∈ wcel 2099   ≠ wne 2935  âˆƒwrex 3065  {crab 3427  Vcvv 3469   ∖ cdif 3941  ð’« cpw 4598  {csn 4624  {cpr 4626   class class class wbr 5142   ↩ cmpt 5225  â€“1-1-onto→wf1o 6541  â€˜cfv 6542   ≈ cen 8950  Fincfn 8953  Vtxcvtx 28783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pr 5423  ax-un 7732
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-om 7863  df-1o 8478  df-en 8954  df-fin 8957
This theorem is referenced by:  cusgrfi  29246
  Copyright terms: Public domain W3C validator