![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dvh2dim | Structured version Visualization version GIF version |
Description: There is a vector that is outside the span of another. (Contributed by NM, 25-Apr-2015.) |
Ref | Expression |
---|---|
dvh3dim.h | β’ π» = (LHypβπΎ) |
dvh3dim.u | β’ π = ((DVecHβπΎ)βπ) |
dvh3dim.v | β’ π = (Baseβπ) |
dvh3dim.n | β’ π = (LSpanβπ) |
dvh3dim.k | β’ (π β (πΎ β HL β§ π β π»)) |
dvh3dim.x | β’ (π β π β π) |
Ref | Expression |
---|---|
dvh2dim | β’ (π β βπ§ β π Β¬ π§ β (πβ{π})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvh3dim.h | . . . . 5 β’ π» = (LHypβπΎ) | |
2 | dvh3dim.u | . . . . 5 β’ π = ((DVecHβπΎ)βπ) | |
3 | dvh3dim.v | . . . . 5 β’ π = (Baseβπ) | |
4 | eqid 2731 | . . . . 5 β’ (0gβπ) = (0gβπ) | |
5 | dvh3dim.k | . . . . 5 β’ (π β (πΎ β HL β§ π β π»)) | |
6 | 1, 2, 3, 4, 5 | dvh1dim 40617 | . . . 4 β’ (π β βπ§ β π π§ β (0gβπ)) |
7 | 6 | adantr 480 | . . 3 β’ ((π β§ π = (0gβπ)) β βπ§ β π π§ β (0gβπ)) |
8 | simpr 484 | . . . . . . . . . 10 β’ ((π β§ π = (0gβπ)) β π = (0gβπ)) | |
9 | 8 | sneqd 4640 | . . . . . . . . 9 β’ ((π β§ π = (0gβπ)) β {π} = {(0gβπ)}) |
10 | 9 | fveq2d 6895 | . . . . . . . 8 β’ ((π β§ π = (0gβπ)) β (πβ{π}) = (πβ{(0gβπ)})) |
11 | 1, 2, 5 | dvhlmod 40285 | . . . . . . . . . 10 β’ (π β π β LMod) |
12 | dvh3dim.n | . . . . . . . . . . 11 β’ π = (LSpanβπ) | |
13 | 4, 12 | lspsn0 20764 | . . . . . . . . . 10 β’ (π β LMod β (πβ{(0gβπ)}) = {(0gβπ)}) |
14 | 11, 13 | syl 17 | . . . . . . . . 9 β’ (π β (πβ{(0gβπ)}) = {(0gβπ)}) |
15 | 14 | adantr 480 | . . . . . . . 8 β’ ((π β§ π = (0gβπ)) β (πβ{(0gβπ)}) = {(0gβπ)}) |
16 | 10, 15 | eqtrd 2771 | . . . . . . 7 β’ ((π β§ π = (0gβπ)) β (πβ{π}) = {(0gβπ)}) |
17 | 16 | eleq2d 2818 | . . . . . 6 β’ ((π β§ π = (0gβπ)) β (π§ β (πβ{π}) β π§ β {(0gβπ)})) |
18 | velsn 4644 | . . . . . 6 β’ (π§ β {(0gβπ)} β π§ = (0gβπ)) | |
19 | 17, 18 | bitrdi 287 | . . . . 5 β’ ((π β§ π = (0gβπ)) β (π§ β (πβ{π}) β π§ = (0gβπ))) |
20 | 19 | necon3bbid 2977 | . . . 4 β’ ((π β§ π = (0gβπ)) β (Β¬ π§ β (πβ{π}) β π§ β (0gβπ))) |
21 | 20 | rexbidv 3177 | . . 3 β’ ((π β§ π = (0gβπ)) β (βπ§ β π Β¬ π§ β (πβ{π}) β βπ§ β π π§ β (0gβπ))) |
22 | 7, 21 | mpbird 257 | . 2 β’ ((π β§ π = (0gβπ)) β βπ§ β π Β¬ π§ β (πβ{π})) |
23 | 5 | adantr 480 | . . . 4 β’ ((π β§ π β (0gβπ)) β (πΎ β HL β§ π β π»)) |
24 | dvh3dim.x | . . . . 5 β’ (π β π β π) | |
25 | 24 | adantr 480 | . . . 4 β’ ((π β§ π β (0gβπ)) β π β π) |
26 | simpr 484 | . . . 4 β’ ((π β§ π β (0gβπ)) β π β (0gβπ)) | |
27 | 1, 2, 3, 12, 23, 25, 25, 4, 26, 26 | dvhdimlem 40619 | . . 3 β’ ((π β§ π β (0gβπ)) β βπ§ β π Β¬ π§ β (πβ{π, π})) |
