| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sge0prle | Structured version Visualization version GIF version | ||
| Description: The sum of a pair of nonnegative extended reals is less than or equal their extended addition. When it is a distinct pair, than equality holds, see sge0pr 46392. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| sge0prle.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| sge0prle.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| sge0prle.d | ⊢ (𝜑 → 𝐷 ∈ (0[,]+∞)) |
| sge0prle.e | ⊢ (𝜑 → 𝐸 ∈ (0[,]+∞)) |
| sge0prle.cd | ⊢ (𝑘 = 𝐴 → 𝐶 = 𝐷) |
| sge0prle.ce | ⊢ (𝑘 = 𝐵 → 𝐶 = 𝐸) |
| Ref | Expression |
|---|---|
| sge0prle | ⊢ (𝜑 → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) ≤ (𝐷 +𝑒 𝐸)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preq1 4697 | . . . . . . . 8 ⊢ (𝐴 = 𝐵 → {𝐴, 𝐵} = {𝐵, 𝐵}) | |
| 2 | dfsn2 4602 | . . . . . . . . . 10 ⊢ {𝐵} = {𝐵, 𝐵} | |
| 3 | 2 | eqcomi 2738 | . . . . . . . . 9 ⊢ {𝐵, 𝐵} = {𝐵} |
| 4 | 3 | a1i 11 | . . . . . . . 8 ⊢ (𝐴 = 𝐵 → {𝐵, 𝐵} = {𝐵}) |
| 5 | 1, 4 | eqtrd 2764 | . . . . . . 7 ⊢ (𝐴 = 𝐵 → {𝐴, 𝐵} = {𝐵}) |
| 6 | 5 | mpteq1d 5197 | . . . . . 6 ⊢ (𝐴 = 𝐵 → (𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶) = (𝑘 ∈ {𝐵} ↦ 𝐶)) |
| 7 | 6 | fveq2d 6862 | . . . . 5 ⊢ (𝐴 = 𝐵 → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) = (Σ^‘(𝑘 ∈ {𝐵} ↦ 𝐶))) |
| 8 | 7 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) = (Σ^‘(𝑘 ∈ {𝐵} ↦ 𝐶))) |
| 9 | sge0prle.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 10 | sge0prle.e | . . . . . 6 ⊢ (𝜑 → 𝐸 ∈ (0[,]+∞)) | |
| 11 | sge0prle.ce | . . . . . 6 ⊢ (𝑘 = 𝐵 → 𝐶 = 𝐸) | |
| 12 | 9, 10, 11 | sge0snmpt 46381 | . . . . 5 ⊢ (𝜑 → (Σ^‘(𝑘 ∈ {𝐵} ↦ 𝐶)) = 𝐸) |
| 13 | 12 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → (Σ^‘(𝑘 ∈ {𝐵} ↦ 𝐶)) = 𝐸) |
| 14 | 8, 13 | eqtrd 2764 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) = 𝐸) |
| 15 | iccssxr 13391 | . . . . . . . 8 ⊢ (0[,]+∞) ⊆ ℝ* | |
| 16 | 15, 10 | sselid 3944 | . . . . . . 7 ⊢ (𝜑 → 𝐸 ∈ ℝ*) |
| 17 | 16 | xaddlidd 45316 | . . . . . 6 ⊢ (𝜑 → (0 +𝑒 𝐸) = 𝐸) |
| 18 | 17 | eqcomd 2735 | . . . . 5 ⊢ (𝜑 → 𝐸 = (0 +𝑒 𝐸)) |
| 19 | 0xr 11221 | . . . . . . 7 ⊢ 0 ∈ ℝ* | |
| 20 | 19 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 0 ∈ ℝ*) |
| 21 | sge0prle.d | . . . . . . 7 ⊢ (𝜑 → 𝐷 ∈ (0[,]+∞)) | |
| 22 | 15, 21 | sselid 3944 | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ ℝ*) |
| 23 | pnfxr 11228 | . . . . . . . 8 ⊢ +∞ ∈ ℝ* | |
| 24 | 23 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → +∞ ∈ ℝ*) |
| 25 | iccgelb 13363 | . . . . . . 7 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝐷 ∈ (0[,]+∞)) → 0 ≤ 𝐷) | |
| 26 | 20, 24, 21, 25 | syl3anc 1373 | . . . . . 6 ⊢ (𝜑 → 0 ≤ 𝐷) |
| 27 | 20, 22, 16, 26 | xleadd1d 45325 | . . . . 5 ⊢ (𝜑 → (0 +𝑒 𝐸) ≤ (𝐷 +𝑒 𝐸)) |
| 28 | 18, 27 | eqbrtrd 5129 | . . . 4 ⊢ (𝜑 → 𝐸 ≤ (𝐷 +𝑒 𝐸)) |
| 29 | 28 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝐸 ≤ (𝐷 +𝑒 𝐸)) |
| 30 | 14, 29 | eqbrtrd 5129 | . 2 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) ≤ (𝐷 +𝑒 𝐸)) |
| 31 | sge0prle.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 32 | 31 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐴 ∈ 𝑉) |
| 33 | 9 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐵 ∈ 𝑊) |
| 34 | 21 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐷 ∈ (0[,]+∞)) |
| 35 | 10 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐸 ∈ (0[,]+∞)) |
| 36 | sge0prle.cd | . . . 4 ⊢ (𝑘 = 𝐴 → 𝐶 = 𝐷) | |
| 37 | neqne 2933 | . . . . 5 ⊢ (¬ 𝐴 = 𝐵 → 𝐴 ≠ 𝐵) | |
| 38 | 37 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐴 ≠ 𝐵) |
| 39 | 32, 33, 34, 35, 36, 11, 38 | sge0pr 46392 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) = (𝐷 +𝑒 𝐸)) |
| 40 | 22, 16 | xaddcld 13261 | . . . . 5 ⊢ (𝜑 → (𝐷 +𝑒 𝐸) ∈ ℝ*) |
| 41 | 40 | xrleidd 13112 | . . . 4 ⊢ (𝜑 → (𝐷 +𝑒 𝐸) ≤ (𝐷 +𝑒 𝐸)) |
| 42 | 41 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → (𝐷 +𝑒 𝐸) ≤ (𝐷 +𝑒 𝐸)) |
| 43 | 39, 42 | eqbrtrd 5129 | . 2 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) ≤ (𝐷 +𝑒 𝐸)) |
| 44 | 30, 43 | pm2.61dan 812 | 1 ⊢ (𝜑 → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) ≤ (𝐷 +𝑒 𝐸)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 {csn 4589 {cpr 4591 class class class wbr 5107 ↦ cmpt 5188 ‘cfv 6511 (class class class)co 7387 0cc0 11068 +∞cpnf 11205 ℝ*cxr 11207 ≤ cle 11209 +𝑒 cxad 13070 [,]cicc 13309 Σ^csumge0 46360 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-z 12530 df-uz 12794 df-rp 12952 df-xadd 13073 df-ico 13312 df-icc 13313 df-fz 13469 df-fzo 13616 df-seq 13967 df-exp 14027 df-hash 14296 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-clim 15454 df-sum 15653 df-sumge0 46361 |
| This theorem is referenced by: omeunle 46514 |
| Copyright terms: Public domain | W3C validator |