Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diasslssN Structured version   Visualization version   GIF version

Theorem diasslssN 38685
Description: The partial isomorphism A maps to subspaces of partial vector space A. (Contributed by NM, 17-Jan-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
diasslss.h 𝐻 = (LHyp‘𝐾)
diasslss.u 𝑈 = ((DVecA‘𝐾)‘𝑊)
diasslss.i 𝐼 = ((DIsoA‘𝐾)‘𝑊)
diasslss.s 𝑆 = (LSubSp‘𝑈)
Assertion
Ref Expression
diasslssN ((𝐾 ∈ HL ∧ 𝑊𝐻) → ran 𝐼𝑆)

Proof of Theorem diasslssN
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 diasslss.h . . . . . 6 𝐻 = (LHyp‘𝐾)
2 diasslss.i . . . . . 6 𝐼 = ((DIsoA‘𝐾)‘𝑊)
31, 2diaf11N 38675 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐼:dom 𝐼1-1-onto→ran 𝐼)
4 f1ocnvfv2 7039 . . . . 5 ((𝐼:dom 𝐼1-1-onto→ran 𝐼𝑥 ∈ ran 𝐼) → (𝐼‘(𝐼𝑥)) = 𝑥)
53, 4sylan 583 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥 ∈ ran 𝐼) → (𝐼‘(𝐼𝑥)) = 𝑥)
61, 2diacnvclN 38677 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥 ∈ ran 𝐼) → (𝐼𝑥) ∈ dom 𝐼)
7 eqid 2738 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
8 eqid 2738 . . . . . . . 8 (le‘𝐾) = (le‘𝐾)
97, 8, 1, 2diaeldm 38662 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((𝐼𝑥) ∈ dom 𝐼 ↔ ((𝐼𝑥) ∈ (Base‘𝐾) ∧ (𝐼𝑥)(le‘𝐾)𝑊)))
109adantr 484 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥 ∈ ran 𝐼) → ((𝐼𝑥) ∈ dom 𝐼 ↔ ((𝐼𝑥) ∈ (Base‘𝐾) ∧ (𝐼𝑥)(le‘𝐾)𝑊)))
116, 10mpbid 235 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥 ∈ ran 𝐼) → ((𝐼𝑥) ∈ (Base‘𝐾) ∧ (𝐼𝑥)(le‘𝐾)𝑊))
12 diasslss.u . . . . . 6 𝑈 = ((DVecA‘𝐾)‘𝑊)
13 diasslss.s . . . . . 6 𝑆 = (LSubSp‘𝑈)
147, 8, 1, 12, 2, 13dialss 38672 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐼𝑥) ∈ (Base‘𝐾) ∧ (𝐼𝑥)(le‘𝐾)𝑊)) → (𝐼‘(𝐼𝑥)) ∈ 𝑆)
1511, 14syldan 594 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥 ∈ ran 𝐼) → (𝐼‘(𝐼𝑥)) ∈ 𝑆)
165, 15eqeltrrd 2834 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥 ∈ ran 𝐼) → 𝑥𝑆)
1716ex 416 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑥 ∈ ran 𝐼𝑥𝑆))
1817ssrdv 3881 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ran 𝐼𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1542  wcel 2113  wss 3841   class class class wbr 5027  ccnv 5518  dom cdm 5519  ran crn 5520  1-1-ontowf1o 6332  cfv 6333  Basecbs 16579  lecple 16668  LSubSpclss 19815  HLchlt 36976  LHypclh 37610  DVecAcdveca 38628  DIsoAcdia 38654
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-rep 5151  ax-sep 5164  ax-nul 5171  ax-pow 5229  ax-pr 5293  ax-un 7473  ax-cnex 10664  ax-resscn 10665  ax-1cn 10666  ax-icn 10667  ax-addcl 10668  ax-addrcl 10669  ax-mulcl 10670  ax-mulrcl 10671  ax-mulcom 10672  ax-addass 10673  ax-mulass 10674  ax-distr 10675  ax-i2m1 10676  ax-1ne0 10677  ax-1rid 10678  ax-rnegex 10679  ax-rrecex 10680  ax-cnre 10681  ax-pre-lttri 10682  ax-pre-lttrn 10683  ax-pre-ltadd 10684  ax-pre-mulgt0 10685  ax-riotaBAD 36579
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3399  df-sbc 3680  df-csb 3789  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-pss 3860  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-tp 4518  df-op 4520  df-uni 4794  df-iun 4880  df-iin 4881  df-br 5028  df-opab 5090  df-mpt 5108  df-tr 5134  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-riota 7121  df-ov 7167  df-oprab 7168  df-mpo 7169  df-om 7594  df-1st 7707  df-2nd 7708  df-undef 7961  df-wrecs 7969  df-recs 8030  df-rdg 8068  df-1o 8124  df-er 8313  df-map 8432  df-en 8549  df-dom 8550  df-sdom 8551  df-fin 8552  df-pnf 10748  df-mnf 10749  df-xr 10750  df-ltxr 10751  df-le 10752  df-sub 10943  df-neg 10944  df-nn 11710  df-2 11772  df-3 11773  df-4 11774  df-5 11775  df-6 11776  df-n0 11970  df-z 12056  df-uz 12318  df-fz 12975  df-struct 16581  df-ndx 16582  df-slot 16583  df-base 16585  df-plusg 16674  df-mulr 16675  df-sca 16677  df-vsca 16678  df-proset 17647  df-poset 17665  df-plt 17677  df-lub 17693  df-glb 17694  df-join 17695  df-meet 17696  df-p0 17758  df-p1 17759  df-lat 17765  df-clat 17827  df-lss 19816  df-oposet 36802  df-ol 36804  df-oml 36805  df-covers 36892  df-ats 36893  df-atl 36924  df-cvlat 36948  df-hlat 36977  df-llines 37124  df-lplanes 37125  df-lvols 37126  df-lines 37127  df-psubsp 37129  df-pmap 37130  df-padd 37422  df-lhyp 37614  df-laut 37615  df-ldil 37730  df-ltrn 37731  df-trl 37785  df-tendo 38381  df-edring 38383  df-dveca 38629  df-disoa 38655
This theorem is referenced by:  diarnN  38755
  Copyright terms: Public domain W3C validator