Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > domentr | Structured version Visualization version GIF version |
Description: Transitivity of dominance and equinumerosity. (Contributed by NM, 7-Jun-1998.) |
Ref | Expression |
---|---|
domentr | ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≼ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | endom 8800 | . 2 ⊢ (𝐵 ≈ 𝐶 → 𝐵 ≼ 𝐶) | |
2 | domtr 8828 | . 2 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) | |
3 | 1, 2 | sylan2 594 | 1 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≼ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 class class class wbr 5081 ≈ cen 8761 ≼ cdom 8762 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ral 3063 df-rex 3072 df-rab 3287 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-f1o 6465 df-en 8765 df-dom 8766 |
This theorem is referenced by: domdifsn 8879 xpdom1g 8894 domunsncan 8897 sdomdomtr 8935 domen2 8945 mapdom2 8973 phpOLD 9043 unxpdom2 9075 sucxpdom 9076 xpfir 9085 fodomfi 9136 cardsdomelir 9775 infxpenlem 9815 xpct 9818 infpwfien 9864 inffien 9865 mappwen 9914 iunfictbso 9916 djuxpdom 9987 cdainflem 9989 djuinf 9990 djulepw 9994 ficardun2 10004 ficardun2OLD 10005 unctb 10007 infdjuabs 10008 infunabs 10009 infdju 10010 infdif 10011 infxpdom 10013 pwdjudom 10018 infmap2 10020 fictb 10047 cfslb 10068 fin1a2lem11 10212 fnct 10339 unirnfdomd 10369 iunctb 10376 alephreg 10384 cfpwsdom 10386 gchdomtri 10431 canthp1lem1 10454 pwfseqlem5 10465 pwxpndom 10468 gchdjuidm 10470 gchxpidm 10471 gchpwdom 10472 gchhar 10481 inttsk 10576 inar1 10577 tskcard 10583 znnen 15966 qnnen 15967 rpnnen 15981 rexpen 15982 aleph1irr 16000 cygctb 19538 1stcfb 22641 2ndcredom 22646 2ndcctbss 22651 hauspwdom 22697 tx2ndc 22847 met1stc 23722 met2ndci 23723 re2ndc 24009 opnreen 24039 ovolctb2 24701 ovolfi 24703 uniiccdif 24787 dyadmbl 24809 opnmblALT 24812 vitali 24822 mbfimaopnlem 24864 mbfsup 24873 aannenlem3 25535 dmvlsiga 32142 sigapildsys 32175 omssubadd 32312 carsgclctunlem3 32332 finminlem 34552 phpreu 35805 lindsdom 35815 mblfinlem1 35858 pellexlem4 40691 pellexlem5 40692 pr2dom 41172 tr3dom 41173 nnfoctb 42633 ioonct 43124 subsaliuncl 43946 caragenunicl 44112 aacllem 46563 |
Copyright terms: Public domain | W3C validator |