![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > diasslssN | Structured version Visualization version GIF version |
Description: The partial isomorphism A maps to subspaces of partial vector space A. (Contributed by NM, 17-Jan-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
diasslss.h | β’ π» = (LHypβπΎ) |
diasslss.u | β’ π = ((DVecAβπΎ)βπ) |
diasslss.i | β’ πΌ = ((DIsoAβπΎ)βπ) |
diasslss.s | β’ π = (LSubSpβπ) |
Ref | Expression |
---|---|
diasslssN | β’ ((πΎ β HL β§ π β π») β ran πΌ β π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | diasslss.h | . . . . . 6 β’ π» = (LHypβπΎ) | |
2 | diasslss.i | . . . . . 6 β’ πΌ = ((DIsoAβπΎ)βπ) | |
3 | 1, 2 | diaf11N 39920 | . . . . 5 β’ ((πΎ β HL β§ π β π») β πΌ:dom πΌβ1-1-ontoβran πΌ) |
4 | f1ocnvfv2 7275 | . . . . 5 β’ ((πΌ:dom πΌβ1-1-ontoβran πΌ β§ π₯ β ran πΌ) β (πΌβ(β‘πΌβπ₯)) = π₯) | |
5 | 3, 4 | sylan 581 | . . . 4 β’ (((πΎ β HL β§ π β π») β§ π₯ β ran πΌ) β (πΌβ(β‘πΌβπ₯)) = π₯) |
6 | 1, 2 | diacnvclN 39922 | . . . . . 6 β’ (((πΎ β HL β§ π β π») β§ π₯ β ran πΌ) β (β‘πΌβπ₯) β dom πΌ) |
7 | eqid 2733 | . . . . . . . 8 β’ (BaseβπΎ) = (BaseβπΎ) | |
8 | eqid 2733 | . . . . . . . 8 β’ (leβπΎ) = (leβπΎ) | |
9 | 7, 8, 1, 2 | diaeldm 39907 | . . . . . . 7 β’ ((πΎ β HL β§ π β π») β ((β‘πΌβπ₯) β dom πΌ β ((β‘πΌβπ₯) β (BaseβπΎ) β§ (β‘πΌβπ₯)(leβπΎ)π))) |
10 | 9 | adantr 482 | . . . . . 6 β’ (((πΎ β HL β§ π β π») β§ π₯ β ran πΌ) β ((β‘πΌβπ₯) β dom πΌ β ((β‘πΌβπ₯) β (BaseβπΎ) β§ (β‘πΌβπ₯)(leβπΎ)π))) |
11 | 6, 10 | mpbid 231 | . . . . 5 β’ (((πΎ β HL β§ π β π») β§ π₯ β ran πΌ) β ((β‘πΌβπ₯) β (BaseβπΎ) β§ (β‘πΌβπ₯)(leβπΎ)π)) |
12 | diasslss.u | . . . . . 6 β’ π = ((DVecAβπΎ)βπ) | |
13 | diasslss.s | . . . . . 6 β’ π = (LSubSpβπ) | |
14 | 7, 8, 1, 12, 2, 13 | dialss 39917 | . . . . 5 β’ (((πΎ β HL β§ π β π») β§ ((β‘πΌβπ₯) β (BaseβπΎ) β§ (β‘πΌβπ₯)(leβπΎ)π)) β (πΌβ(β‘πΌβπ₯)) β π) |
15 | 11, 14 | syldan 592 | . . . 4 β’ (((πΎ β HL β§ π β π») β§ π₯ β ran πΌ) β (πΌβ(β‘πΌβπ₯)) β π) |
16 | 5, 15 | eqeltrrd 2835 | . . 3 β’ (((πΎ β HL β§ π β π») β§ π₯ β ran πΌ) β π₯ β π) |
17 | 16 | ex 414 | . 2 β’ ((πΎ β HL β§ π β π») β (π₯ β ran πΌ β π₯ β π)) |
18 | 17 | ssrdv 3989 | 1 β’ ((πΎ β HL β§ π β π») β ran πΌ β π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 397 = wceq 1542 β wcel 2107 β wss 3949 class class class wbr 5149 β‘ccnv 5676 dom cdm 5677 ran crn 5678 β1-1-ontoβwf1o 6543 βcfv 6544 Basecbs 17144 lecple 17204 LSubSpclss 20542 HLchlt 38220 LHypclh 38855 DVecAcdveca 39873 DIsoAcdia 39899 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 ax-riotaBAD 37823 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-iun 5000 df-iin 5001 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-undef 8258 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-er 8703 df-map 8822 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-2 12275 df-3 12276 df-4 12277 df-5 12278 df-6 12279 df-n0 12473 df-z 12559 df-uz 12823 df-fz 13485 df-struct 17080 df-slot 17115 df-ndx 17127 df-base 17145 df-plusg 17210 df-mulr 17211 df-sca 17213 df-vsca 17214 df-proset 18248 df-poset 18266 df-plt 18283 df-lub 18299 df-glb 18300 df-join 18301 df-meet 18302 df-p0 18378 df-p1 18379 df-lat 18385 df-clat 18452 df-lss 20543 df-oposet 38046 df-ol 38048 df-oml 38049 df-covers 38136 df-ats 38137 df-atl 38168 df-cvlat 38192 df-hlat 38221 df-llines 38369 df-lplanes 38370 df-lvols 38371 df-lines 38372 df-psubsp 38374 df-pmap 38375 df-padd 38667 df-lhyp 38859 df-laut 38860 df-ldil 38975 df-ltrn 38976 df-trl 39030 df-tendo 39626 df-edring 39628 df-dveca 39874 df-disoa 39900 |
This theorem is referenced by: diarnN 40000 |
Copyright terms: Public domain | W3C validator |