Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrexch Structured version   Visualization version   GIF version

Theorem cvrexch 39377
Description: A Hilbert lattice satisfies the exchange axiom. Proposition 1(iii) of [Kalmbach] p. 140 and its converse. Originally proved by Garrett Birkhoff in 1933. (cvexchi 32401 analog.) (Contributed by NM, 18-Nov-2011.)
Hypotheses
Ref Expression
cvrexch.b 𝐵 = (Base‘𝐾)
cvrexch.j = (join‘𝐾)
cvrexch.m = (meet‘𝐾)
cvrexch.c 𝐶 = ( ⋖ ‘𝐾)
Assertion
Ref Expression
cvrexch ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌)𝐶𝑌𝑋𝐶(𝑋 𝑌)))

Proof of Theorem cvrexch
StepHypRef Expression
1 cvrexch.b . . 3 𝐵 = (Base‘𝐾)
2 cvrexch.j . . 3 = (join‘𝐾)
3 cvrexch.m . . 3 = (meet‘𝐾)
4 cvrexch.c . . 3 𝐶 = ( ⋖ ‘𝐾)
51, 2, 3, 4cvrexchlem 39376 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌)𝐶𝑌𝑋𝐶(𝑋 𝑌)))
6 simp1 1136 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ HL)
7 hlop 39318 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ OP)
873ad2ant1 1133 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ OP)
9 simp3 1138 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
10 eqid 2740 . . . . . . 7 (oc‘𝐾) = (oc‘𝐾)
111, 10opoccl 39150 . . . . . 6 ((𝐾 ∈ OP ∧ 𝑌𝐵) → ((oc‘𝐾)‘𝑌) ∈ 𝐵)
128, 9, 11syl2anc 583 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘𝑌) ∈ 𝐵)
13 simp2 1137 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
141, 10opoccl 39150 . . . . . 6 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
158, 13, 14syl2anc 583 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
161, 2, 3, 4cvrexchlem 39376 . . . . 5 ((𝐾 ∈ HL ∧ ((oc‘𝐾)‘𝑌) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐵) → ((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑋))𝐶((oc‘𝐾)‘𝑋) → ((oc‘𝐾)‘𝑌)𝐶(((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑋))))
176, 12, 15, 16syl3anc 1371 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑋))𝐶((oc‘𝐾)‘𝑋) → ((oc‘𝐾)‘𝑌)𝐶(((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑋))))
18 hlol 39317 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ OL)
191, 2, 3, 10oldmj1 39177 . . . . . . 7 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘(𝑋 𝑌)) = (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)))
2018, 19syl3an1 1163 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘(𝑋 𝑌)) = (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)))
21 hllat 39319 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ Lat)
22213ad2ant1 1133 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ Lat)
231, 3latmcom 18533 . . . . . . 7 ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑌) ∈ 𝐵) → (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) = (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑋)))
2422, 15, 12, 23syl3anc 1371 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) = (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑋)))
2520, 24eqtrd 2780 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘(𝑋 𝑌)) = (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑋)))
2625breq1d 5176 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (((oc‘𝐾)‘(𝑋 𝑌))𝐶((oc‘𝐾)‘𝑋) ↔ (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑋))𝐶((oc‘𝐾)‘𝑋)))
271, 2, 3, 10oldmm1 39173 . . . . . . 7 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘(𝑋 𝑌)) = (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)))
2818, 27syl3an1 1163 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘(𝑋 𝑌)) = (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)))
291, 2latjcom 18517 . . . . . . 7 ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑌) ∈ 𝐵) → (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) = (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑋)))
3022, 15, 12, 29syl3anc 1371 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) = (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑋)))
3128, 30eqtrd 2780 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘(𝑋 𝑌)) = (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑋)))
3231breq2d 5178 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (((oc‘𝐾)‘𝑌)𝐶((oc‘𝐾)‘(𝑋 𝑌)) ↔ ((oc‘𝐾)‘𝑌)𝐶(((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑋))))
3317, 26, 323imtr4d 294 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (((oc‘𝐾)‘(𝑋 𝑌))𝐶((oc‘𝐾)‘𝑋) → ((oc‘𝐾)‘𝑌)𝐶((oc‘𝐾)‘(𝑋 𝑌))))
341, 2latjcl 18509 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
3521, 34syl3an1 1163 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
361, 10, 4cvrcon3b 39233 . . . 4 ((𝐾 ∈ OP ∧ 𝑋𝐵 ∧ (𝑋 𝑌) ∈ 𝐵) → (𝑋𝐶(𝑋 𝑌) ↔ ((oc‘𝐾)‘(𝑋 𝑌))𝐶((oc‘𝐾)‘𝑋)))
378, 13, 35, 36syl3anc 1371 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶(𝑋 𝑌) ↔ ((oc‘𝐾)‘(𝑋 𝑌))𝐶((oc‘𝐾)‘𝑋)))
381, 3latmcl 18510 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
3921, 38syl3an1 1163 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
401, 10, 4cvrcon3b 39233 . . . 4 ((𝐾 ∈ OP ∧ (𝑋 𝑌) ∈ 𝐵𝑌𝐵) → ((𝑋 𝑌)𝐶𝑌 ↔ ((oc‘𝐾)‘𝑌)𝐶((oc‘𝐾)‘(𝑋 𝑌))))
418, 39, 9, 40syl3anc 1371 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌)𝐶𝑌 ↔ ((oc‘𝐾)‘𝑌)𝐶((oc‘𝐾)‘(𝑋 𝑌))))
4233, 37, 413imtr4d 294 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶(𝑋 𝑌) → (𝑋 𝑌)𝐶𝑌))
435, 42impbid 212 1 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌)𝐶𝑌𝑋𝐶(𝑋 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1087   = wceq 1537  wcel 2108   class class class wbr 5166  cfv 6573  (class class class)co 7448  Basecbs 17258  occoc 17319  joincjn 18381  meetcmee 18382  Latclat 18501  OPcops 39128  OLcol 39130  ccvr 39218  HLchlt 39306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-proset 18365  df-poset 18383  df-plt 18400  df-lub 18416  df-glb 18417  df-join 18418  df-meet 18419  df-p0 18495  df-lat 18502  df-clat 18569  df-oposet 39132  df-ol 39134  df-oml 39135  df-covers 39222  df-ats 39223  df-atl 39254  df-cvlat 39278  df-hlat 39307
This theorem is referenced by:  cvrat3  39399  2lplnmN  39516  2llnmj  39517  2llnm2N  39525  2lplnm2N  39578  2lplnmj  39579  lhpmcvr  39980
  Copyright terms: Public domain W3C validator