Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0prle Structured version   Visualization version   GIF version

Theorem sge0prle 46399
Description: The sum of a pair of nonnegative extended reals is less than or equal their extended addition. When it is a distinct pair, than equality holds, see sge0pr 46392. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0prle.a (𝜑𝐴𝑉)
sge0prle.b (𝜑𝐵𝑊)
sge0prle.d (𝜑𝐷 ∈ (0[,]+∞))
sge0prle.e (𝜑𝐸 ∈ (0[,]+∞))
sge0prle.cd (𝑘 = 𝐴𝐶 = 𝐷)
sge0prle.ce (𝑘 = 𝐵𝐶 = 𝐸)
Assertion
Ref Expression
sge0prle (𝜑 → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) ≤ (𝐷 +𝑒 𝐸))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝐷,𝑘   𝑘,𝐸   𝑘,𝑉   𝑘,𝑊   𝜑,𝑘
Allowed substitution hint:   𝐶(𝑘)

Proof of Theorem sge0prle
StepHypRef Expression
1 preq1 4697 . . . . . . . 8 (𝐴 = 𝐵 → {𝐴, 𝐵} = {𝐵, 𝐵})
2 dfsn2 4602 . . . . . . . . . 10 {𝐵} = {𝐵, 𝐵}
32eqcomi 2738 . . . . . . . . 9 {𝐵, 𝐵} = {𝐵}
43a1i 11 . . . . . . . 8 (𝐴 = 𝐵 → {𝐵, 𝐵} = {𝐵})
51, 4eqtrd 2764 . . . . . . 7 (𝐴 = 𝐵 → {𝐴, 𝐵} = {𝐵})
65mpteq1d 5197 . . . . . 6 (𝐴 = 𝐵 → (𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶) = (𝑘 ∈ {𝐵} ↦ 𝐶))
76fveq2d 6862 . . . . 5 (𝐴 = 𝐵 → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) = (Σ^‘(𝑘 ∈ {𝐵} ↦ 𝐶)))
87adantl 481 . . . 4 ((𝜑𝐴 = 𝐵) → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) = (Σ^‘(𝑘 ∈ {𝐵} ↦ 𝐶)))
9 sge0prle.b . . . . . 6 (𝜑𝐵𝑊)
10 sge0prle.e . . . . . 6 (𝜑𝐸 ∈ (0[,]+∞))
11 sge0prle.ce . . . . . 6 (𝑘 = 𝐵𝐶 = 𝐸)
129, 10, 11sge0snmpt 46381 . . . . 5 (𝜑 → (Σ^‘(𝑘 ∈ {𝐵} ↦ 𝐶)) = 𝐸)
1312adantr 480 . . . 4 ((𝜑𝐴 = 𝐵) → (Σ^‘(𝑘 ∈ {𝐵} ↦ 𝐶)) = 𝐸)
148, 13eqtrd 2764 . . 3 ((𝜑𝐴 = 𝐵) → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) = 𝐸)
15 iccssxr 13391 . . . . . . . 8 (0[,]+∞) ⊆ ℝ*
1615, 10sselid 3944 . . . . . . 7 (𝜑𝐸 ∈ ℝ*)
1716xaddlidd 45316 . . . . . 6 (𝜑 → (0 +𝑒 𝐸) = 𝐸)
1817eqcomd 2735 . . . . 5 (𝜑𝐸 = (0 +𝑒 𝐸))
19 0xr 11221 . . . . . . 7 0 ∈ ℝ*
2019a1i 11 . . . . . 6 (𝜑 → 0 ∈ ℝ*)
21 sge0prle.d . . . . . . 7 (𝜑𝐷 ∈ (0[,]+∞))
2215, 21sselid 3944 . . . . . 6 (𝜑𝐷 ∈ ℝ*)
23 pnfxr 11228 . . . . . . . 8 +∞ ∈ ℝ*
2423a1i 11 . . . . . . 7 (𝜑 → +∞ ∈ ℝ*)
25 iccgelb 13363 . . . . . . 7 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐷 ∈ (0[,]+∞)) → 0 ≤ 𝐷)
2620, 24, 21, 25syl3anc 1373 . . . . . 6 (𝜑 → 0 ≤ 𝐷)
2720, 22, 16, 26xleadd1d 45325 . . . . 5 (𝜑 → (0 +𝑒 𝐸) ≤ (𝐷 +𝑒 𝐸))
2818, 27eqbrtrd 5129 . . . 4 (𝜑𝐸 ≤ (𝐷 +𝑒 𝐸))
2928adantr 480 . . 3 ((𝜑𝐴 = 𝐵) → 𝐸 ≤ (𝐷 +𝑒 𝐸))
3014, 29eqbrtrd 5129 . 2 ((𝜑𝐴 = 𝐵) → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) ≤ (𝐷 +𝑒 𝐸))
31 sge0prle.a . . . . 5 (𝜑𝐴𝑉)
3231adantr 480 . . . 4 ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐴𝑉)
339adantr 480 . . . 4 ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐵𝑊)
3421adantr 480 . . . 4 ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐷 ∈ (0[,]+∞))
3510adantr 480 . . . 4 ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐸 ∈ (0[,]+∞))
36 sge0prle.cd . . . 4 (𝑘 = 𝐴𝐶 = 𝐷)
37 neqne 2933 . . . . 5 𝐴 = 𝐵𝐴𝐵)
3837adantl 481 . . . 4 ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐴𝐵)
3932, 33, 34, 35, 36, 11, 38sge0pr 46392 . . 3 ((𝜑 ∧ ¬ 𝐴 = 𝐵) → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) = (𝐷 +𝑒 𝐸))
4022, 16xaddcld 13261 . . . . 5 (𝜑 → (𝐷 +𝑒 𝐸) ∈ ℝ*)
4140xrleidd 13112 . . . 4 (𝜑 → (𝐷 +𝑒 𝐸) ≤ (𝐷 +𝑒 𝐸))
4241adantr 480 . . 3 ((𝜑 ∧ ¬ 𝐴 = 𝐵) → (𝐷 +𝑒 𝐸) ≤ (𝐷 +𝑒 𝐸))
4339, 42eqbrtrd 5129 . 2 ((𝜑 ∧ ¬ 𝐴 = 𝐵) → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) ≤ (𝐷 +𝑒 𝐸))
4430, 43pm2.61dan 812 1 (𝜑 → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) ≤ (𝐷 +𝑒 𝐸))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  {csn 4589  {cpr 4591   class class class wbr 5107  cmpt 5188  cfv 6511  (class class class)co 7387  0cc0 11068  +∞cpnf 11205  *cxr 11207  cle 11209   +𝑒 cxad 13070  [,]cicc 13309  Σ^csumge0 46360
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-xadd 13073  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-sum 15653  df-sumge0 46361
This theorem is referenced by:  omeunle  46514
  Copyright terms: Public domain W3C validator