Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cusgrfilem3 | Structured version Visualization version GIF version |
Description: Lemma 3 for cusgrfi 27728. (Contributed by Alexander van der Vekens, 13-Jan-2018.) (Revised by AV, 11-Nov-2020.) |
Ref | Expression |
---|---|
cusgrfi.v | ⊢ 𝑉 = (Vtx‘𝐺) |
cusgrfi.p | ⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ ∃𝑎 ∈ 𝑉 (𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁})} |
cusgrfi.f | ⊢ 𝐹 = (𝑥 ∈ (𝑉 ∖ {𝑁}) ↦ {𝑥, 𝑁}) |
Ref | Expression |
---|---|
cusgrfilem3 | ⊢ (𝑁 ∈ 𝑉 → (𝑉 ∈ Fin ↔ 𝑃 ∈ Fin)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | diffi 8979 | . . 3 ⊢ (𝑉 ∈ Fin → (𝑉 ∖ {𝑁}) ∈ Fin) | |
2 | simpr 484 | . . . . . 6 ⊢ ((𝑁 ∈ 𝑉 ∧ ¬ 𝑉 ∈ Fin) → ¬ 𝑉 ∈ Fin) | |
3 | snfi 8788 | . . . . . 6 ⊢ {𝑁} ∈ Fin | |
4 | difinf 9014 | . . . . . 6 ⊢ ((¬ 𝑉 ∈ Fin ∧ {𝑁} ∈ Fin) → ¬ (𝑉 ∖ {𝑁}) ∈ Fin) | |
5 | 2, 3, 4 | sylancl 585 | . . . . 5 ⊢ ((𝑁 ∈ 𝑉 ∧ ¬ 𝑉 ∈ Fin) → ¬ (𝑉 ∖ {𝑁}) ∈ Fin) |
6 | 5 | ex 412 | . . . 4 ⊢ (𝑁 ∈ 𝑉 → (¬ 𝑉 ∈ Fin → ¬ (𝑉 ∖ {𝑁}) ∈ Fin)) |
7 | 6 | con4d 115 | . . 3 ⊢ (𝑁 ∈ 𝑉 → ((𝑉 ∖ {𝑁}) ∈ Fin → 𝑉 ∈ Fin)) |
8 | 1, 7 | impbid2 225 | . 2 ⊢ (𝑁 ∈ 𝑉 → (𝑉 ∈ Fin ↔ (𝑉 ∖ {𝑁}) ∈ Fin)) |
9 | cusgrfi.f | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ (𝑉 ∖ {𝑁}) ↦ {𝑥, 𝑁}) | |
10 | cusgrfi.v | . . . . . . . . 9 ⊢ 𝑉 = (Vtx‘𝐺) | |
11 | 10 | fvexi 6770 | . . . . . . . 8 ⊢ 𝑉 ∈ V |
12 | 11 | difexi 5247 | . . . . . . 7 ⊢ (𝑉 ∖ {𝑁}) ∈ V |
13 | mptexg 7079 | . . . . . . 7 ⊢ ((𝑉 ∖ {𝑁}) ∈ V → (𝑥 ∈ (𝑉 ∖ {𝑁}) ↦ {𝑥, 𝑁}) ∈ V) | |
14 | 12, 13 | mp1i 13 | . . . . . 6 ⊢ (𝑁 ∈ 𝑉 → (𝑥 ∈ (𝑉 ∖ {𝑁}) ↦ {𝑥, 𝑁}) ∈ V) |
15 | 9, 14 | eqeltrid 2843 | . . . . 5 ⊢ (𝑁 ∈ 𝑉 → 𝐹 ∈ V) |
16 | cusgrfi.p | . . . . . 6 ⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ ∃𝑎 ∈ 𝑉 (𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁})} | |
17 | 10, 16, 9 | cusgrfilem2 27726 | . . . . 5 ⊢ (𝑁 ∈ 𝑉 → 𝐹:(𝑉 ∖ {𝑁})–1-1-onto→𝑃) |
18 | f1oeq1 6688 | . . . . 5 ⊢ (𝑓 = 𝐹 → (𝑓:(𝑉 ∖ {𝑁})–1-1-onto→𝑃 ↔ 𝐹:(𝑉 ∖ {𝑁})–1-1-onto→𝑃)) | |
19 | 15, 17, 18 | spcedv 3527 | . . . 4 ⊢ (𝑁 ∈ 𝑉 → ∃𝑓 𝑓:(𝑉 ∖ {𝑁})–1-1-onto→𝑃) |
20 | bren 8701 | . . . 4 ⊢ ((𝑉 ∖ {𝑁}) ≈ 𝑃 ↔ ∃𝑓 𝑓:(𝑉 ∖ {𝑁})–1-1-onto→𝑃) | |
21 | 19, 20 | sylibr 233 | . . 3 ⊢ (𝑁 ∈ 𝑉 → (𝑉 ∖ {𝑁}) ≈ 𝑃) |
22 | enfi 8933 | . . 3 ⊢ ((𝑉 ∖ {𝑁}) ≈ 𝑃 → ((𝑉 ∖ {𝑁}) ∈ Fin ↔ 𝑃 ∈ Fin)) | |
23 | 21, 22 | syl 17 | . 2 ⊢ (𝑁 ∈ 𝑉 → ((𝑉 ∖ {𝑁}) ∈ Fin ↔ 𝑃 ∈ Fin)) |
24 | 8, 23 | bitrd 278 | 1 ⊢ (𝑁 ∈ 𝑉 → (𝑉 ∈ Fin ↔ 𝑃 ∈ Fin)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∃wex 1783 ∈ wcel 2108 ≠ wne 2942 ∃wrex 3064 {crab 3067 Vcvv 3422 ∖ cdif 3880 𝒫 cpw 4530 {csn 4558 {cpr 4560 class class class wbr 5070 ↦ cmpt 5153 –1-1-onto→wf1o 6417 ‘cfv 6418 ≈ cen 8688 Fincfn 8691 Vtxcvtx 27269 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-om 7688 df-1o 8267 df-en 8692 df-fin 8695 |
This theorem is referenced by: cusgrfi 27728 |
Copyright terms: Public domain | W3C validator |