| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > domentr | Structured version Visualization version GIF version | ||
| Description: Transitivity of dominance and equinumerosity. (Contributed by NM, 7-Jun-1998.) |
| Ref | Expression |
|---|---|
| domentr | ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≼ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | endom 8908 | . 2 ⊢ (𝐵 ≈ 𝐶 → 𝐵 ≼ 𝐶) | |
| 2 | domtr 8936 | . 2 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) | |
| 3 | 1, 2 | sylan2 593 | 1 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≼ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 class class class wbr 5093 ≈ cen 8872 ≼ cdom 8873 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-f1o 6493 df-en 8876 df-dom 8877 |
| This theorem is referenced by: domdifsn 8980 xpdom1g 8994 domunsncan 8997 sdomdomtr 9030 domen2 9040 mapdom2 9068 unxpdom2 9151 sucxpdom 9152 xpfir 9159 fodomfiOLD 9221 cardsdomelir 9873 infxpenlem 9911 xpct 9914 infpwfien 9960 inffien 9961 mappwen 10010 iunfictbso 10012 djuxpdom 10084 cdainflem 10086 djuinf 10087 djulepw 10091 ficardun2 10100 unctb 10102 infdjuabs 10103 infunabs 10104 infdju 10105 infdif 10106 infxpdom 10108 pwdjudom 10113 infmap2 10115 fictb 10142 cfslb 10164 fin1a2lem11 10308 fnct 10435 unirnfdomd 10465 iunctb 10472 alephreg 10480 cfpwsdom 10482 gchdomtri 10527 canthp1lem1 10550 pwfseqlem5 10561 pwxpndom 10564 gchdjuidm 10566 gchxpidm 10567 gchpwdom 10568 gchhar 10577 inttsk 10672 inar1 10673 tskcard 10679 znnen 16123 qnnen 16124 rpnnen 16138 rexpen 16139 aleph1irr 16157 cygctb 19806 1stcfb 23361 2ndcredom 23366 2ndcctbss 23371 hauspwdom 23417 tx2ndc 23567 met1stc 24437 met2ndci 24438 re2ndc 24717 opnreen 24748 ovolctb2 25421 ovolfi 25423 uniiccdif 25507 dyadmbl 25529 opnmblALT 25532 vitali 25542 mbfimaopnlem 25584 mbfsup 25593 aannenlem3 26266 dmvlsiga 34163 sigapildsys 34196 omssubadd 34334 carsgclctunlem3 34354 finminlem 36383 phpreu 37665 lindsdom 37675 mblfinlem1 37718 pellexlem4 42950 pellexlem5 42951 pr2dom 43645 tr3dom 43646 nnfoctb 45170 ioonct 45662 subsaliuncl 46481 caragenunicl 46647 eufunclem 49647 aacllem 49927 |
| Copyright terms: Public domain | W3C validator |