Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sge0prle | Structured version Visualization version GIF version |
Description: The sum of a pair of nonnegative extended reals is less than or equal their extended addition. When it is a distinct pair, than equality holds, see sge0pr 43822. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
sge0prle.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
sge0prle.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
sge0prle.d | ⊢ (𝜑 → 𝐷 ∈ (0[,]+∞)) |
sge0prle.e | ⊢ (𝜑 → 𝐸 ∈ (0[,]+∞)) |
sge0prle.cd | ⊢ (𝑘 = 𝐴 → 𝐶 = 𝐷) |
sge0prle.ce | ⊢ (𝑘 = 𝐵 → 𝐶 = 𝐸) |
Ref | Expression |
---|---|
sge0prle | ⊢ (𝜑 → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) ≤ (𝐷 +𝑒 𝐸)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | preq1 4666 | . . . . . . . 8 ⊢ (𝐴 = 𝐵 → {𝐴, 𝐵} = {𝐵, 𝐵}) | |
2 | dfsn2 4571 | . . . . . . . . . 10 ⊢ {𝐵} = {𝐵, 𝐵} | |
3 | 2 | eqcomi 2747 | . . . . . . . . 9 ⊢ {𝐵, 𝐵} = {𝐵} |
4 | 3 | a1i 11 | . . . . . . . 8 ⊢ (𝐴 = 𝐵 → {𝐵, 𝐵} = {𝐵}) |
5 | 1, 4 | eqtrd 2778 | . . . . . . 7 ⊢ (𝐴 = 𝐵 → {𝐴, 𝐵} = {𝐵}) |
6 | 5 | mpteq1d 5165 | . . . . . 6 ⊢ (𝐴 = 𝐵 → (𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶) = (𝑘 ∈ {𝐵} ↦ 𝐶)) |
7 | 6 | fveq2d 6760 | . . . . 5 ⊢ (𝐴 = 𝐵 → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) = (Σ^‘(𝑘 ∈ {𝐵} ↦ 𝐶))) |
8 | 7 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) = (Σ^‘(𝑘 ∈ {𝐵} ↦ 𝐶))) |
9 | sge0prle.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
10 | sge0prle.e | . . . . . 6 ⊢ (𝜑 → 𝐸 ∈ (0[,]+∞)) | |
11 | sge0prle.ce | . . . . . 6 ⊢ (𝑘 = 𝐵 → 𝐶 = 𝐸) | |
12 | 9, 10, 11 | sge0snmpt 43811 | . . . . 5 ⊢ (𝜑 → (Σ^‘(𝑘 ∈ {𝐵} ↦ 𝐶)) = 𝐸) |
13 | 12 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → (Σ^‘(𝑘 ∈ {𝐵} ↦ 𝐶)) = 𝐸) |
14 | 8, 13 | eqtrd 2778 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) = 𝐸) |
15 | iccssxr 13091 | . . . . . . . 8 ⊢ (0[,]+∞) ⊆ ℝ* | |
16 | 15, 10 | sselid 3915 | . . . . . . 7 ⊢ (𝜑 → 𝐸 ∈ ℝ*) |
17 | 16 | xaddid2d 42748 | . . . . . 6 ⊢ (𝜑 → (0 +𝑒 𝐸) = 𝐸) |
18 | 17 | eqcomd 2744 | . . . . 5 ⊢ (𝜑 → 𝐸 = (0 +𝑒 𝐸)) |
19 | 0xr 10953 | . . . . . . 7 ⊢ 0 ∈ ℝ* | |
20 | 19 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 0 ∈ ℝ*) |
21 | sge0prle.d | . . . . . . 7 ⊢ (𝜑 → 𝐷 ∈ (0[,]+∞)) | |
22 | 15, 21 | sselid 3915 | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ ℝ*) |
23 | pnfxr 10960 | . . . . . . . 8 ⊢ +∞ ∈ ℝ* | |
24 | 23 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → +∞ ∈ ℝ*) |
25 | iccgelb 13064 | . . . . . . 7 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝐷 ∈ (0[,]+∞)) → 0 ≤ 𝐷) | |
26 | 20, 24, 21, 25 | syl3anc 1369 | . . . . . 6 ⊢ (𝜑 → 0 ≤ 𝐷) |
27 | 20, 22, 16, 26 | xleadd1d 42758 | . . . . 5 ⊢ (𝜑 → (0 +𝑒 𝐸) ≤ (𝐷 +𝑒 𝐸)) |
28 | 18, 27 | eqbrtrd 5092 | . . . 4 ⊢ (𝜑 → 𝐸 ≤ (𝐷 +𝑒 𝐸)) |
29 | 28 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝐸 ≤ (𝐷 +𝑒 𝐸)) |
30 | 14, 29 | eqbrtrd 5092 | . 2 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) ≤ (𝐷 +𝑒 𝐸)) |
31 | sge0prle.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
32 | 31 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐴 ∈ 𝑉) |
33 | 9 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐵 ∈ 𝑊) |
34 | 21 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐷 ∈ (0[,]+∞)) |
35 | 10 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐸 ∈ (0[,]+∞)) |
36 | sge0prle.cd | . . . 4 ⊢ (𝑘 = 𝐴 → 𝐶 = 𝐷) | |
37 | neqne 2950 | . . . . 5 ⊢ (¬ 𝐴 = 𝐵 → 𝐴 ≠ 𝐵) | |
38 | 37 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐴 ≠ 𝐵) |
39 | 32, 33, 34, 35, 36, 11, 38 | sge0pr 43822 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) = (𝐷 +𝑒 𝐸)) |
40 | 22, 16 | xaddcld 12964 | . . . . 5 ⊢ (𝜑 → (𝐷 +𝑒 𝐸) ∈ ℝ*) |
41 | 40 | xrleidd 12815 | . . . 4 ⊢ (𝜑 → (𝐷 +𝑒 𝐸) ≤ (𝐷 +𝑒 𝐸)) |
42 | 41 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → (𝐷 +𝑒 𝐸) ≤ (𝐷 +𝑒 𝐸)) |
43 | 39, 42 | eqbrtrd 5092 | . 2 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) ≤ (𝐷 +𝑒 𝐸)) |
44 | 30, 43 | pm2.61dan 809 | 1 ⊢ (𝜑 → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) ≤ (𝐷 +𝑒 𝐸)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 {csn 4558 {cpr 4560 class class class wbr 5070 ↦ cmpt 5153 ‘cfv 6418 (class class class)co 7255 0cc0 10802 +∞cpnf 10937 ℝ*cxr 10939 ≤ cle 10941 +𝑒 cxad 12775 [,]cicc 13011 Σ^csumge0 43790 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-xadd 12778 df-ico 13014 df-icc 13015 df-fz 13169 df-fzo 13312 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 df-sum 15326 df-sumge0 43791 |
This theorem is referenced by: omeunle 43944 |
Copyright terms: Public domain | W3C validator |