| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cusgrfilem3 | Structured version Visualization version GIF version | ||
| Description: Lemma 3 for cusgrfi 29422. (Contributed by Alexander van der Vekens, 13-Jan-2018.) (Revised by AV, 11-Nov-2020.) |
| Ref | Expression |
|---|---|
| cusgrfi.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| cusgrfi.p | ⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ ∃𝑎 ∈ 𝑉 (𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁})} |
| cusgrfi.f | ⊢ 𝐹 = (𝑥 ∈ (𝑉 ∖ {𝑁}) ↦ {𝑥, 𝑁}) |
| Ref | Expression |
|---|---|
| cusgrfilem3 | ⊢ (𝑁 ∈ 𝑉 → (𝑉 ∈ Fin ↔ 𝑃 ∈ Fin)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | diffi 9099 | . . 3 ⊢ (𝑉 ∈ Fin → (𝑉 ∖ {𝑁}) ∈ Fin) | |
| 2 | simpr 484 | . . . . . 6 ⊢ ((𝑁 ∈ 𝑉 ∧ ¬ 𝑉 ∈ Fin) → ¬ 𝑉 ∈ Fin) | |
| 3 | snfi 8975 | . . . . . 6 ⊢ {𝑁} ∈ Fin | |
| 4 | difinf 9218 | . . . . . 6 ⊢ ((¬ 𝑉 ∈ Fin ∧ {𝑁} ∈ Fin) → ¬ (𝑉 ∖ {𝑁}) ∈ Fin) | |
| 5 | 2, 3, 4 | sylancl 586 | . . . . 5 ⊢ ((𝑁 ∈ 𝑉 ∧ ¬ 𝑉 ∈ Fin) → ¬ (𝑉 ∖ {𝑁}) ∈ Fin) |
| 6 | 5 | ex 412 | . . . 4 ⊢ (𝑁 ∈ 𝑉 → (¬ 𝑉 ∈ Fin → ¬ (𝑉 ∖ {𝑁}) ∈ Fin)) |
| 7 | 6 | con4d 115 | . . 3 ⊢ (𝑁 ∈ 𝑉 → ((𝑉 ∖ {𝑁}) ∈ Fin → 𝑉 ∈ Fin)) |
| 8 | 1, 7 | impbid2 226 | . 2 ⊢ (𝑁 ∈ 𝑉 → (𝑉 ∈ Fin ↔ (𝑉 ∖ {𝑁}) ∈ Fin)) |
| 9 | cusgrfi.f | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ (𝑉 ∖ {𝑁}) ↦ {𝑥, 𝑁}) | |
| 10 | cusgrfi.v | . . . . . . . . 9 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 11 | 10 | fvexi 6840 | . . . . . . . 8 ⊢ 𝑉 ∈ V |
| 12 | 11 | difexi 5272 | . . . . . . 7 ⊢ (𝑉 ∖ {𝑁}) ∈ V |
| 13 | mptexg 7161 | . . . . . . 7 ⊢ ((𝑉 ∖ {𝑁}) ∈ V → (𝑥 ∈ (𝑉 ∖ {𝑁}) ↦ {𝑥, 𝑁}) ∈ V) | |
| 14 | 12, 13 | mp1i 13 | . . . . . 6 ⊢ (𝑁 ∈ 𝑉 → (𝑥 ∈ (𝑉 ∖ {𝑁}) ↦ {𝑥, 𝑁}) ∈ V) |
| 15 | 9, 14 | eqeltrid 2832 | . . . . 5 ⊢ (𝑁 ∈ 𝑉 → 𝐹 ∈ V) |
| 16 | cusgrfi.p | . . . . . 6 ⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ ∃𝑎 ∈ 𝑉 (𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁})} | |
| 17 | 10, 16, 9 | cusgrfilem2 29420 | . . . . 5 ⊢ (𝑁 ∈ 𝑉 → 𝐹:(𝑉 ∖ {𝑁})–1-1-onto→𝑃) |
| 18 | f1oeq1 6756 | . . . . 5 ⊢ (𝑓 = 𝐹 → (𝑓:(𝑉 ∖ {𝑁})–1-1-onto→𝑃 ↔ 𝐹:(𝑉 ∖ {𝑁})–1-1-onto→𝑃)) | |
| 19 | 15, 17, 18 | spcedv 3555 | . . . 4 ⊢ (𝑁 ∈ 𝑉 → ∃𝑓 𝑓:(𝑉 ∖ {𝑁})–1-1-onto→𝑃) |
| 20 | bren 8889 | . . . 4 ⊢ ((𝑉 ∖ {𝑁}) ≈ 𝑃 ↔ ∃𝑓 𝑓:(𝑉 ∖ {𝑁})–1-1-onto→𝑃) | |
| 21 | 19, 20 | sylibr 234 | . . 3 ⊢ (𝑁 ∈ 𝑉 → (𝑉 ∖ {𝑁}) ≈ 𝑃) |
| 22 | enfi 9111 | . . 3 ⊢ ((𝑉 ∖ {𝑁}) ≈ 𝑃 → ((𝑉 ∖ {𝑁}) ∈ Fin ↔ 𝑃 ∈ Fin)) | |
| 23 | 21, 22 | syl 17 | . 2 ⊢ (𝑁 ∈ 𝑉 → ((𝑉 ∖ {𝑁}) ∈ Fin ↔ 𝑃 ∈ Fin)) |
| 24 | 8, 23 | bitrd 279 | 1 ⊢ (𝑁 ∈ 𝑉 → (𝑉 ∈ Fin ↔ 𝑃 ∈ Fin)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 {crab 3396 Vcvv 3438 ∖ cdif 3902 𝒫 cpw 4553 {csn 4579 {cpr 4581 class class class wbr 5095 ↦ cmpt 5176 –1-1-onto→wf1o 6485 ‘cfv 6486 ≈ cen 8876 Fincfn 8879 Vtxcvtx 28959 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-om 7807 df-1o 8395 df-en 8880 df-fin 8883 |
| This theorem is referenced by: cusgrfi 29422 |
| Copyright terms: Public domain | W3C validator |