Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrexch Structured version   Visualization version   GIF version

Theorem cvrexch 39444
Description: A Hilbert lattice satisfies the exchange axiom. Proposition 1(iii) of [Kalmbach] p. 140 and its converse. Originally proved by Garrett Birkhoff in 1933. (cvexchi 32355 analog.) (Contributed by NM, 18-Nov-2011.)
Hypotheses
Ref Expression
cvrexch.b 𝐵 = (Base‘𝐾)
cvrexch.j = (join‘𝐾)
cvrexch.m = (meet‘𝐾)
cvrexch.c 𝐶 = ( ⋖ ‘𝐾)
Assertion
Ref Expression
cvrexch ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌)𝐶𝑌𝑋𝐶(𝑋 𝑌)))

Proof of Theorem cvrexch
StepHypRef Expression
1 cvrexch.b . . 3 𝐵 = (Base‘𝐾)
2 cvrexch.j . . 3 = (join‘𝐾)
3 cvrexch.m . . 3 = (meet‘𝐾)
4 cvrexch.c . . 3 𝐶 = ( ⋖ ‘𝐾)
51, 2, 3, 4cvrexchlem 39443 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌)𝐶𝑌𝑋𝐶(𝑋 𝑌)))
6 simp1 1136 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ HL)
7 hlop 39385 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ OP)
873ad2ant1 1133 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ OP)
9 simp3 1138 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
10 eqid 2736 . . . . . . 7 (oc‘𝐾) = (oc‘𝐾)
111, 10opoccl 39217 . . . . . 6 ((𝐾 ∈ OP ∧ 𝑌𝐵) → ((oc‘𝐾)‘𝑌) ∈ 𝐵)
128, 9, 11syl2anc 584 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘𝑌) ∈ 𝐵)
13 simp2 1137 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
141, 10opoccl 39217 . . . . . 6 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
158, 13, 14syl2anc 584 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
161, 2, 3, 4cvrexchlem 39443 . . . . 5 ((𝐾 ∈ HL ∧ ((oc‘𝐾)‘𝑌) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐵) → ((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑋))𝐶((oc‘𝐾)‘𝑋) → ((oc‘𝐾)‘𝑌)𝐶(((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑋))))
176, 12, 15, 16syl3anc 1373 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑋))𝐶((oc‘𝐾)‘𝑋) → ((oc‘𝐾)‘𝑌)𝐶(((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑋))))
18 hlol 39384 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ OL)
191, 2, 3, 10oldmj1 39244 . . . . . . 7 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘(𝑋 𝑌)) = (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)))
2018, 19syl3an1 1163 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘(𝑋 𝑌)) = (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)))
21 hllat 39386 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ Lat)
22213ad2ant1 1133 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ Lat)
231, 3latmcom 18478 . . . . . . 7 ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑌) ∈ 𝐵) → (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) = (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑋)))
2422, 15, 12, 23syl3anc 1373 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) = (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑋)))
2520, 24eqtrd 2771 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘(𝑋 𝑌)) = (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑋)))
2625breq1d 5134 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (((oc‘𝐾)‘(𝑋 𝑌))𝐶((oc‘𝐾)‘𝑋) ↔ (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑋))𝐶((oc‘𝐾)‘𝑋)))
271, 2, 3, 10oldmm1 39240 . . . . . . 7 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘(𝑋 𝑌)) = (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)))
2818, 27syl3an1 1163 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘(𝑋 𝑌)) = (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)))
291, 2latjcom 18462 . . . . . . 7 ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑌) ∈ 𝐵) → (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) = (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑋)))
3022, 15, 12, 29syl3anc 1373 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) = (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑋)))
3128, 30eqtrd 2771 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘(𝑋 𝑌)) = (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑋)))
3231breq2d 5136 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (((oc‘𝐾)‘𝑌)𝐶((oc‘𝐾)‘(𝑋 𝑌)) ↔ ((oc‘𝐾)‘𝑌)𝐶(((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑋))))
3317, 26, 323imtr4d 294 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (((oc‘𝐾)‘(𝑋 𝑌))𝐶((oc‘𝐾)‘𝑋) → ((oc‘𝐾)‘𝑌)𝐶((oc‘𝐾)‘(𝑋 𝑌))))
341, 2latjcl 18454 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
3521, 34syl3an1 1163 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
361, 10, 4cvrcon3b 39300 . . . 4 ((𝐾 ∈ OP ∧ 𝑋𝐵 ∧ (𝑋 𝑌) ∈ 𝐵) → (𝑋𝐶(𝑋 𝑌) ↔ ((oc‘𝐾)‘(𝑋 𝑌))𝐶((oc‘𝐾)‘𝑋)))
378, 13, 35, 36syl3anc 1373 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶(𝑋 𝑌) ↔ ((oc‘𝐾)‘(𝑋 𝑌))𝐶((oc‘𝐾)‘𝑋)))
381, 3latmcl 18455 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
3921, 38syl3an1 1163 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
401, 10, 4cvrcon3b 39300 . . . 4 ((𝐾 ∈ OP ∧ (𝑋 𝑌) ∈ 𝐵𝑌𝐵) → ((𝑋 𝑌)𝐶𝑌 ↔ ((oc‘𝐾)‘𝑌)𝐶((oc‘𝐾)‘(𝑋 𝑌))))
418, 39, 9, 40syl3anc 1373 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌)𝐶𝑌 ↔ ((oc‘𝐾)‘𝑌)𝐶((oc‘𝐾)‘(𝑋 𝑌))))
4233, 37, 413imtr4d 294 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶(𝑋 𝑌) → (𝑋 𝑌)𝐶𝑌))
435, 42impbid 212 1 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌)𝐶𝑌𝑋𝐶(𝑋 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5124  cfv 6536  (class class class)co 7410  Basecbs 17233  occoc 17284  joincjn 18328  meetcmee 18329  Latclat 18446  OPcops 39195  OLcol 39197  ccvr 39285  HLchlt 39373
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-proset 18311  df-poset 18330  df-plt 18345  df-lub 18361  df-glb 18362  df-join 18363  df-meet 18364  df-p0 18440  df-lat 18447  df-clat 18514  df-oposet 39199  df-ol 39201  df-oml 39202  df-covers 39289  df-ats 39290  df-atl 39321  df-cvlat 39345  df-hlat 39374
This theorem is referenced by:  cvrat3  39466  2lplnmN  39583  2llnmj  39584  2llnm2N  39592  2lplnm2N  39645  2lplnmj  39646  lhpmcvr  40047
  Copyright terms: Public domain W3C validator