| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > domentr | Structured version Visualization version GIF version | ||
| Description: Transitivity of dominance and equinumerosity. (Contributed by NM, 7-Jun-1998.) |
| Ref | Expression |
|---|---|
| domentr | ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≼ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | endom 8911 | . 2 ⊢ (𝐵 ≈ 𝐶 → 𝐵 ≼ 𝐶) | |
| 2 | domtr 8939 | . 2 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) | |
| 3 | 1, 2 | sylan2 593 | 1 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≼ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 class class class wbr 5095 ≈ cen 8876 ≼ cdom 8877 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-f1o 6493 df-en 8880 df-dom 8881 |
| This theorem is referenced by: domdifsn 8984 xpdom1g 8998 domunsncan 9001 sdomdomtr 9034 domen2 9044 mapdom2 9072 unxpdom2 9159 sucxpdom 9160 xpfir 9169 fodomfiOLD 9239 cardsdomelir 9888 infxpenlem 9926 xpct 9929 infpwfien 9975 inffien 9976 mappwen 10025 iunfictbso 10027 djuxpdom 10099 cdainflem 10101 djuinf 10102 djulepw 10106 ficardun2 10115 unctb 10117 infdjuabs 10118 infunabs 10119 infdju 10120 infdif 10121 infxpdom 10123 pwdjudom 10128 infmap2 10130 fictb 10157 cfslb 10179 fin1a2lem11 10323 fnct 10450 unirnfdomd 10480 iunctb 10487 alephreg 10495 cfpwsdom 10497 gchdomtri 10542 canthp1lem1 10565 pwfseqlem5 10576 pwxpndom 10579 gchdjuidm 10581 gchxpidm 10582 gchpwdom 10583 gchhar 10592 inttsk 10687 inar1 10688 tskcard 10694 znnen 16139 qnnen 16140 rpnnen 16154 rexpen 16155 aleph1irr 16173 cygctb 19789 1stcfb 23348 2ndcredom 23353 2ndcctbss 23358 hauspwdom 23404 tx2ndc 23554 met1stc 24425 met2ndci 24426 re2ndc 24705 opnreen 24736 ovolctb2 25409 ovolfi 25411 uniiccdif 25495 dyadmbl 25517 opnmblALT 25520 vitali 25530 mbfimaopnlem 25572 mbfsup 25581 aannenlem3 26254 dmvlsiga 34098 sigapildsys 34131 omssubadd 34270 carsgclctunlem3 34290 finminlem 36294 phpreu 37586 lindsdom 37596 mblfinlem1 37639 pellexlem4 42808 pellexlem5 42809 pr2dom 43503 tr3dom 43504 nnfoctb 45029 ioonct 45522 subsaliuncl 46343 caragenunicl 46509 eufunclem 49510 aacllem 49790 |
| Copyright terms: Public domain | W3C validator |