![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > numdom | Structured version Visualization version GIF version |
Description: A set dominated by a numerable set is numerable. (Contributed by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
numdom | ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ≼ 𝐴) → 𝐵 ∈ dom card) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cardon 10013 | . 2 ⊢ (card‘𝐴) ∈ On | |
2 | cardid2 10022 | . . . 4 ⊢ (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴) | |
3 | domen2 9186 | . . . 4 ⊢ ((card‘𝐴) ≈ 𝐴 → (𝐵 ≼ (card‘𝐴) ↔ 𝐵 ≼ 𝐴)) | |
4 | 2, 3 | syl 17 | . . 3 ⊢ (𝐴 ∈ dom card → (𝐵 ≼ (card‘𝐴) ↔ 𝐵 ≼ 𝐴)) |
5 | 4 | biimpar 477 | . 2 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ≼ 𝐴) → 𝐵 ≼ (card‘𝐴)) |
6 | ondomen 10106 | . 2 ⊢ (((card‘𝐴) ∈ On ∧ 𝐵 ≼ (card‘𝐴)) → 𝐵 ∈ dom card) | |
7 | 1, 5, 6 | sylancr 586 | 1 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ≼ 𝐴) → 𝐵 ∈ dom card) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 class class class wbr 5166 dom cdm 5700 Oncon0 6395 ‘cfv 6573 ≈ cen 9000 ≼ cdom 9001 cardccrd 10004 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-er 8763 df-en 9004 df-dom 9005 df-card 10008 |
This theorem is referenced by: ssnum 10108 indcardi 10110 fonum 10127 infpwfien 10131 inffien 10132 unnum 10266 infdif 10277 infxpabs 10280 infunsdom1 10281 infunsdom 10282 infmap2 10286 gchac 10750 grothac 10899 mbfimaopnlem 25709 ttac 42993 isnumbasgrplem2 43061 |
Copyright terms: Public domain | W3C validator |