Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > domentr | Structured version Visualization version GIF version |
Description: Transitivity of dominance and equinumerosity. (Contributed by NM, 7-Jun-1998.) |
Ref | Expression |
---|---|
domentr | ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≼ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | endom 8738 | . 2 ⊢ (𝐵 ≈ 𝐶 → 𝐵 ≼ 𝐶) | |
2 | domtr 8764 | . 2 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) | |
3 | 1, 2 | sylan2 592 | 1 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≼ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 class class class wbr 5078 ≈ cen 8704 ≼ cdom 8705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-f1o 6437 df-en 8708 df-dom 8709 |
This theorem is referenced by: domdifsn 8811 xpdom1g 8825 domunsncan 8828 sdomdomtr 8862 domen2 8872 mapdom2 8900 phpOLD 8970 unxpdom2 8992 sucxpdom 8993 xpfir 9002 fodomfi 9053 cardsdomelir 9715 infxpenlem 9753 xpct 9756 infpwfien 9802 inffien 9803 mappwen 9852 iunfictbso 9854 djuxpdom 9925 cdainflem 9927 djuinf 9928 djulepw 9932 ficardun2 9942 ficardun2OLD 9943 unctb 9945 infdjuabs 9946 infunabs 9947 infdju 9948 infdif 9949 infxpdom 9951 pwdjudom 9956 infmap2 9958 fictb 9985 cfslb 10006 fin1a2lem11 10150 fnct 10277 unirnfdomd 10307 iunctb 10314 alephreg 10322 cfpwsdom 10324 gchdomtri 10369 canthp1lem1 10392 pwfseqlem5 10403 pwxpndom 10406 gchdjuidm 10408 gchxpidm 10409 gchpwdom 10410 gchhar 10419 inttsk 10514 inar1 10515 tskcard 10521 znnen 15902 qnnen 15903 rpnnen 15917 rexpen 15918 aleph1irr 15936 cygctb 19474 1stcfb 22577 2ndcredom 22582 2ndcctbss 22587 hauspwdom 22633 tx2ndc 22783 met1stc 23658 met2ndci 23659 re2ndc 23945 opnreen 23975 ovolctb2 24637 ovolfi 24639 uniiccdif 24723 dyadmbl 24745 opnmblALT 24748 vitali 24758 mbfimaopnlem 24800 mbfsup 24809 aannenlem3 25471 dmvlsiga 32076 sigapildsys 32109 omssubadd 32246 carsgclctunlem3 32266 finminlem 34486 phpreu 35740 lindsdom 35750 mblfinlem1 35793 pellexlem4 40634 pellexlem5 40635 pr2dom 41096 tr3dom 41097 nnfoctb 42548 ioonct 43029 subsaliuncl 43851 caragenunicl 44016 aacllem 46457 |
Copyright terms: Public domain | W3C validator |