28 | dfsn2 4641 | . . . . . . 7 β’ {π} = {π, π} | |
29 | 28 | fveq2i 6894 | . . . . . 6 β’ (πβ{π}) = (πβ{π, π}) |
30 | 29 | eleq2i 2824 | . . . . 5 β’ (π§ β (πβ{π}) β π§ β (πβ{π, π})) |
31 | 30 | notbii 320 | . . . 4 β’ (Β¬ π§ β (πβ{π}) β Β¬ π§ β (πβ{π, π})) |
32 | 31 | rexbii 3093 | . . 3 β’ (βπ§ β π Β¬ π§ β (πβ{π}) β βπ§ β π Β¬ π§ β (πβ{π, π})) |
33 | 27, 32 | sylibr 233 | . 2 β’ ((π β§ π β (0gβπ)) β βπ§ β π Β¬ π§ β (πβ{π})) |
34 | 22, 33 | pm2.61dane 3028 | 1 β’ (π β βπ§ β π Β¬ π§ β (πβ{π})) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 395 = wceq 1540 β wcel 2105 β wne 2939 βwrex 3069 {csn 4628 {cpr 4630 βcfv 6543 Basecbs 17149 0gc0g 17390 LModclmod 20615 LSpanclspn 20727 HLchlt 38524 LHypclh 39159 DVecHcdvh 40253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7728 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 ax-riotaBAD 38127 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7859 df-1st 7978 df-2nd 7979 df-tpos 8214 df-undef 8261 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-1o 8469 df-er 8706 df-map 8825 df-en 8943 df-dom 8944 df-sdom 8945 df-fin 8946 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-2 12280 df-3 12281 df-4 12282 df-5 12283 df-6 12284 df-n0 12478 df-z 12564 df-uz 12828 df-fz 13490 df-struct 17085 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-ress 17179 df-plusg 17215 df-mulr 17216 df-sca 17218 df-vsca 17219 df-0g 17392 df-proset 18253 df-poset 18271 df-plt 18288 df-lub 18304 df-glb 18305 df-join 18306 df-meet 18307 df-p0 18383 df-p1 18384 df-lat 18390 df-clat 18457 df-mgm 18566 df-sgrp 18645 df-mnd 18661 df-submnd 18707 df-grp 18859 df-minusg 18860 df-sbg 18861 df-subg 19040 df-cntz 19223 df-lsm 19546 df-cmn 19692 df-abl 19693 df-mgp 20030 df-rng 20048 df-ur 20077 df-ring 20130 df-oppr 20226 df-dvdsr 20249 df-unit 20250 df-invr 20280 df-dvr 20293 df-drng 20503 df-lmod 20617 df-lss 20688 df-lsp 20728 df-lvec 20859 df-lsatoms 38150 df-oposet 38350 df-ol 38352 df-oml 38353 df-covers 38440 df-ats 38441 df-atl 38472 df-cvlat 38496 df-hlat 38525 df-llines 38673 df-lplanes 38674 df-lvols 38675 df-lines 38676 df-psubsp 38678 df-pmap 38679 df-padd 38971 df-lhyp 39163 df-laut 39164 df-ldil 39279 df-ltrn 39280 df-trl 39334 df-tgrp 39918 df-tendo 39930 df-edring 39932 df-dveca 40178 df-disoa 40204 df-dvech 40254 df-dib 40314 df-dic 40348 df-dih 40404 df-doch 40523 df-djh 40570 |
This theorem is referenced by: dvh3dim 40621 dochsnnz 40625 hdmapevec 41010 hdmaprnlem15N 41036 |
Copyright terms: Public domain | W3C validator |