Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrexch Structured version   Visualization version   GIF version

Theorem cvrexch 36548
Description: A Hilbert lattice satisfies the exchange axiom. Proposition 1(iii) of [Kalmbach] p. 140 and its converse. Originally proved by Garrett Birkhoff in 1933. (cvexchi 30138 analog.) (Contributed by NM, 18-Nov-2011.)
Hypotheses
Ref Expression
cvrexch.b 𝐵 = (Base‘𝐾)
cvrexch.j = (join‘𝐾)
cvrexch.m = (meet‘𝐾)
cvrexch.c 𝐶 = ( ⋖ ‘𝐾)
Assertion
Ref Expression
cvrexch ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌)𝐶𝑌𝑋𝐶(𝑋 𝑌)))

Proof of Theorem cvrexch
StepHypRef Expression
1 cvrexch.b . . 3 𝐵 = (Base‘𝐾)
2 cvrexch.j . . 3 = (join‘𝐾)
3 cvrexch.m . . 3 = (meet‘𝐾)
4 cvrexch.c . . 3 𝐶 = ( ⋖ ‘𝐾)
51, 2, 3, 4cvrexchlem 36547 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌)𝐶𝑌𝑋𝐶(𝑋 𝑌)))
6 simp1 1130 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ HL)
7 hlop 36490 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ OP)
873ad2ant1 1127 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ OP)
9 simp3 1132 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
10 eqid 2819 . . . . . . 7 (oc‘𝐾) = (oc‘𝐾)
111, 10opoccl 36322 . . . . . 6 ((𝐾 ∈ OP ∧ 𝑌𝐵) → ((oc‘𝐾)‘𝑌) ∈ 𝐵)
128, 9, 11syl2anc 586 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘𝑌) ∈ 𝐵)
13 simp2 1131 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
141, 10opoccl 36322 . . . . . 6 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
158, 13, 14syl2anc 586 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
161, 2, 3, 4cvrexchlem 36547 . . . . 5 ((𝐾 ∈ HL ∧ ((oc‘𝐾)‘𝑌) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐵) → ((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑋))𝐶((oc‘𝐾)‘𝑋) → ((oc‘𝐾)‘𝑌)𝐶(((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑋))))
176, 12, 15, 16syl3anc 1365 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑋))𝐶((oc‘𝐾)‘𝑋) → ((oc‘𝐾)‘𝑌)𝐶(((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑋))))
18 hlol 36489 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ OL)
191, 2, 3, 10oldmj1 36349 . . . . . . 7 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘(𝑋 𝑌)) = (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)))
2018, 19syl3an1 1157 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘(𝑋 𝑌)) = (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)))
21 hllat 36491 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ Lat)
22213ad2ant1 1127 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ Lat)
231, 3latmcom 17677 . . . . . . 7 ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑌) ∈ 𝐵) → (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) = (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑋)))
2422, 15, 12, 23syl3anc 1365 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) = (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑋)))
2520, 24eqtrd 2854 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘(𝑋 𝑌)) = (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑋)))
2625breq1d 5067 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (((oc‘𝐾)‘(𝑋 𝑌))𝐶((oc‘𝐾)‘𝑋) ↔ (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑋))𝐶((oc‘𝐾)‘𝑋)))
271, 2, 3, 10oldmm1 36345 . . . . . . 7 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘(𝑋 𝑌)) = (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)))
2818, 27syl3an1 1157 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘(𝑋 𝑌)) = (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)))
291, 2latjcom 17661 . . . . . . 7 ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑌) ∈ 𝐵) → (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) = (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑋)))
3022, 15, 12, 29syl3anc 1365 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) = (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑋)))
3128, 30eqtrd 2854 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘(𝑋 𝑌)) = (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑋)))
3231breq2d 5069 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (((oc‘𝐾)‘𝑌)𝐶((oc‘𝐾)‘(𝑋 𝑌)) ↔ ((oc‘𝐾)‘𝑌)𝐶(((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑋))))
3317, 26, 323imtr4d 296 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (((oc‘𝐾)‘(𝑋 𝑌))𝐶((oc‘𝐾)‘𝑋) → ((oc‘𝐾)‘𝑌)𝐶((oc‘𝐾)‘(𝑋 𝑌))))
341, 2latjcl 17653 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
3521, 34syl3an1 1157 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
361, 10, 4cvrcon3b 36405 . . . 4 ((𝐾 ∈ OP ∧ 𝑋𝐵 ∧ (𝑋 𝑌) ∈ 𝐵) → (𝑋𝐶(𝑋 𝑌) ↔ ((oc‘𝐾)‘(𝑋 𝑌))𝐶((oc‘𝐾)‘𝑋)))
378, 13, 35, 36syl3anc 1365 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶(𝑋 𝑌) ↔ ((oc‘𝐾)‘(𝑋 𝑌))𝐶((oc‘𝐾)‘𝑋)))
381, 3latmcl 17654 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
3921, 38syl3an1 1157 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
401, 10, 4cvrcon3b 36405 . . . 4 ((𝐾 ∈ OP ∧ (𝑋 𝑌) ∈ 𝐵𝑌𝐵) → ((𝑋 𝑌)𝐶𝑌 ↔ ((oc‘𝐾)‘𝑌)𝐶((oc‘𝐾)‘(𝑋 𝑌))))
418, 39, 9, 40syl3anc 1365 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌)𝐶𝑌 ↔ ((oc‘𝐾)‘𝑌)𝐶((oc‘𝐾)‘(𝑋 𝑌))))
4233, 37, 413imtr4d 296 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶(𝑋 𝑌) → (𝑋 𝑌)𝐶𝑌))
435, 42impbid 214 1 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌)𝐶𝑌𝑋𝐶(𝑋 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  w3a 1081   = wceq 1530  wcel 2107   class class class wbr 5057  cfv 6348  (class class class)co 7148  Basecbs 16475  occoc 16565  joincjn 17546  meetcmee 17547  Latclat 17647  OPcops 36300  OLcol 36302  ccvr 36390  HLchlt 36478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-reu 3143  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-proset 17530  df-poset 17548  df-plt 17560  df-lub 17576  df-glb 17577  df-join 17578  df-meet 17579  df-p0 17641  df-lat 17648  df-clat 17710  df-oposet 36304  df-ol 36306  df-oml 36307  df-covers 36394  df-ats 36395  df-atl 36426  df-cvlat 36450  df-hlat 36479
This theorem is referenced by:  cvrat3  36570  2lplnmN  36687  2llnmj  36688  2llnm2N  36696  2lplnm2N  36749  2lplnmj  36750  lhpmcvr  37151
  Copyright terms: Public domain W3C validator