![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > domentr | Structured version Visualization version GIF version |
Description: Transitivity of dominance and equinumerosity. (Contributed by NM, 7-Jun-1998.) |
Ref | Expression |
---|---|
domentr | ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≼ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | endom 9018 | . 2 ⊢ (𝐵 ≈ 𝐶 → 𝐵 ≼ 𝐶) | |
2 | domtr 9046 | . 2 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) | |
3 | 1, 2 | sylan2 593 | 1 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≼ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 class class class wbr 5148 ≈ cen 8981 ≼ cdom 8982 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-f1o 6570 df-en 8985 df-dom 8986 |
This theorem is referenced by: domdifsn 9093 xpdom1g 9108 domunsncan 9111 sdomdomtr 9149 domen2 9159 mapdom2 9187 phpOLD 9257 unxpdom2 9288 sucxpdom 9289 xpfir 9298 fodomfiOLD 9368 cardsdomelir 10011 infxpenlem 10051 xpct 10054 infpwfien 10100 inffien 10101 mappwen 10150 iunfictbso 10152 djuxpdom 10224 cdainflem 10226 djuinf 10227 djulepw 10231 ficardun2 10240 unctb 10242 infdjuabs 10243 infunabs 10244 infdju 10245 infdif 10246 infxpdom 10248 pwdjudom 10253 infmap2 10255 fictb 10282 cfslb 10304 fin1a2lem11 10448 fnct 10575 unirnfdomd 10605 iunctb 10612 alephreg 10620 cfpwsdom 10622 gchdomtri 10667 canthp1lem1 10690 pwfseqlem5 10701 pwxpndom 10704 gchdjuidm 10706 gchxpidm 10707 gchpwdom 10708 gchhar 10717 inttsk 10812 inar1 10813 tskcard 10819 znnen 16245 qnnen 16246 rpnnen 16260 rexpen 16261 aleph1irr 16279 cygctb 19925 1stcfb 23469 2ndcredom 23474 2ndcctbss 23479 hauspwdom 23525 tx2ndc 23675 met1stc 24550 met2ndci 24551 re2ndc 24837 opnreen 24867 ovolctb2 25541 ovolfi 25543 uniiccdif 25627 dyadmbl 25649 opnmblALT 25652 vitali 25662 mbfimaopnlem 25704 mbfsup 25713 aannenlem3 26387 dmvlsiga 34110 sigapildsys 34143 omssubadd 34282 carsgclctunlem3 34302 finminlem 36301 phpreu 37591 lindsdom 37601 mblfinlem1 37644 pellexlem4 42820 pellexlem5 42821 pr2dom 43517 tr3dom 43518 nnfoctb 44987 ioonct 45490 subsaliuncl 46314 caragenunicl 46480 aacllem 49032 |
Copyright terms: Public domain | W3C validator |