| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > domentr | Structured version Visualization version GIF version | ||
| Description: Transitivity of dominance and equinumerosity. (Contributed by NM, 7-Jun-1998.) |
| Ref | Expression |
|---|---|
| domentr | ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≼ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | endom 8953 | . 2 ⊢ (𝐵 ≈ 𝐶 → 𝐵 ≼ 𝐶) | |
| 2 | domtr 8981 | . 2 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) | |
| 3 | 1, 2 | sylan2 593 | 1 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≼ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 class class class wbr 5110 ≈ cen 8918 ≼ cdom 8919 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-f1o 6521 df-en 8922 df-dom 8923 |
| This theorem is referenced by: domdifsn 9028 xpdom1g 9043 domunsncan 9046 sdomdomtr 9080 domen2 9090 mapdom2 9118 unxpdom2 9208 sucxpdom 9209 xpfir 9218 fodomfiOLD 9288 cardsdomelir 9933 infxpenlem 9973 xpct 9976 infpwfien 10022 inffien 10023 mappwen 10072 iunfictbso 10074 djuxpdom 10146 cdainflem 10148 djuinf 10149 djulepw 10153 ficardun2 10162 unctb 10164 infdjuabs 10165 infunabs 10166 infdju 10167 infdif 10168 infxpdom 10170 pwdjudom 10175 infmap2 10177 fictb 10204 cfslb 10226 fin1a2lem11 10370 fnct 10497 unirnfdomd 10527 iunctb 10534 alephreg 10542 cfpwsdom 10544 gchdomtri 10589 canthp1lem1 10612 pwfseqlem5 10623 pwxpndom 10626 gchdjuidm 10628 gchxpidm 10629 gchpwdom 10630 gchhar 10639 inttsk 10734 inar1 10735 tskcard 10741 znnen 16187 qnnen 16188 rpnnen 16202 rexpen 16203 aleph1irr 16221 cygctb 19829 1stcfb 23339 2ndcredom 23344 2ndcctbss 23349 hauspwdom 23395 tx2ndc 23545 met1stc 24416 met2ndci 24417 re2ndc 24696 opnreen 24727 ovolctb2 25400 ovolfi 25402 uniiccdif 25486 dyadmbl 25508 opnmblALT 25511 vitali 25521 mbfimaopnlem 25563 mbfsup 25572 aannenlem3 26245 dmvlsiga 34126 sigapildsys 34159 omssubadd 34298 carsgclctunlem3 34318 finminlem 36313 phpreu 37605 lindsdom 37615 mblfinlem1 37658 pellexlem4 42827 pellexlem5 42828 pr2dom 43523 tr3dom 43524 nnfoctb 45049 ioonct 45542 subsaliuncl 46363 caragenunicl 46529 eufunclem 49514 aacllem 49794 |
| Copyright terms: Public domain | W3C validator |