| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cusgrfilem3 | Structured version Visualization version GIF version | ||
| Description: Lemma 3 for cusgrfi 29393. (Contributed by Alexander van der Vekens, 13-Jan-2018.) (Revised by AV, 11-Nov-2020.) |
| Ref | Expression |
|---|---|
| cusgrfi.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| cusgrfi.p | ⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ ∃𝑎 ∈ 𝑉 (𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁})} |
| cusgrfi.f | ⊢ 𝐹 = (𝑥 ∈ (𝑉 ∖ {𝑁}) ↦ {𝑥, 𝑁}) |
| Ref | Expression |
|---|---|
| cusgrfilem3 | ⊢ (𝑁 ∈ 𝑉 → (𝑉 ∈ Fin ↔ 𝑃 ∈ Fin)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | diffi 9145 | . . 3 ⊢ (𝑉 ∈ Fin → (𝑉 ∖ {𝑁}) ∈ Fin) | |
| 2 | simpr 484 | . . . . . 6 ⊢ ((𝑁 ∈ 𝑉 ∧ ¬ 𝑉 ∈ Fin) → ¬ 𝑉 ∈ Fin) | |
| 3 | snfi 9017 | . . . . . 6 ⊢ {𝑁} ∈ Fin | |
| 4 | difinf 9267 | . . . . . 6 ⊢ ((¬ 𝑉 ∈ Fin ∧ {𝑁} ∈ Fin) → ¬ (𝑉 ∖ {𝑁}) ∈ Fin) | |
| 5 | 2, 3, 4 | sylancl 586 | . . . . 5 ⊢ ((𝑁 ∈ 𝑉 ∧ ¬ 𝑉 ∈ Fin) → ¬ (𝑉 ∖ {𝑁}) ∈ Fin) |
| 6 | 5 | ex 412 | . . . 4 ⊢ (𝑁 ∈ 𝑉 → (¬ 𝑉 ∈ Fin → ¬ (𝑉 ∖ {𝑁}) ∈ Fin)) |
| 7 | 6 | con4d 115 | . . 3 ⊢ (𝑁 ∈ 𝑉 → ((𝑉 ∖ {𝑁}) ∈ Fin → 𝑉 ∈ Fin)) |
| 8 | 1, 7 | impbid2 226 | . 2 ⊢ (𝑁 ∈ 𝑉 → (𝑉 ∈ Fin ↔ (𝑉 ∖ {𝑁}) ∈ Fin)) |
| 9 | cusgrfi.f | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ (𝑉 ∖ {𝑁}) ↦ {𝑥, 𝑁}) | |
| 10 | cusgrfi.v | . . . . . . . . 9 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 11 | 10 | fvexi 6875 | . . . . . . . 8 ⊢ 𝑉 ∈ V |
| 12 | 11 | difexi 5288 | . . . . . . 7 ⊢ (𝑉 ∖ {𝑁}) ∈ V |
| 13 | mptexg 7198 | . . . . . . 7 ⊢ ((𝑉 ∖ {𝑁}) ∈ V → (𝑥 ∈ (𝑉 ∖ {𝑁}) ↦ {𝑥, 𝑁}) ∈ V) | |
| 14 | 12, 13 | mp1i 13 | . . . . . 6 ⊢ (𝑁 ∈ 𝑉 → (𝑥 ∈ (𝑉 ∖ {𝑁}) ↦ {𝑥, 𝑁}) ∈ V) |
| 15 | 9, 14 | eqeltrid 2833 | . . . . 5 ⊢ (𝑁 ∈ 𝑉 → 𝐹 ∈ V) |
| 16 | cusgrfi.p | . . . . . 6 ⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ ∃𝑎 ∈ 𝑉 (𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁})} | |
| 17 | 10, 16, 9 | cusgrfilem2 29391 | . . . . 5 ⊢ (𝑁 ∈ 𝑉 → 𝐹:(𝑉 ∖ {𝑁})–1-1-onto→𝑃) |
| 18 | f1oeq1 6791 | . . . . 5 ⊢ (𝑓 = 𝐹 → (𝑓:(𝑉 ∖ {𝑁})–1-1-onto→𝑃 ↔ 𝐹:(𝑉 ∖ {𝑁})–1-1-onto→𝑃)) | |
| 19 | 15, 17, 18 | spcedv 3567 | . . . 4 ⊢ (𝑁 ∈ 𝑉 → ∃𝑓 𝑓:(𝑉 ∖ {𝑁})–1-1-onto→𝑃) |
| 20 | bren 8931 | . . . 4 ⊢ ((𝑉 ∖ {𝑁}) ≈ 𝑃 ↔ ∃𝑓 𝑓:(𝑉 ∖ {𝑁})–1-1-onto→𝑃) | |
| 21 | 19, 20 | sylibr 234 | . . 3 ⊢ (𝑁 ∈ 𝑉 → (𝑉 ∖ {𝑁}) ≈ 𝑃) |
| 22 | enfi 9157 | . . 3 ⊢ ((𝑉 ∖ {𝑁}) ≈ 𝑃 → ((𝑉 ∖ {𝑁}) ∈ Fin ↔ 𝑃 ∈ Fin)) | |
| 23 | 21, 22 | syl 17 | . 2 ⊢ (𝑁 ∈ 𝑉 → ((𝑉 ∖ {𝑁}) ∈ Fin ↔ 𝑃 ∈ Fin)) |
| 24 | 8, 23 | bitrd 279 | 1 ⊢ (𝑁 ∈ 𝑉 → (𝑉 ∈ Fin ↔ 𝑃 ∈ Fin)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2926 ∃wrex 3054 {crab 3408 Vcvv 3450 ∖ cdif 3914 𝒫 cpw 4566 {csn 4592 {cpr 4594 class class class wbr 5110 ↦ cmpt 5191 –1-1-onto→wf1o 6513 ‘cfv 6514 ≈ cen 8918 Fincfn 8921 Vtxcvtx 28930 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-om 7846 df-1o 8437 df-en 8922 df-fin 8925 |
| This theorem is referenced by: cusgrfi 29393 |
| Copyright terms: Public domain | W3C validator |