![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > numdom | Structured version Visualization version GIF version |
Description: A set dominated by a numerable set is numerable. (Contributed by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
numdom | β’ ((π΄ β dom card β§ π΅ βΌ π΄) β π΅ β dom card) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cardon 9945 | . 2 β’ (cardβπ΄) β On | |
2 | cardid2 9954 | . . . 4 β’ (π΄ β dom card β (cardβπ΄) β π΄) | |
3 | domen2 9126 | . . . 4 β’ ((cardβπ΄) β π΄ β (π΅ βΌ (cardβπ΄) β π΅ βΌ π΄)) | |
4 | 2, 3 | syl 17 | . . 3 β’ (π΄ β dom card β (π΅ βΌ (cardβπ΄) β π΅ βΌ π΄)) |
5 | 4 | biimpar 477 | . 2 β’ ((π΄ β dom card β§ π΅ βΌ π΄) β π΅ βΌ (cardβπ΄)) |
6 | ondomen 10038 | . 2 β’ (((cardβπ΄) β On β§ π΅ βΌ (cardβπ΄)) β π΅ β dom card) | |
7 | 1, 5, 6 | sylancr 586 | 1 β’ ((π΄ β dom card β§ π΅ βΌ π΄) β π΅ β dom card) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 β wcel 2105 class class class wbr 5148 dom cdm 5676 Oncon0 6364 βcfv 6543 β cen 8942 βΌ cdom 8943 cardccrd 9936 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7368 df-ov 7415 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-er 8709 df-en 8946 df-dom 8947 df-card 9940 |
This theorem is referenced by: ssnum 10040 indcardi 10042 fonum 10059 infpwfien 10063 inffien 10064 unnum 10197 infdif 10210 infxpabs 10213 infunsdom1 10214 infunsdom 10215 infmap2 10219 gchac 10682 grothac 10831 mbfimaopnlem 25504 ttac 42240 isnumbasgrplem2 42311 |
Copyright terms: Public domain | W3C validator |