![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dvh2dim | Structured version Visualization version GIF version |
Description: There is a vector that is outside the span of another. (Contributed by NM, 25-Apr-2015.) |
Ref | Expression |
---|---|
dvh3dim.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dvh3dim.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
dvh3dim.v | ⊢ 𝑉 = (Base‘𝑈) |
dvh3dim.n | ⊢ 𝑁 = (LSpan‘𝑈) |
dvh3dim.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
dvh3dim.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
Ref | Expression |
---|---|
dvh2dim | ⊢ (𝜑 → ∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvh3dim.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | dvh3dim.u | . . . . 5 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
3 | dvh3dim.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑈) | |
4 | eqid 2728 | . . . . 5 ⊢ (0g‘𝑈) = (0g‘𝑈) | |
5 | dvh3dim.k | . . . . 5 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
6 | 1, 2, 3, 4, 5 | dvh1dim 40915 | . . . 4 ⊢ (𝜑 → ∃𝑧 ∈ 𝑉 𝑧 ≠ (0g‘𝑈)) |
7 | 6 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = (0g‘𝑈)) → ∃𝑧 ∈ 𝑉 𝑧 ≠ (0g‘𝑈)) |
8 | simpr 484 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑋 = (0g‘𝑈)) → 𝑋 = (0g‘𝑈)) | |
9 | 8 | sneqd 4641 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑋 = (0g‘𝑈)) → {𝑋} = {(0g‘𝑈)}) |
10 | 9 | fveq2d 6901 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑋 = (0g‘𝑈)) → (𝑁‘{𝑋}) = (𝑁‘{(0g‘𝑈)})) |
11 | 1, 2, 5 | dvhlmod 40583 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑈 ∈ LMod) |
12 | dvh3dim.n | . . . . . . . . . . 11 ⊢ 𝑁 = (LSpan‘𝑈) | |
13 | 4, 12 | lspsn0 20891 | . . . . . . . . . 10 ⊢ (𝑈 ∈ LMod → (𝑁‘{(0g‘𝑈)}) = {(0g‘𝑈)}) |
14 | 11, 13 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → (𝑁‘{(0g‘𝑈)}) = {(0g‘𝑈)}) |
15 | 14 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑋 = (0g‘𝑈)) → (𝑁‘{(0g‘𝑈)}) = {(0g‘𝑈)}) |
16 | 10, 15 | eqtrd 2768 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑋 = (0g‘𝑈)) → (𝑁‘{𝑋}) = {(0g‘𝑈)}) |
17 | 16 | eleq2d 2815 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 = (0g‘𝑈)) → (𝑧 ∈ (𝑁‘{𝑋}) ↔ 𝑧 ∈ {(0g‘𝑈)})) |
18 | velsn 4645 | . . . . . 6 ⊢ (𝑧 ∈ {(0g‘𝑈)} ↔ 𝑧 = (0g‘𝑈)) | |
19 | 17, 18 | bitrdi 287 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 = (0g‘𝑈)) → (𝑧 ∈ (𝑁‘{𝑋}) ↔ 𝑧 = (0g‘𝑈))) |
20 | 19 | necon3bbid 2975 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = (0g‘𝑈)) → (¬ 𝑧 ∈ (𝑁‘{𝑋}) ↔ 𝑧 ≠ (0g‘𝑈))) |
21 | 20 | rexbidv 3175 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = (0g‘𝑈)) → (∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋}) ↔ ∃𝑧 ∈ 𝑉 𝑧 ≠ (0g‘𝑈))) |
22 | 7, 21 | mpbird 257 | . 2 ⊢ ((𝜑 ∧ 𝑋 = (0g‘𝑈)) → ∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋})) |
23 | 5 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≠ (0g‘𝑈)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
24 | dvh3dim.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
