| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > domentr | Structured version Visualization version GIF version | ||
| Description: Transitivity of dominance and equinumerosity. (Contributed by NM, 7-Jun-1998.) |
| Ref | Expression |
|---|---|
| domentr | ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≼ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | endom 8993 | . 2 ⊢ (𝐵 ≈ 𝐶 → 𝐵 ≼ 𝐶) | |
| 2 | domtr 9021 | . 2 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) | |
| 3 | 1, 2 | sylan2 593 | 1 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≼ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 class class class wbr 5119 ≈ cen 8956 ≼ cdom 8957 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-f1o 6538 df-en 8960 df-dom 8961 |
| This theorem is referenced by: domdifsn 9068 xpdom1g 9083 domunsncan 9086 sdomdomtr 9124 domen2 9134 mapdom2 9162 phpOLD 9231 unxpdom2 9262 sucxpdom 9263 xpfir 9272 fodomfiOLD 9342 cardsdomelir 9987 infxpenlem 10027 xpct 10030 infpwfien 10076 inffien 10077 mappwen 10126 iunfictbso 10128 djuxpdom 10200 cdainflem 10202 djuinf 10203 djulepw 10207 ficardun2 10216 unctb 10218 infdjuabs 10219 infunabs 10220 infdju 10221 infdif 10222 infxpdom 10224 pwdjudom 10229 infmap2 10231 fictb 10258 cfslb 10280 fin1a2lem11 10424 fnct 10551 unirnfdomd 10581 iunctb 10588 alephreg 10596 cfpwsdom 10598 gchdomtri 10643 canthp1lem1 10666 pwfseqlem5 10677 pwxpndom 10680 gchdjuidm 10682 gchxpidm 10683 gchpwdom 10684 gchhar 10693 inttsk 10788 inar1 10789 tskcard 10795 znnen 16230 qnnen 16231 rpnnen 16245 rexpen 16246 aleph1irr 16264 cygctb 19873 1stcfb 23383 2ndcredom 23388 2ndcctbss 23393 hauspwdom 23439 tx2ndc 23589 met1stc 24460 met2ndci 24461 re2ndc 24740 opnreen 24771 ovolctb2 25445 ovolfi 25447 uniiccdif 25531 dyadmbl 25553 opnmblALT 25556 vitali 25566 mbfimaopnlem 25608 mbfsup 25617 aannenlem3 26290 dmvlsiga 34160 sigapildsys 34193 omssubadd 34332 carsgclctunlem3 34352 finminlem 36336 phpreu 37628 lindsdom 37638 mblfinlem1 37681 pellexlem4 42855 pellexlem5 42856 pr2dom 43551 tr3dom 43552 nnfoctb 45072 ioonct 45566 subsaliuncl 46387 caragenunicl 46553 eufunclem 49406 aacllem 49665 |
| Copyright terms: Public domain | W3C validator |