| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > domentr | Structured version Visualization version GIF version | ||
| Description: Transitivity of dominance and equinumerosity. (Contributed by NM, 7-Jun-1998.) |
| Ref | Expression |
|---|---|
| domentr | ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≼ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | endom 8950 | . 2 ⊢ (𝐵 ≈ 𝐶 → 𝐵 ≼ 𝐶) | |
| 2 | domtr 8978 | . 2 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) | |
| 3 | 1, 2 | sylan2 593 | 1 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≼ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 class class class wbr 5107 ≈ cen 8915 ≼ cdom 8916 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-f1o 6518 df-en 8919 df-dom 8920 |
| This theorem is referenced by: domdifsn 9024 xpdom1g 9038 domunsncan 9041 sdomdomtr 9074 domen2 9084 mapdom2 9112 unxpdom2 9201 sucxpdom 9202 xpfir 9211 fodomfiOLD 9281 cardsdomelir 9926 infxpenlem 9966 xpct 9969 infpwfien 10015 inffien 10016 mappwen 10065 iunfictbso 10067 djuxpdom 10139 cdainflem 10141 djuinf 10142 djulepw 10146 ficardun2 10155 unctb 10157 infdjuabs 10158 infunabs 10159 infdju 10160 infdif 10161 infxpdom 10163 pwdjudom 10168 infmap2 10170 fictb 10197 cfslb 10219 fin1a2lem11 10363 fnct 10490 unirnfdomd 10520 iunctb 10527 alephreg 10535 cfpwsdom 10537 gchdomtri 10582 canthp1lem1 10605 pwfseqlem5 10616 pwxpndom 10619 gchdjuidm 10621 gchxpidm 10622 gchpwdom 10623 gchhar 10632 inttsk 10727 inar1 10728 tskcard 10734 znnen 16180 qnnen 16181 rpnnen 16195 rexpen 16196 aleph1irr 16214 cygctb 19822 1stcfb 23332 2ndcredom 23337 2ndcctbss 23342 hauspwdom 23388 tx2ndc 23538 met1stc 24409 met2ndci 24410 re2ndc 24689 opnreen 24720 ovolctb2 25393 ovolfi 25395 uniiccdif 25479 dyadmbl 25501 opnmblALT 25504 vitali 25514 mbfimaopnlem 25556 mbfsup 25565 aannenlem3 26238 dmvlsiga 34119 sigapildsys 34152 omssubadd 34291 carsgclctunlem3 34311 finminlem 36306 phpreu 37598 lindsdom 37608 mblfinlem1 37651 pellexlem4 42820 pellexlem5 42821 pr2dom 43516 tr3dom 43517 nnfoctb 45042 ioonct 45535 subsaliuncl 46356 caragenunicl 46522 eufunclem 49510 aacllem 49790 |
| Copyright terms: Public domain | W3C validator |