| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sge0prle | Structured version Visualization version GIF version | ||
| Description: The sum of a pair of nonnegative extended reals is less than or equal their extended addition. When it is a distinct pair, than equality holds, see sge0pr 46519. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| sge0prle.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| sge0prle.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| sge0prle.d | ⊢ (𝜑 → 𝐷 ∈ (0[,]+∞)) |
| sge0prle.e | ⊢ (𝜑 → 𝐸 ∈ (0[,]+∞)) |
| sge0prle.cd | ⊢ (𝑘 = 𝐴 → 𝐶 = 𝐷) |
| sge0prle.ce | ⊢ (𝑘 = 𝐵 → 𝐶 = 𝐸) |
| Ref | Expression |
|---|---|
| sge0prle | ⊢ (𝜑 → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) ≤ (𝐷 +𝑒 𝐸)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preq1 4687 | . . . . . . . 8 ⊢ (𝐴 = 𝐵 → {𝐴, 𝐵} = {𝐵, 𝐵}) | |
| 2 | dfsn2 4590 | . . . . . . . . . 10 ⊢ {𝐵} = {𝐵, 𝐵} | |
| 3 | 2 | eqcomi 2742 | . . . . . . . . 9 ⊢ {𝐵, 𝐵} = {𝐵} |
| 4 | 3 | a1i 11 | . . . . . . . 8 ⊢ (𝐴 = 𝐵 → {𝐵, 𝐵} = {𝐵}) |
| 5 | 1, 4 | eqtrd 2768 | . . . . . . 7 ⊢ (𝐴 = 𝐵 → {𝐴, 𝐵} = {𝐵}) |
| 6 | 5 | mpteq1d 5185 | . . . . . 6 ⊢ (𝐴 = 𝐵 → (𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶) = (𝑘 ∈ {𝐵} ↦ 𝐶)) |
| 7 | 6 | fveq2d 6834 | . . . . 5 ⊢ (𝐴 = 𝐵 → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) = (Σ^‘(𝑘 ∈ {𝐵} ↦ 𝐶))) |
| 8 | 7 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) = (Σ^‘(𝑘 ∈ {𝐵} ↦ 𝐶))) |
| 9 | sge0prle.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 10 | sge0prle.e | . . . . . 6 ⊢ (𝜑 → 𝐸 ∈ (0[,]+∞)) | |
| 11 | sge0prle.ce | . . . . . 6 ⊢ (𝑘 = 𝐵 → 𝐶 = 𝐸) | |
| 12 | 9, 10, 11 | sge0snmpt 46508 | . . . . 5 ⊢ (𝜑 → (Σ^‘(𝑘 ∈ {𝐵} ↦ 𝐶)) = 𝐸) |
| 13 | 12 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → (Σ^‘(𝑘 ∈ {𝐵} ↦ 𝐶)) = 𝐸) |
| 14 | 8, 13 | eqtrd 2768 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) = 𝐸) |
| 15 | iccssxr 13334 | . . . . . . . 8 ⊢ (0[,]+∞) ⊆ ℝ* | |
| 16 | 15, 10 | sselid 3928 | . . . . . . 7 ⊢ (𝜑 → 𝐸 ∈ ℝ*) |
| 17 | 16 | xaddlidd 45446 | . . . . . 6 ⊢ (𝜑 → (0 +𝑒 𝐸) = 𝐸) |
| 18 | 17 | eqcomd 2739 | . . . . 5 ⊢ (𝜑 → 𝐸 = (0 +𝑒 𝐸)) |
| 19 | 0xr 11168 | . . . . . . 7 ⊢ 0 ∈ ℝ* | |
| 20 | 19 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 0 ∈ ℝ*) |
| 21 | sge0prle.d | . . . . . . 7 ⊢ (𝜑 → 𝐷 ∈ (0[,]+∞)) | |
| 22 | 15, 21 | sselid 3928 | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ ℝ*) |
| 23 | pnfxr 11175 | . . . . . . . 8 ⊢ +∞ ∈ ℝ* | |
| 24 | 23 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → +∞ ∈ ℝ*) |
| 25 | iccgelb 13306 | . . . . . . 7 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝐷 ∈ (0[,]+∞)) → 0 ≤ 𝐷) | |