25 | 24 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≠ (0g‘𝑈)) → 𝑋 ∈ 𝑉) |
26 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≠ (0g‘𝑈)) → 𝑋 ≠ (0g‘𝑈)) | |
27 | 1, 2, 3, 12, 23, 25, 25, 4, 26, 26 | dvhdimlem 40917 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ (0g‘𝑈)) → ∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑋})) |
28 | dfsn2 4642 | . . . . . . 7 ⊢ {𝑋} = {𝑋, 𝑋} | |
29 | 28 | fveq2i 6900 | . . . . . 6 ⊢ (𝑁‘{𝑋}) = (𝑁‘{𝑋, 𝑋}) |
30 | 29 | eleq2i 2821 | . . . . 5 ⊢ (𝑧 ∈ (𝑁‘{𝑋}) ↔ 𝑧 ∈ (𝑁‘{𝑋, 𝑋})) |
31 | 30 | notbii 320 | . . . 4 ⊢ (¬ 𝑧 ∈ (𝑁‘{𝑋}) ↔ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑋})) |
32 | 31 | rexbii 3091 | . . 3 ⊢ (∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋}) ↔ ∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑋})) |
33 | 27, 32 | sylibr 233 | . 2 ⊢ ((𝜑 ∧ 𝑋 ≠ (0g‘𝑈)) → ∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋})) |
34 | 22, 33 | pm2.61dane 3026 | 1 ⊢ (𝜑 → ∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋})) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ≠ wne 2937 ∃wrex 3067 {csn 4629 {cpr 4631 ‘cfv 6548 Basecbs 17179 0gc0g 17420 LModclmod 20742 LSpanclspn 20854 HLchlt 38822 LHypclh 39457 DVecHcdvh 40551 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-riotaBAD 38425 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-1st 7993 df-2nd 7994 df-tpos 8231 df-undef 8278 df-frecs 8286 df-wrecs 8317 df-recs 8391 df-rdg 8430 df-1o 8486 df-er 8724 df-map 8846 df-en 8964 df-dom 8965 df-sdom 8966 df-fin 8967 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-nn 12243 df-2 12305 df-3 12306 df-4 12307 df-5 12308 df-6 12309 df-n0 12503 df-z 12589 df-uz 12853 df-fz 13517 df-struct 17115 df-sets 17132 df-slot 17150 df-ndx 17162 df-base 17180 df-ress 17209 df-plusg 17245 df-mulr 17246 df-sca 17248 df-vsca 17249 df-0g 17422 df-proset 18286 df-poset 18304 df-plt 18321 df-lub 18337 df-glb 18338 df-join 18339 df-meet 18340 df-p0 18416 df-p1 18417 df-lat 18423 df-clat 18490 df-mgm 18599 df-sgrp 18678 df-mnd 18694 df-submnd 18740 df-grp 18892 df-minusg 18893 df-sbg 18894 df-subg 19077 df-cntz 19267 df-lsm 19590 df-cmn 19736 df-abl 19737 df-mgp 20074 df-rng 20092 df-ur 20121 df-ring 20174 df-oppr 20272 df-dvdsr 20295 df-unit 20296 df-invr 20326 df-dvr 20339 df-drng 20625 df-lmod 20744 df-lss 20815 df-lsp 20855 df-lvec 20987 df-lsatoms 38448 df-oposet 38648 df-ol 38650 df-oml 38651 df-covers 38738 df-ats 38739 df-atl 38770 df-cvlat 38794 df-hlat 38823 df-llines 38971 df-lplanes 38972 df-lvols 38973 df-lines 38974 df-psubsp 38976 df-pmap 38977 df-padd 39269 df-lhyp 39461 df-laut 39462 df-ldil 39577 df-ltrn 39578 df-trl 39632 df-tgrp 40216 df-tendo 40228 df-edring 40230 df-dveca 40476 df-disoa 40502 df-dvech 40552 df-dib 40612 df-dic 40646 df-dih 40702 df-doch 40821 df-djh 40868 |
This theorem is referenced by: dvh3dim 40919 dochsnnz 40923 hdmapevec 41308 hdmaprnlem15N 41334 |
Copyright terms: Public domain | W3C validator |