Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0prle Structured version   Visualization version   GIF version

Theorem sge0prle 45117
Description: The sum of a pair of nonnegative extended reals is less than or equal their extended addition. When it is a distinct pair, than equality holds, see sge0pr 45110. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0prle.a (𝜑𝐴𝑉)
sge0prle.b (𝜑𝐵𝑊)
sge0prle.d (𝜑𝐷 ∈ (0[,]+∞))
sge0prle.e (𝜑𝐸 ∈ (0[,]+∞))
sge0prle.cd (𝑘 = 𝐴𝐶 = 𝐷)
sge0prle.ce (𝑘 = 𝐵𝐶 = 𝐸)
Assertion
Ref Expression
sge0prle (𝜑 → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) ≤ (𝐷 +𝑒 𝐸))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝐷,𝑘   𝑘,𝐸   𝑘,𝑉   𝑘,𝑊   𝜑,𝑘
Allowed substitution hint:   𝐶(𝑘)

Proof of Theorem sge0prle
StepHypRef Expression
1 preq1 4738 . . . . . . . 8 (𝐴 = 𝐵 → {𝐴, 𝐵} = {𝐵, 𝐵})
2 dfsn2 4642 . . . . . . . . . 10 {𝐵} = {𝐵, 𝐵}
32eqcomi 2742 . . . . . . . . 9 {𝐵, 𝐵} = {𝐵}
43a1i 11 . . . . . . . 8 (𝐴 = 𝐵 → {𝐵, 𝐵} = {𝐵})
51, 4eqtrd 2773 . . . . . . 7 (𝐴 = 𝐵 → {𝐴, 𝐵} = {𝐵})
65mpteq1d 5244 . . . . . 6 (𝐴 = 𝐵 → (𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶) = (𝑘 ∈ {𝐵} ↦ 𝐶))
76fveq2d 6896 . . . . 5 (𝐴 = 𝐵 → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) = (Σ^‘(𝑘 ∈ {𝐵} ↦ 𝐶)))
87adantl 483 . . . 4 ((𝜑𝐴 = 𝐵) → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) = (Σ^‘(𝑘 ∈ {𝐵} ↦ 𝐶)))
9 sge0prle.b . . . . . 6 (𝜑𝐵𝑊)
10 sge0prle.e . . . . . 6 (𝜑𝐸 ∈ (0[,]+∞))
11 sge0prle.ce . . . . . 6 (𝑘 = 𝐵𝐶 = 𝐸)
129, 10, 11sge0snmpt 45099 . . . . 5 (𝜑 → (Σ^‘(𝑘 ∈ {𝐵} ↦ 𝐶)) = 𝐸)
1312adantr 482 . . . 4 ((𝜑𝐴 = 𝐵) → (Σ^‘(𝑘 ∈ {𝐵} ↦ 𝐶)) = 𝐸)
148, 13eqtrd 2773 . . 3 ((𝜑𝐴 = 𝐵) → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) = 𝐸)
15 iccssxr 13407 . . . . . . . 8 (0[,]+∞) ⊆ ℝ*
1615, 10sselid 3981 . . . . . . 7 (𝜑𝐸 ∈ ℝ*)
1716xaddlidd 44029 . . . . . 6 (𝜑 → (0 +𝑒 𝐸) = 𝐸)
1817eqcomd 2739 . . . . 5 (𝜑𝐸 = (0 +𝑒 𝐸))
19 0xr 11261 . . . . . . 7 0 ∈ ℝ*
2019a1i 11 . . . . . 6 (𝜑 → 0 ∈ ℝ*)
21 sge0prle.d . . . . . . 7 (𝜑𝐷 ∈ (0[,]+∞))
2215, 21sselid 3981 . . . . . 6 (𝜑𝐷 ∈ ℝ*)
23 pnfxr 11268 . . . . . . . 8 +∞ ∈ ℝ*
2423a1i 11 . . . . . . 7 (𝜑 → +∞ ∈ ℝ*)
25 iccgelb 13380 . . . . . . 7 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐷 ∈ (0[,]+∞)) → 0 ≤ 𝐷)
2620, 24, 21, 25syl3anc 1372 . . . . . 6 (𝜑 → 0 ≤ 𝐷)
2720, 22, 16, 26xleadd1d 44039 . . . . 5 (𝜑 → (0 +𝑒 𝐸) ≤ (𝐷 +𝑒 𝐸))
2818, 27eqbrtrd 5171 . . . 4 (𝜑𝐸 ≤ (𝐷 +𝑒 𝐸))
2928adantr 482 . . 3 ((𝜑𝐴 = 𝐵) → 𝐸 ≤ (𝐷 +𝑒 𝐸))
3014, 29eqbrtrd 5171 . 2 ((𝜑𝐴 = 𝐵) → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) ≤ (𝐷 +𝑒 𝐸))
31 sge0prle.a . . . . 5 (𝜑𝐴𝑉)
3231adantr 482 . . . 4 ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐴𝑉)
339adantr 482 . . . 4 ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐵𝑊)
3421adantr 482 . . . 4 ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐷 ∈ (0[,]+∞))
3510adantr 482 . . . 4 ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐸 ∈ (0[,]+∞))
36 sge0prle.cd . . . 4 (𝑘 = 𝐴𝐶 = 𝐷)
37 neqne 2949 . . . . 5 𝐴 = 𝐵𝐴𝐵)
3837adantl 483 . . . 4 ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐴𝐵)
3932, 33, 34, 35, 36, 11, 38sge0pr 45110 . . 3 ((𝜑 ∧ ¬ 𝐴 = 𝐵) → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) = (𝐷 +𝑒 𝐸))
4022, 16xaddcld 13280 . . . . 5 (𝜑 → (𝐷 +𝑒 𝐸) ∈ ℝ*)
4140xrleidd 13131 . . . 4 (𝜑 → (𝐷 +𝑒 𝐸) ≤ (𝐷 +𝑒 𝐸))
4241adantr 482 . . 3 ((𝜑 ∧ ¬ 𝐴 = 𝐵) → (𝐷 +𝑒 𝐸) ≤ (𝐷 +𝑒 𝐸))
4339, 42eqbrtrd 5171 . 2 ((𝜑 ∧ ¬ 𝐴 = 𝐵) → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) ≤ (𝐷 +𝑒 𝐸))
4430, 43pm2.61dan 812 1 (𝜑 → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) ≤ (𝐷 +𝑒 𝐸))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397   = wceq 1542  wcel 2107  wne 2941  {csn 4629  {cpr 4631   class class class wbr 5149  cmpt 5232  cfv 6544  (class class class)co 7409  0cc0 11110  +∞cpnf 11245  *cxr 11247  cle 11249   +𝑒 cxad 13090  [,]cicc 13327  Σ^csumge0 45078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-inf2 9636  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187  ax-pre-sup 11188
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-sup 9437  df-oi 9505  df-card 9934  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-div 11872  df-nn 12213  df-2 12275  df-3 12276  df-n0 12473  df-z 12559  df-uz 12823  df-rp 12975  df-xadd 13093  df-ico 13330  df-icc 13331  df-fz 13485  df-fzo 13628  df-seq 13967  df-exp 14028  df-hash 14291  df-cj 15046  df-re 15047  df-im 15048  df-sqrt 15182  df-abs 15183  df-clim 15432  df-sum 15633  df-sumge0 45079
This theorem is referenced by:  omeunle  45232
  Copyright terms: Public domain W3C validator