![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > numdom | Structured version Visualization version GIF version |
Description: A set dominated by a numerable set is numerable. (Contributed by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
numdom | ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ≼ 𝐴) → 𝐵 ∈ dom card) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cardon 9981 | . 2 ⊢ (card‘𝐴) ∈ On | |
2 | cardid2 9990 | . . . 4 ⊢ (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴) | |
3 | domen2 9158 | . . . 4 ⊢ ((card‘𝐴) ≈ 𝐴 → (𝐵 ≼ (card‘𝐴) ↔ 𝐵 ≼ 𝐴)) | |
4 | 2, 3 | syl 17 | . . 3 ⊢ (𝐴 ∈ dom card → (𝐵 ≼ (card‘𝐴) ↔ 𝐵 ≼ 𝐴)) |
5 | 4 | biimpar 477 | . 2 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ≼ 𝐴) → 𝐵 ≼ (card‘𝐴)) |
6 | ondomen 10074 | . 2 ⊢ (((card‘𝐴) ∈ On ∧ 𝐵 ≼ (card‘𝐴)) → 𝐵 ∈ dom card) | |
7 | 1, 5, 6 | sylancr 587 | 1 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ≼ 𝐴) → 𝐵 ∈ dom card) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2105 class class class wbr 5147 dom cdm 5688 Oncon0 6385 ‘cfv 6562 ≈ cen 8980 ≼ cdom 8981 cardccrd 9972 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-int 4951 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-se 5641 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-isom 6571 df-riota 7387 df-ov 7433 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-er 8743 df-en 8984 df-dom 8985 df-card 9976 |
This theorem is referenced by: ssnum 10076 indcardi 10078 fonum 10095 infpwfien 10099 inffien 10100 unnum 10234 infdif 10245 infxpabs 10248 infunsdom1 10249 infunsdom 10250 infmap2 10254 gchac 10718 grothac 10867 mbfimaopnlem 25703 ttac 43024 isnumbasgrplem2 43092 |
Copyright terms: Public domain | W3C validator |