MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numdom Structured version   Visualization version   GIF version

Theorem numdom 9174
Description: A set dominated by a numerable set is numerable. (Contributed by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
numdom ((𝐴 ∈ dom card ∧ 𝐵𝐴) → 𝐵 ∈ dom card)

Proof of Theorem numdom
StepHypRef Expression
1 cardon 9083 . 2 (card‘𝐴) ∈ On
2 cardid2 9092 . . . 4 (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴)
3 domen2 8372 . . . 4 ((card‘𝐴) ≈ 𝐴 → (𝐵 ≼ (card‘𝐴) ↔ 𝐵𝐴))
42, 3syl 17 . . 3 (𝐴 ∈ dom card → (𝐵 ≼ (card‘𝐴) ↔ 𝐵𝐴))
54biimpar 471 . 2 ((𝐴 ∈ dom card ∧ 𝐵𝐴) → 𝐵 ≼ (card‘𝐴))
6 ondomen 9173 . 2 (((card‘𝐴) ∈ On ∧ 𝐵 ≼ (card‘𝐴)) → 𝐵 ∈ dom card)
71, 5, 6sylancr 581 1 ((𝐴 ∈ dom card ∧ 𝐵𝐴) → 𝐵 ∈ dom card)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  wcel 2164   class class class wbr 4873  dom cdm 5342  Oncon0 5963  cfv 6123  cen 8219  cdom 8220  cardccrd 9074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-se 5302  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-isom 6132  df-riota 6866  df-wrecs 7672  df-recs 7734  df-er 8009  df-en 8223  df-dom 8224  df-card 9078
This theorem is referenced by:  ssnum  9175  indcardi  9177  fonum  9194  infpwfien  9198  inffien  9199  unnum  9337  infdif  9346  infxpabs  9349  infunsdom1  9350  infunsdom  9351  infmap2  9355  gchac  9818  grothac  9967  mbfimaopnlem  23821  ttac  38439  isnumbasgrplem2  38510
  Copyright terms: Public domain W3C validator