| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lubsn | Structured version Visualization version GIF version | ||
| Description: The least upper bound of a singleton. (chsupsn 31432 analog.) (Contributed by NM, 20-Oct-2011.) |
| Ref | Expression |
|---|---|
| lubsn.b | ⊢ 𝐵 = (Base‘𝐾) |
| lubsn.u | ⊢ 𝑈 = (lub‘𝐾) |
| Ref | Expression |
|---|---|
| lubsn | ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → (𝑈‘{𝑋}) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsn2 4639 | . . . 4 ⊢ {𝑋} = {𝑋, 𝑋} | |
| 2 | 1 | fveq2i 6909 | . . 3 ⊢ (𝑈‘{𝑋}) = (𝑈‘{𝑋, 𝑋}) |
| 3 | lubsn.u | . . . 4 ⊢ 𝑈 = (lub‘𝐾) | |
| 4 | eqid 2737 | . . . 4 ⊢ (join‘𝐾) = (join‘𝐾) | |
| 5 | simpl 482 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → 𝐾 ∈ Lat) | |
| 6 | simpr 484 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
| 7 | 3, 4, 5, 6, 6 | joinval 18422 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → (𝑋(join‘𝐾)𝑋) = (𝑈‘{𝑋, 𝑋})) |
| 8 | 2, 7 | eqtr4id 2796 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → (𝑈‘{𝑋}) = (𝑋(join‘𝐾)𝑋)) |
| 9 | lubsn.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 10 | 9, 4 | latjidm 18507 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → (𝑋(join‘𝐾)𝑋) = 𝑋) |
| 11 | 8, 10 | eqtrd 2777 | 1 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → (𝑈‘{𝑋}) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 {csn 4626 {cpr 4628 ‘cfv 6561 (class class class)co 7431 Basecbs 17247 lubclub 18355 joincjn 18357 Latclat 18476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-proset 18340 df-poset 18359 df-lub 18391 df-glb 18392 df-join 18393 df-meet 18394 df-lat 18477 |
| This theorem is referenced by: lubel 18559 |
| Copyright terms: Public domain | W3C validator |