| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sge0prle | Structured version Visualization version GIF version | ||
| Description: The sum of a pair of nonnegative extended reals is less than or equal their extended addition. When it is a distinct pair, than equality holds, see sge0pr 46399. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| sge0prle.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| sge0prle.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| sge0prle.d | ⊢ (𝜑 → 𝐷 ∈ (0[,]+∞)) |
| sge0prle.e | ⊢ (𝜑 → 𝐸 ∈ (0[,]+∞)) |
| sge0prle.cd | ⊢ (𝑘 = 𝐴 → 𝐶 = 𝐷) |
| sge0prle.ce | ⊢ (𝑘 = 𝐵 → 𝐶 = 𝐸) |
| Ref | Expression |
|---|---|
| sge0prle | ⊢ (𝜑 → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) ≤ (𝐷 +𝑒 𝐸)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preq1 4700 | . . . . . . . 8 ⊢ (𝐴 = 𝐵 → {𝐴, 𝐵} = {𝐵, 𝐵}) | |
| 2 | dfsn2 4605 | . . . . . . . . . 10 ⊢ {𝐵} = {𝐵, 𝐵} | |
| 3 | 2 | eqcomi 2739 | . . . . . . . . 9 ⊢ {𝐵, 𝐵} = {𝐵} |
| 4 | 3 | a1i 11 | . . . . . . . 8 ⊢ (𝐴 = 𝐵 → {𝐵, 𝐵} = {𝐵}) |
| 5 | 1, 4 | eqtrd 2765 | . . . . . . 7 ⊢ (𝐴 = 𝐵 → {𝐴, 𝐵} = {𝐵}) |
| 6 | 5 | mpteq1d 5200 | . . . . . 6 ⊢ (𝐴 = 𝐵 → (𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶) = (𝑘 ∈ {𝐵} ↦ 𝐶)) |
| 7 | 6 | fveq2d 6865 | . . . . 5 ⊢ (𝐴 = 𝐵 → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) = (Σ^‘(𝑘 ∈ {𝐵} ↦ 𝐶))) |
| 8 | 7 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) = (Σ^‘(𝑘 ∈ {𝐵} ↦ 𝐶))) |
| 9 | sge0prle.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 10 | sge0prle.e | . . . . . 6 ⊢ (𝜑 → 𝐸 ∈ (0[,]+∞)) | |
| 11 | sge0prle.ce | . . . . . 6 ⊢ (𝑘 = 𝐵 → 𝐶 = 𝐸) | |
| 12 | 9, 10, 11 | sge0snmpt 46388 | . . . . 5 ⊢ (𝜑 → (Σ^‘(𝑘 ∈ {𝐵} ↦ 𝐶)) = 𝐸) |
| 13 | 12 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → (Σ^‘(𝑘 ∈ {𝐵} ↦ 𝐶)) = 𝐸) |
| 14 | 8, 13 | eqtrd 2765 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) = 𝐸) |
| 15 | iccssxr 13398 | . . . . . . . 8 ⊢ (0[,]+∞) ⊆ ℝ* | |
| 16 | 15, 10 | sselid 3947 | . . . . . . 7 ⊢ (𝜑 → 𝐸 ∈ ℝ*) |
| 17 | 16 | xaddlidd 45323 | . . . . . 6 ⊢ (𝜑 → (0 +𝑒 𝐸) = 𝐸) |
| 18 | 17 | eqcomd 2736 | . . . . 5 ⊢ (𝜑 → 𝐸 = (0 +𝑒 𝐸)) |
| 19 | 0xr 11228 | . . . . . . 7 ⊢ 0 ∈ ℝ* | |
| 20 | 19 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 0 ∈ ℝ*) |
| 21 | sge0prle.d | . . . . . . 7 ⊢ (𝜑 → 𝐷 ∈ (0[,]+∞)) | |
| 22 | 15, 21 | sselid 3947 | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ ℝ*) |
| 23 | pnfxr 11235 | . . . . . . . 8 ⊢ +∞ ∈ ℝ* | |
| 24 | 23 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → +∞ ∈ ℝ*) |
| 25 | iccgelb 13370 | . . . . . . 7 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝐷 ∈ (0[,]+∞)) → 0 ≤ 𝐷) | |
| 26 | 20, 24, 21, 25 | syl3anc 1373 | . . . . . 6 ⊢ (𝜑 → 0 ≤ 𝐷) |
| 27 | 20, 22, 16, 26 | xleadd1d 45332 | . . . . 5 ⊢ (𝜑 → (0 +𝑒 𝐸) ≤ (𝐷 +𝑒 𝐸)) |
| 28 | 18, 27 | eqbrtrd 5132 | . . . 4 ⊢ (𝜑 → 𝐸 ≤ (𝐷 +𝑒 𝐸)) |
| 29 | 28 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝐸 ≤ (𝐷 +𝑒 𝐸)) |
| 30 | 14, 29 | eqbrtrd 5132 | . 2 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) ≤ (𝐷 +𝑒 𝐸)) |
| 31 | sge0prle.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 32 | 31 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐴 ∈ 𝑉) |
| 33 | 9 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐵 ∈ 𝑊) |
| 34 | 21 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐷 ∈ (0[,]+∞)) |
| 35 | 10 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐸 ∈ (0[,]+∞)) |
| 36 | sge0prle.cd | . . . 4 ⊢ (𝑘 = 𝐴 → 𝐶 = 𝐷) | |
| 37 | neqne 2934 | . . . . 5 ⊢ (¬ 𝐴 = 𝐵 → 𝐴 ≠ 𝐵) | |
| 38 | 37 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐴 ≠ 𝐵) |
| 39 | 32, 33, 34, 35, 36, 11, 38 | sge0pr 46399 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) = (𝐷 +𝑒 𝐸)) |
| 40 | 22, 16 | xaddcld 13268 | . . . . 5 ⊢ (𝜑 → (𝐷 +𝑒 𝐸) ∈ ℝ*) |
| 41 | 40 | xrleidd 13119 | . . . 4 ⊢ (𝜑 → (𝐷 +𝑒 𝐸) ≤ (𝐷 +𝑒 𝐸)) |
| 42 | 41 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → (𝐷 +𝑒 𝐸) ≤ (𝐷 +𝑒 𝐸)) |
| 43 | 39, 42 | eqbrtrd 5132 | . 2 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) ≤ (𝐷 +𝑒 𝐸)) |
| 44 | 30, 43 | pm2.61dan 812 | 1 ⊢ (𝜑 → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) ≤ (𝐷 +𝑒 𝐸)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 {csn 4592 {cpr 4594 class class class wbr 5110 ↦ cmpt 5191 ‘cfv 6514 (class class class)co 7390 0cc0 11075 +∞cpnf 11212 ℝ*cxr 11214 ≤ cle 11216 +𝑒 cxad 13077 [,]cicc 13316 Σ^csumge0 46367 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-oi 9470 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-n0 12450 df-z 12537 df-uz 12801 df-rp 12959 df-xadd 13080 df-ico 13319 df-icc 13320 df-fz 13476 df-fzo 13623 df-seq 13974 df-exp 14034 df-hash 14303 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-clim 15461 df-sum 15660 df-sumge0 46368 |
| This theorem is referenced by: omeunle 46521 |
| Copyright terms: Public domain | W3C validator |