Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diasslssN Structured version   Visualization version   GIF version

Theorem diasslssN 41168
Description: The partial isomorphism A maps to subspaces of partial vector space A. (Contributed by NM, 17-Jan-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
diasslss.h 𝐻 = (LHyp‘𝐾)
diasslss.u 𝑈 = ((DVecA‘𝐾)‘𝑊)
diasslss.i 𝐼 = ((DIsoA‘𝐾)‘𝑊)
diasslss.s 𝑆 = (LSubSp‘𝑈)
Assertion
Ref Expression
diasslssN ((𝐾 ∈ HL ∧ 𝑊𝐻) → ran 𝐼𝑆)

Proof of Theorem diasslssN
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 diasslss.h . . . . . 6 𝐻 = (LHyp‘𝐾)
2 diasslss.i . . . . . 6 𝐼 = ((DIsoA‘𝐾)‘𝑊)
31, 2diaf11N 41158 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐼:dom 𝐼1-1-onto→ran 𝐼)
4 f1ocnvfv2 7211 . . . . 5 ((𝐼:dom 𝐼1-1-onto→ran 𝐼𝑥 ∈ ran 𝐼) → (𝐼‘(𝐼𝑥)) = 𝑥)
53, 4sylan 580 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥 ∈ ran 𝐼) → (𝐼‘(𝐼𝑥)) = 𝑥)
61, 2diacnvclN 41160 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥 ∈ ran 𝐼) → (𝐼𝑥) ∈ dom 𝐼)
7 eqid 2731 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
8 eqid 2731 . . . . . . . 8 (le‘𝐾) = (le‘𝐾)
97, 8, 1, 2diaeldm 41145 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((𝐼𝑥) ∈ dom 𝐼 ↔ ((𝐼𝑥) ∈ (Base‘𝐾) ∧ (𝐼𝑥)(le‘𝐾)𝑊)))
109adantr 480 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥 ∈ ran 𝐼) → ((𝐼𝑥) ∈ dom 𝐼 ↔ ((𝐼𝑥) ∈ (Base‘𝐾) ∧ (𝐼𝑥)(le‘𝐾)𝑊)))
116, 10mpbid 232 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥 ∈ ran 𝐼) → ((𝐼𝑥) ∈ (Base‘𝐾) ∧ (𝐼𝑥)(le‘𝐾)𝑊))
12 diasslss.u . . . . . 6 𝑈 = ((DVecA‘𝐾)‘𝑊)
13 diasslss.s . . . . . 6 𝑆 = (LSubSp‘𝑈)
147, 8, 1, 12, 2, 13dialss 41155 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐼𝑥) ∈ (Base‘𝐾) ∧ (𝐼𝑥)(le‘𝐾)𝑊)) → (𝐼‘(𝐼𝑥)) ∈ 𝑆)
1511, 14syldan 591 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥 ∈ ran 𝐼) → (𝐼‘(𝐼𝑥)) ∈ 𝑆)
165, 15eqeltrrd 2832 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥 ∈ ran 𝐼) → 𝑥𝑆)
1716ex 412 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑥 ∈ ran 𝐼𝑥𝑆))
1817ssrdv 3935 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ran 𝐼𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wss 3897   class class class wbr 5089  ccnv 5613  dom cdm 5614  ran crn 5615  1-1-ontowf1o 6480  cfv 6481  Basecbs 17120  lecple 17168  LSubSpclss 20864  HLchlt 39459  LHypclh 40093  DVecAcdveca 41111  DIsoAcdia 41137
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-riotaBAD 39062
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-undef 8203  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-struct 17058  df-slot 17093  df-ndx 17105  df-base 17121  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-p1 18330  df-lat 18338  df-clat 18405  df-lss 20865  df-oposet 39285  df-ol 39287  df-oml 39288  df-covers 39375  df-ats 39376  df-atl 39407  df-cvlat 39431  df-hlat 39460  df-llines 39607  df-lplanes 39608  df-lvols 39609  df-lines 39610  df-psubsp 39612  df-pmap 39613  df-padd 39905  df-lhyp 40097  df-laut 40098  df-ldil 40213  df-ltrn 40214  df-trl 40268  df-tendo 40864  df-edring 40866  df-dveca 41112  df-disoa 41138
This theorem is referenced by:  diarnN  41238
  Copyright terms: Public domain W3C validator