Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sge0prle | Structured version Visualization version GIF version |
Description: The sum of a pair of nonnegative extended reals is less than or equal their extended addition. When it is a distinct pair, than equality holds, see sge0pr 43607. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
sge0prle.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
sge0prle.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
sge0prle.d | ⊢ (𝜑 → 𝐷 ∈ (0[,]+∞)) |
sge0prle.e | ⊢ (𝜑 → 𝐸 ∈ (0[,]+∞)) |
sge0prle.cd | ⊢ (𝑘 = 𝐴 → 𝐶 = 𝐷) |
sge0prle.ce | ⊢ (𝑘 = 𝐵 → 𝐶 = 𝐸) |
Ref | Expression |
---|---|
sge0prle | ⊢ (𝜑 → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) ≤ (𝐷 +𝑒 𝐸)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | preq1 4649 | . . . . . . . 8 ⊢ (𝐴 = 𝐵 → {𝐴, 𝐵} = {𝐵, 𝐵}) | |
2 | dfsn2 4554 | . . . . . . . . . 10 ⊢ {𝐵} = {𝐵, 𝐵} | |
3 | 2 | eqcomi 2746 | . . . . . . . . 9 ⊢ {𝐵, 𝐵} = {𝐵} |
4 | 3 | a1i 11 | . . . . . . . 8 ⊢ (𝐴 = 𝐵 → {𝐵, 𝐵} = {𝐵}) |
5 | 1, 4 | eqtrd 2777 | . . . . . . 7 ⊢ (𝐴 = 𝐵 → {𝐴, 𝐵} = {𝐵}) |
6 | 5 | mpteq1d 5144 | . . . . . 6 ⊢ (𝐴 = 𝐵 → (𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶) = (𝑘 ∈ {𝐵} ↦ 𝐶)) |
7 | 6 | fveq2d 6721 | . . . . 5 ⊢ (𝐴 = 𝐵 → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) = (Σ^‘(𝑘 ∈ {𝐵} ↦ 𝐶))) |
8 | 7 | adantl 485 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) = (Σ^‘(𝑘 ∈ {𝐵} ↦ 𝐶))) |
9 | sge0prle.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
10 | sge0prle.e | . . . . . 6 ⊢ (𝜑 → 𝐸 ∈ (0[,]+∞)) | |
11 | sge0prle.ce | . . . . . 6 ⊢ (𝑘 = 𝐵 → 𝐶 = 𝐸) | |
12 | 9, 10, 11 | sge0snmpt 43596 | . . . . 5 ⊢ (𝜑 → (Σ^‘(𝑘 ∈ {𝐵} ↦ 𝐶)) = 𝐸) |
13 | 12 | adantr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → (Σ^‘(𝑘 ∈ {𝐵} ↦ 𝐶)) = 𝐸) |
14 | 8, 13 | eqtrd 2777 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) = 𝐸) |
15 | iccssxr 13018 | . . . . . . . 8 ⊢ (0[,]+∞) ⊆ ℝ* | |
16 | 15, 10 | sseldi 3899 | . . . . . . 7 ⊢ (𝜑 → 𝐸 ∈ ℝ*) |
17 | 16 | xaddid2d 42531 | . . . . . 6 ⊢ (𝜑 → (0 +𝑒 𝐸) = 𝐸) |
18 | 17 | eqcomd 2743 | . . . . 5 ⊢ (𝜑 → 𝐸 = (0 +𝑒 𝐸)) |
19 | 0xr 10880 | . . . . . . 7 ⊢ 0 ∈ ℝ* | |
20 | 19 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 0 ∈ ℝ*) |
21 | sge0prle.d | . . . . . . 7 ⊢ (𝜑 → 𝐷 ∈ (0[,]+∞)) | |
22 | 15, 21 | sseldi 3899 | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ ℝ*) |
23 | pnfxr 10887 | . . . . . . . 8 ⊢ +∞ ∈ ℝ* | |
24 | 23 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → +∞ ∈ ℝ*) |
25 | iccgelb 12991 | . . . . . . 7 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝐷 ∈ (0[,]+∞)) → 0 ≤ 𝐷) | |
26 | 20, 24, 21, 25 | syl3anc 1373 | . . . . . 6 ⊢ (𝜑 → 0 ≤ 𝐷) |
27 | 20, 22, 16, 26 | xleadd1d 42541 | . . . . 5 ⊢ (𝜑 → (0 +𝑒 𝐸) ≤ (𝐷 +𝑒 𝐸)) |
28 | 18, 27 | eqbrtrd 5075 | . . . 4 ⊢ (𝜑 → 𝐸 ≤ (𝐷 +𝑒 𝐸)) |
29 | 28 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝐸 ≤ (𝐷 +𝑒 𝐸)) |
30 | 14, 29 | eqbrtrd 5075 | . 2 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) ≤ (𝐷 +𝑒 𝐸)) |
31 | sge0prle.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
32 | 31 | adantr 484 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐴 ∈ 𝑉) |
33 | 9 | adantr 484 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐵 ∈ 𝑊) |
34 | 21 | adantr 484 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐷 ∈ (0[,]+∞)) |
35 | 10 | adantr 484 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐸 ∈ (0[,]+∞)) |
36 | sge0prle.cd | . . . 4 ⊢ (𝑘 = 𝐴 → 𝐶 = 𝐷) | |
37 | neqne 2948 | . . . . 5 ⊢ (¬ 𝐴 = 𝐵 → 𝐴 ≠ 𝐵) | |
38 | 37 | adantl 485 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐴 ≠ 𝐵) |
39 | 32, 33, 34, 35, 36, 11, 38 | sge0pr 43607 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) = (𝐷 +𝑒 𝐸)) |
40 | 22, 16 | xaddcld 12891 | . . . . 5 ⊢ (𝜑 → (𝐷 +𝑒 𝐸) ∈ ℝ*) |
41 | 40 | xrleidd 12742 | . . . 4 ⊢ (𝜑 → (𝐷 +𝑒 𝐸) ≤ (𝐷 +𝑒 𝐸)) |
42 | 41 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → (𝐷 +𝑒 𝐸) ≤ (𝐷 +𝑒 𝐸)) |
43 | 39, 42 | eqbrtrd 5075 | . 2 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) ≤ (𝐷 +𝑒 𝐸)) |
44 | 30, 43 | pm2.61dan 813 | 1 ⊢ (𝜑 → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) ≤ (𝐷 +𝑒 𝐸)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ≠ wne 2940 {csn 4541 {cpr 4543 class class class wbr 5053 ↦ cmpt 5135 ‘cfv 6380 (class class class)co 7213 0cc0 10729 +∞cpnf 10864 ℝ*cxr 10866 ≤ cle 10868 +𝑒 cxad 12702 [,]cicc 12938 Σ^csumge0 43575 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-inf2 9256 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 ax-pre-sup 10807 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-int 4860 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-se 5510 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-isom 6389 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-1o 8202 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-fin 8630 df-sup 9058 df-oi 9126 df-card 9555 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-div 11490 df-nn 11831 df-2 11893 df-3 11894 df-n0 12091 df-z 12177 df-uz 12439 df-rp 12587 df-xadd 12705 df-ico 12941 df-icc 12942 df-fz 13096 df-fzo 13239 df-seq 13575 df-exp 13636 df-hash 13897 df-cj 14662 df-re 14663 df-im 14664 df-sqrt 14798 df-abs 14799 df-clim 15049 df-sum 15250 df-sumge0 43576 |
This theorem is referenced by: omeunle 43729 |
Copyright terms: Public domain | W3C validator |