![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > diasslssN | Structured version Visualization version GIF version |
Description: The partial isomorphism A maps to subspaces of partial vector space A. (Contributed by NM, 17-Jan-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
diasslss.h | ⊢ 𝐻 = (LHyp‘𝐾) |
diasslss.u | ⊢ 𝑈 = ((DVecA‘𝐾)‘𝑊) |
diasslss.i | ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) |
diasslss.s | ⊢ 𝑆 = (LSubSp‘𝑈) |
Ref | Expression |
---|---|
diasslssN | ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ran 𝐼 ⊆ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | diasslss.h | . . . . . 6 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | diasslss.i | . . . . . 6 ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) | |
3 | 1, 2 | diaf11N 41032 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐼:dom 𝐼–1-1-onto→ran 𝐼) |
4 | f1ocnvfv2 7297 | . . . . 5 ⊢ ((𝐼:dom 𝐼–1-1-onto→ran 𝐼 ∧ 𝑥 ∈ ran 𝐼) → (𝐼‘(◡𝐼‘𝑥)) = 𝑥) | |
5 | 3, 4 | sylan 580 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑥 ∈ ran 𝐼) → (𝐼‘(◡𝐼‘𝑥)) = 𝑥) |
6 | 1, 2 | diacnvclN 41034 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑥 ∈ ran 𝐼) → (◡𝐼‘𝑥) ∈ dom 𝐼) |
7 | eqid 2735 | . . . . . . . 8 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
8 | eqid 2735 | . . . . . . . 8 ⊢ (le‘𝐾) = (le‘𝐾) | |
9 | 7, 8, 1, 2 | diaeldm 41019 | . . . . . . 7 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ((◡𝐼‘𝑥) ∈ dom 𝐼 ↔ ((◡𝐼‘𝑥) ∈ (Base‘𝐾) ∧ (◡𝐼‘𝑥)(le‘𝐾)𝑊))) |
10 | 9 | adantr 480 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑥 ∈ ran 𝐼) → ((◡𝐼‘𝑥) ∈ dom 𝐼 ↔ ((◡𝐼‘𝑥) ∈ (Base‘𝐾) ∧ (◡𝐼‘𝑥)(le‘𝐾)𝑊))) |
11 | 6, 10 | mpbid 232 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑥 ∈ ran 𝐼) → ((◡𝐼‘𝑥) ∈ (Base‘𝐾) ∧ (◡𝐼‘𝑥)(le‘𝐾)𝑊)) |
12 | diasslss.u | . . . . . 6 ⊢ 𝑈 = ((DVecA‘𝐾)‘𝑊) | |
13 | diasslss.s | . . . . . 6 ⊢ 𝑆 = (LSubSp‘𝑈) | |
14 | 7, 8, 1, 12, 2, 13 | dialss 41029 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((◡𝐼‘𝑥) ∈ (Base‘𝐾) ∧ (◡𝐼‘𝑥)(le‘𝐾)𝑊)) → (𝐼‘(◡𝐼‘𝑥)) ∈ 𝑆) |
15 | 11, 14 | syldan 591 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑥 ∈ ran 𝐼) → (𝐼‘(◡𝐼‘𝑥)) ∈ 𝑆) |
16 | 5, 15 | eqeltrrd 2840 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑥 ∈ ran 𝐼) → 𝑥 ∈ 𝑆) |
17 | 16 | ex 412 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑥 ∈ ran 𝐼 → 𝑥 ∈ 𝑆)) |
18 | 17 | ssrdv 4001 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ran 𝐼 ⊆ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ⊆ wss 3963 class class class wbr 5148 ◡ccnv 5688 dom cdm 5689 ran crn 5690 –1-1-onto→wf1o 6562 ‘cfv 6563 Basecbs 17245 lecple 17305 LSubSpclss 20947 HLchlt 39332 LHypclh 39967 DVecAcdveca 40985 DIsoAcdia 41011 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-riotaBAD 38935 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-undef 8297 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-map 8867 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-n0 12525 df-z 12612 df-uz 12877 df-fz 13545 df-struct 17181 df-slot 17216 df-ndx 17228 df-base 17246 df-plusg 17311 df-mulr 17312 df-sca 17314 df-vsca 17315 df-proset 18352 df-poset 18371 df-plt 18388 df-lub 18404 df-glb 18405 df-join 18406 df-meet 18407 df-p0 18483 df-p1 18484 df-lat 18490 df-clat 18557 df-lss 20948 df-oposet 39158 df-ol 39160 df-oml 39161 df-covers 39248 df-ats 39249 df-atl 39280 df-cvlat 39304 df-hlat 39333 df-llines 39481 df-lplanes 39482 df-lvols 39483 df-lines 39484 df-psubsp 39486 df-pmap 39487 df-padd 39779 df-lhyp 39971 df-laut 39972 df-ldil 40087 df-ltrn 40088 df-trl 40142 df-tendo 40738 df-edring 40740 df-dveca 40986 df-disoa 41012 |
This theorem is referenced by: diarnN 41112 |
Copyright terms: Public domain | W3C validator |