| 26 | 20, 24, 21, 25 | syl3anc 1373 | . . . . . 6 ⊢ (𝜑 → 0 ≤ 𝐷) |
| 27 | 20, 22, 16, 26 | xleadd1d 45455 | . . . . 5 ⊢ (𝜑 → (0 +𝑒 𝐸) ≤ (𝐷 +𝑒 𝐸)) |
| 28 | 18, 27 | eqbrtrd 5117 | . . . 4 ⊢ (𝜑 → 𝐸 ≤ (𝐷 +𝑒 𝐸)) |
| 29 | 28 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝐸 ≤ (𝐷 +𝑒 𝐸)) |
| 30 | 14, 29 | eqbrtrd 5117 | . 2 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) ≤ (𝐷 +𝑒 𝐸)) |
| 31 | sge0prle.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 32 | 31 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐴 ∈ 𝑉) |
| 33 | 9 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐵 ∈ 𝑊) |
| 34 | 21 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐷 ∈ (0[,]+∞)) |
| 35 | 10 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐸 ∈ (0[,]+∞)) |
| 36 | sge0prle.cd | . . . 4 ⊢ (𝑘 = 𝐴 → 𝐶 = 𝐷) | |
| 37 | neqne 2937 | . . . . 5 ⊢ (¬ 𝐴 = 𝐵 → 𝐴 ≠ 𝐵) | |
| 38 | 37 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐴 ≠ 𝐵) |
| 39 | 32, 33, 34, 35, 36, 11, 38 | sge0pr 46519 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) = (𝐷 +𝑒 𝐸)) |
| 40 | 22, 16 | xaddcld 13204 | . . . . 5 ⊢ (𝜑 → (𝐷 +𝑒 𝐸) ∈ ℝ*) |
| 41 | 40 | xrleidd 13055 | . . . 4 ⊢ (𝜑 → (𝐷 +𝑒 𝐸) ≤ (𝐷 +𝑒 𝐸)) |
| 42 | 41 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → (𝐷 +𝑒 𝐸) ≤ (𝐷 +𝑒 𝐸)) |
| 43 | 39, 42 | eqbrtrd 5117 | . 2 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) ≤ (𝐷 +𝑒 𝐸)) |
| 44 | 30, 43 | pm2.61dan 812 | 1 ⊢ (𝜑 → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) ≤ (𝐷 +𝑒 𝐸)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 {csn 4577 {cpr 4579 class class class wbr 5095 ↦ cmpt 5176 ‘cfv 6488 (class class class)co 7354 0cc0 11015 +∞cpnf 11152 ℝ*cxr 11154 ≤ cle 11156 +𝑒 cxad 13013 [,]cicc 13252 Σ^csumge0 46487 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-inf2 9540 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 ax-pre-sup 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-isom 6497 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-1st 7929 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-1o 8393 df-2o 8394 df-er 8630 df-en 8878 df-dom 8879 df-sdom 8880 df-fin 8881 df-sup 9335 df-oi 9405 df-card 9841 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-div 11784 df-nn 12135 df-2 12197 df-3 12198 df-n0 12391 df-z 12478 df-uz 12741 df-rp 12895 df-xadd 13016 df-ico 13255 df-icc 13256 df-fz 13412 df-fzo 13559 df-seq 13913 df-exp 13973 df-hash 14242 df-cj 15010 df-re 15011 df-im 15012 df-sqrt 15146 df-abs 15147 df-clim 15399 df-sum 15598 df-sumge0 46488 |
| This theorem is referenced by: omeunle 46641 |
| Copyright terms: Public domain | W3C validator |