| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > domentr | Structured version Visualization version GIF version | ||
| Description: Transitivity of dominance and equinumerosity. (Contributed by NM, 7-Jun-1998.) |
| Ref | Expression |
|---|---|
| domentr | ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≼ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | endom 8901 | . 2 ⊢ (𝐵 ≈ 𝐶 → 𝐵 ≼ 𝐶) | |
| 2 | domtr 8929 | . 2 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) | |
| 3 | 1, 2 | sylan2 593 | 1 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≼ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 class class class wbr 5091 ≈ cen 8866 ≼ cdom 8867 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-f1o 6488 df-en 8870 df-dom 8871 |
| This theorem is referenced by: domdifsn 8973 xpdom1g 8987 domunsncan 8990 sdomdomtr 9023 domen2 9033 mapdom2 9061 unxpdom2 9144 sucxpdom 9145 xpfir 9152 fodomfiOLD 9214 cardsdomelir 9866 infxpenlem 9904 xpct 9907 infpwfien 9953 inffien 9954 mappwen 10003 iunfictbso 10005 djuxpdom 10077 cdainflem 10079 djuinf 10080 djulepw 10084 ficardun2 10093 unctb 10095 infdjuabs 10096 infunabs 10097 infdju 10098 infdif 10099 infxpdom 10101 pwdjudom 10106 infmap2 10108 fictb 10135 cfslb 10157 fin1a2lem11 10301 fnct 10428 unirnfdomd 10458 iunctb 10465 alephreg 10473 cfpwsdom 10475 gchdomtri 10520 canthp1lem1 10543 pwfseqlem5 10554 pwxpndom 10557 gchdjuidm 10559 gchxpidm 10560 gchpwdom 10561 gchhar 10570 inttsk 10665 inar1 10666 tskcard 10672 znnen 16121 qnnen 16122 rpnnen 16136 rexpen 16137 aleph1irr 16155 cygctb 19805 1stcfb 23361 2ndcredom 23366 2ndcctbss 23371 hauspwdom 23417 tx2ndc 23567 met1stc 24437 met2ndci 24438 re2ndc 24717 opnreen 24748 ovolctb2 25421 ovolfi 25423 uniiccdif 25507 dyadmbl 25529 opnmblALT 25532 vitali 25542 mbfimaopnlem 25584 mbfsup 25593 aannenlem3 26266 dmvlsiga 34140 sigapildsys 34173 omssubadd 34311 carsgclctunlem3 34331 finminlem 36358 phpreu 37650 lindsdom 37660 mblfinlem1 37703 pellexlem4 42871 pellexlem5 42872 pr2dom 43566 tr3dom 43567 nnfoctb 45091 ioonct 45583 subsaliuncl 46402 caragenunicl 46568 eufunclem 49559 aacllem 49839 |
| Copyright terms: Public domain | W3C validator |