MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lubsn Structured version   Visualization version   GIF version

Theorem lubsn 18497
Description: The least upper bound of a singleton. (chsupsn 31399 analog.) (Contributed by NM, 20-Oct-2011.)
Hypotheses
Ref Expression
lubsn.b 𝐵 = (Base‘𝐾)
lubsn.u 𝑈 = (lub‘𝐾)
Assertion
Ref Expression
lubsn ((𝐾 ∈ Lat ∧ 𝑋𝐵) → (𝑈‘{𝑋}) = 𝑋)

Proof of Theorem lubsn
StepHypRef Expression
1 dfsn2 4619 . . . 4 {𝑋} = {𝑋, 𝑋}
21fveq2i 6884 . . 3 (𝑈‘{𝑋}) = (𝑈‘{𝑋, 𝑋})
3 lubsn.u . . . 4 𝑈 = (lub‘𝐾)
4 eqid 2736 . . . 4 (join‘𝐾) = (join‘𝐾)
5 simpl 482 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → 𝐾 ∈ Lat)
6 simpr 484 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → 𝑋𝐵)
73, 4, 5, 6, 6joinval 18392 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → (𝑋(join‘𝐾)𝑋) = (𝑈‘{𝑋, 𝑋}))
82, 7eqtr4id 2790 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → (𝑈‘{𝑋}) = (𝑋(join‘𝐾)𝑋))
9 lubsn.b . . 3 𝐵 = (Base‘𝐾)
109, 4latjidm 18477 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → (𝑋(join‘𝐾)𝑋) = 𝑋)
118, 10eqtrd 2771 1 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → (𝑈‘{𝑋}) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {csn 4606  {cpr 4608  cfv 6536  (class class class)co 7410  Basecbs 17233  lubclub 18326  joincjn 18328  Latclat 18446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-proset 18311  df-poset 18330  df-lub 18361  df-glb 18362  df-join 18363  df-meet 18364  df-lat 18447
This theorem is referenced by:  lubel  18529
  Copyright terms: Public domain W3C validator