Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diasslssN Structured version   Visualization version   GIF version

Theorem diasslssN 37080
Description: The partial isomorphism A maps to subspaces of partial vector space A. (Contributed by NM, 17-Jan-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
diasslss.h 𝐻 = (LHyp‘𝐾)
diasslss.u 𝑈 = ((DVecA‘𝐾)‘𝑊)
diasslss.i 𝐼 = ((DIsoA‘𝐾)‘𝑊)
diasslss.s 𝑆 = (LSubSp‘𝑈)
Assertion
Ref Expression
diasslssN ((𝐾 ∈ HL ∧ 𝑊𝐻) → ran 𝐼𝑆)

Proof of Theorem diasslssN
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 diasslss.h . . . . . 6 𝐻 = (LHyp‘𝐾)
2 diasslss.i . . . . . 6 𝐼 = ((DIsoA‘𝐾)‘𝑊)
31, 2diaf11N 37070 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐼:dom 𝐼1-1-onto→ran 𝐼)
4 f1ocnvfv2 6761 . . . . 5 ((𝐼:dom 𝐼1-1-onto→ran 𝐼𝑥 ∈ ran 𝐼) → (𝐼‘(𝐼𝑥)) = 𝑥)
53, 4sylan 576 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥 ∈ ran 𝐼) → (𝐼‘(𝐼𝑥)) = 𝑥)
61, 2diacnvclN 37072 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥 ∈ ran 𝐼) → (𝐼𝑥) ∈ dom 𝐼)
7 eqid 2799 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
8 eqid 2799 . . . . . . . 8 (le‘𝐾) = (le‘𝐾)
97, 8, 1, 2diaeldm 37057 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((𝐼𝑥) ∈ dom 𝐼 ↔ ((𝐼𝑥) ∈ (Base‘𝐾) ∧ (𝐼𝑥)(le‘𝐾)𝑊)))
109adantr 473 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥 ∈ ran 𝐼) → ((𝐼𝑥) ∈ dom 𝐼 ↔ ((𝐼𝑥) ∈ (Base‘𝐾) ∧ (𝐼𝑥)(le‘𝐾)𝑊)))
116, 10mpbid 224 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥 ∈ ran 𝐼) → ((𝐼𝑥) ∈ (Base‘𝐾) ∧ (𝐼𝑥)(le‘𝐾)𝑊))
12 diasslss.u . . . . . 6 𝑈 = ((DVecA‘𝐾)‘𝑊)
13 diasslss.s . . . . . 6 𝑆 = (LSubSp‘𝑈)
147, 8, 1, 12, 2, 13dialss 37067 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐼𝑥) ∈ (Base‘𝐾) ∧ (𝐼𝑥)(le‘𝐾)𝑊)) → (𝐼‘(𝐼𝑥)) ∈ 𝑆)
1511, 14syldan 586 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥 ∈ ran 𝐼) → (𝐼‘(𝐼𝑥)) ∈ 𝑆)
165, 15eqeltrrd 2879 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥 ∈ ran 𝐼) → 𝑥𝑆)
1716ex 402 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑥 ∈ ran 𝐼𝑥𝑆))
1817ssrdv 3804 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ran 𝐼𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385   = wceq 1653  wcel 2157  wss 3769   class class class wbr 4843  ccnv 5311  dom cdm 5312  ran crn 5313  1-1-ontowf1o 6100  cfv 6101  Basecbs 16184  lecple 16274  LSubSpclss 19250  HLchlt 35371  LHypclh 36005  DVecAcdveca 37023  DIsoAcdia 37049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301  ax-riotaBAD 34974
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-int 4668  df-iun 4712  df-iin 4713  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-om 7300  df-1st 7401  df-2nd 7402  df-undef 7637  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-1o 7799  df-oadd 7803  df-er 7982  df-map 8097  df-en 8196  df-dom 8197  df-sdom 8198  df-fin 8199  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-nn 11313  df-2 11376  df-3 11377  df-4 11378  df-5 11379  df-6 11380  df-n0 11581  df-z 11667  df-uz 11931  df-fz 12581  df-struct 16186  df-ndx 16187  df-slot 16188  df-base 16190  df-plusg 16280  df-mulr 16281  df-sca 16283  df-vsca 16284  df-proset 17243  df-poset 17261  df-plt 17273  df-lub 17289  df-glb 17290  df-join 17291  df-meet 17292  df-p0 17354  df-p1 17355  df-lat 17361  df-clat 17423  df-lss 19251  df-oposet 35197  df-ol 35199  df-oml 35200  df-covers 35287  df-ats 35288  df-atl 35319  df-cvlat 35343  df-hlat 35372  df-llines 35519  df-lplanes 35520  df-lvols 35521  df-lines 35522  df-psubsp 35524  df-pmap 35525  df-padd 35817  df-lhyp 36009  df-laut 36010  df-ldil 36125  df-ltrn 36126  df-trl 36180  df-tendo 36776  df-edring 36778  df-dveca 37024  df-disoa 37050
This theorem is referenced by:  diarnN  37150
  Copyright terms: Public domain W3C validator