![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > domentr | Structured version Visualization version GIF version |
Description: Transitivity of dominance and equinumerosity. (Contributed by NM, 7-Jun-1998.) |
Ref | Expression |
---|---|
domentr | ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≼ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | endom 9039 | . 2 ⊢ (𝐵 ≈ 𝐶 → 𝐵 ≼ 𝐶) | |
2 | domtr 9067 | . 2 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) | |
3 | 1, 2 | sylan2 592 | 1 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≼ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 class class class wbr 5166 ≈ cen 9000 ≼ cdom 9001 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-f1o 6580 df-en 9004 df-dom 9005 |
This theorem is referenced by: domdifsn 9120 xpdom1g 9135 domunsncan 9138 sdomdomtr 9176 domen2 9186 mapdom2 9214 phpOLD 9285 unxpdom2 9317 sucxpdom 9318 xpfir 9328 fodomfiOLD 9398 cardsdomelir 10042 infxpenlem 10082 xpct 10085 infpwfien 10131 inffien 10132 mappwen 10181 iunfictbso 10183 djuxpdom 10255 cdainflem 10257 djuinf 10258 djulepw 10262 ficardun2 10271 unctb 10273 infdjuabs 10274 infunabs 10275 infdju 10276 infdif 10277 infxpdom 10279 pwdjudom 10284 infmap2 10286 fictb 10313 cfslb 10335 fin1a2lem11 10479 fnct 10606 unirnfdomd 10636 iunctb 10643 alephreg 10651 cfpwsdom 10653 gchdomtri 10698 canthp1lem1 10721 pwfseqlem5 10732 pwxpndom 10735 gchdjuidm 10737 gchxpidm 10738 gchpwdom 10739 gchhar 10748 inttsk 10843 inar1 10844 tskcard 10850 znnen 16260 qnnen 16261 rpnnen 16275 rexpen 16276 aleph1irr 16294 cygctb 19934 1stcfb 23474 2ndcredom 23479 2ndcctbss 23484 hauspwdom 23530 tx2ndc 23680 met1stc 24555 met2ndci 24556 re2ndc 24842 opnreen 24872 ovolctb2 25546 ovolfi 25548 uniiccdif 25632 dyadmbl 25654 opnmblALT 25657 vitali 25667 mbfimaopnlem 25709 mbfsup 25718 aannenlem3 26390 dmvlsiga 34093 sigapildsys 34126 omssubadd 34265 carsgclctunlem3 34285 finminlem 36284 phpreu 37564 lindsdom 37574 mblfinlem1 37617 pellexlem4 42788 pellexlem5 42789 pr2dom 43489 tr3dom 43490 nnfoctb 44949 ioonct 45455 subsaliuncl 46279 caragenunicl 46445 aacllem 48895 |
Copyright terms: Public domain | W3C validator |