Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0prle Structured version   Visualization version   GIF version

Theorem sge0prle 46357
Description: The sum of a pair of nonnegative extended reals is less than or equal their extended addition. When it is a distinct pair, than equality holds, see sge0pr 46350. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0prle.a (𝜑𝐴𝑉)
sge0prle.b (𝜑𝐵𝑊)
sge0prle.d (𝜑𝐷 ∈ (0[,]+∞))
sge0prle.e (𝜑𝐸 ∈ (0[,]+∞))
sge0prle.cd (𝑘 = 𝐴𝐶 = 𝐷)
sge0prle.ce (𝑘 = 𝐵𝐶 = 𝐸)
Assertion
Ref Expression
sge0prle (𝜑 → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) ≤ (𝐷 +𝑒 𝐸))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝐷,𝑘   𝑘,𝐸   𝑘,𝑉   𝑘,𝑊   𝜑,𝑘
Allowed substitution hint:   𝐶(𝑘)

Proof of Theorem sge0prle
StepHypRef Expression
1 preq1 4738 . . . . . . . 8 (𝐴 = 𝐵 → {𝐴, 𝐵} = {𝐵, 𝐵})
2 dfsn2 4644 . . . . . . . . . 10 {𝐵} = {𝐵, 𝐵}
32eqcomi 2744 . . . . . . . . 9 {𝐵, 𝐵} = {𝐵}
43a1i 11 . . . . . . . 8 (𝐴 = 𝐵 → {𝐵, 𝐵} = {𝐵})
51, 4eqtrd 2775 . . . . . . 7 (𝐴 = 𝐵 → {𝐴, 𝐵} = {𝐵})
65mpteq1d 5243 . . . . . 6 (𝐴 = 𝐵 → (𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶) = (𝑘 ∈ {𝐵} ↦ 𝐶))
76fveq2d 6911 . . . . 5 (𝐴 = 𝐵 → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) = (Σ^‘(𝑘 ∈ {𝐵} ↦ 𝐶)))
87adantl 481 . . . 4 ((𝜑𝐴 = 𝐵) → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) = (Σ^‘(𝑘 ∈ {𝐵} ↦ 𝐶)))
9 sge0prle.b . . . . . 6 (𝜑𝐵𝑊)
10 sge0prle.e . . . . . 6 (𝜑𝐸 ∈ (0[,]+∞))
11 sge0prle.ce . . . . . 6 (𝑘 = 𝐵𝐶 = 𝐸)
129, 10, 11sge0snmpt 46339 . . . . 5 (𝜑 → (Σ^‘(𝑘 ∈ {𝐵} ↦ 𝐶)) = 𝐸)
1312adantr 480 . . . 4 ((𝜑𝐴 = 𝐵) → (Σ^‘(𝑘 ∈ {𝐵} ↦ 𝐶)) = 𝐸)
148, 13eqtrd 2775 . . 3 ((𝜑𝐴 = 𝐵) → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) = 𝐸)
15 iccssxr 13467 . . . . . . . 8 (0[,]+∞) ⊆ ℝ*
1615, 10sselid 3993 . . . . . . 7 (𝜑𝐸 ∈ ℝ*)
1716xaddlidd 45270 . . . . . 6 (𝜑 → (0 +𝑒 𝐸) = 𝐸)
1817eqcomd 2741 . . . . 5 (𝜑𝐸 = (0 +𝑒 𝐸))
19 0xr 11306 . . . . . . 7 0 ∈ ℝ*
2019a1i 11 . . . . . 6 (𝜑 → 0 ∈ ℝ*)
21 sge0prle.d . . . . . . 7 (𝜑𝐷 ∈ (0[,]+∞))
2215, 21sselid 3993 . . . . . 6 (𝜑𝐷 ∈ ℝ*)
23 pnfxr 11313 . . . . . . . 8 +∞ ∈ ℝ*
2423a1i 11 . . . . . . 7 (𝜑 → +∞ ∈ ℝ*)
25 iccgelb 13440 . . . . . . 7 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐷 ∈ (0[,]+∞)) → 0 ≤ 𝐷)
2620, 24, 21, 25syl3anc 1370 . . . . . 6 (𝜑 → 0 ≤ 𝐷)
2720, 22, 16, 26xleadd1d 45279 . . . . 5 (𝜑 → (0 +𝑒 𝐸) ≤ (𝐷 +𝑒 𝐸))
2818, 27eqbrtrd 5170 . . . 4 (𝜑𝐸 ≤ (𝐷 +𝑒 𝐸))
2928adantr 480 . . 3 ((𝜑𝐴 = 𝐵) → 𝐸 ≤ (𝐷 +𝑒 𝐸))
3014, 29eqbrtrd 5170 . 2 ((𝜑𝐴 = 𝐵) → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) ≤ (𝐷 +𝑒 𝐸))
31 sge0prle.a . . . . 5 (𝜑𝐴𝑉)
3231adantr 480 . . . 4 ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐴𝑉)
339adantr 480 . . . 4 ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐵𝑊)
3421adantr 480 . . . 4 ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐷 ∈ (0[,]+∞))
3510adantr 480 . . . 4 ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐸 ∈ (0[,]+∞))
36 sge0prle.cd . . . 4 (𝑘 = 𝐴𝐶 = 𝐷)
37 neqne 2946 . . . . 5 𝐴 = 𝐵𝐴𝐵)
3837adantl 481 . . . 4 ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐴𝐵)
3932, 33, 34, 35, 36, 11, 38sge0pr 46350 . . 3 ((𝜑 ∧ ¬ 𝐴 = 𝐵) → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) = (𝐷 +𝑒 𝐸))
4022, 16xaddcld 13340 . . . . 5 (𝜑 → (𝐷 +𝑒 𝐸) ∈ ℝ*)
4140xrleidd 13191 . . . 4 (𝜑 → (𝐷 +𝑒 𝐸) ≤ (𝐷 +𝑒 𝐸))
4241adantr 480 . . 3 ((𝜑 ∧ ¬ 𝐴 = 𝐵) → (𝐷 +𝑒 𝐸) ≤ (𝐷 +𝑒 𝐸))
4339, 42eqbrtrd 5170 . 2 ((𝜑 ∧ ¬ 𝐴 = 𝐵) → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) ≤ (𝐷 +𝑒 𝐸))
4430, 43pm2.61dan 813 1 (𝜑 → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) ≤ (𝐷 +𝑒 𝐸))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2106  wne 2938  {csn 4631  {cpr 4633   class class class wbr 5148  cmpt 5231  cfv 6563  (class class class)co 7431  0cc0 11153  +∞cpnf 11290  *cxr 11292  cle 11294   +𝑒 cxad 13150  [,]cicc 13387  Σ^csumge0 46318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-xadd 13153  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-sum 15720  df-sumge0 46319
This theorem is referenced by:  omeunle  46472
  Copyright terms: Public domain W3C validator