| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > numdom | Structured version Visualization version GIF version | ||
| Description: A set dominated by a numerable set is numerable. (Contributed by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| numdom | ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ≼ 𝐴) → 𝐵 ∈ dom card) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cardon 9844 | . 2 ⊢ (card‘𝐴) ∈ On | |
| 2 | cardid2 9853 | . . . 4 ⊢ (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴) | |
| 3 | domen2 9040 | . . . 4 ⊢ ((card‘𝐴) ≈ 𝐴 → (𝐵 ≼ (card‘𝐴) ↔ 𝐵 ≼ 𝐴)) | |
| 4 | 2, 3 | syl 17 | . . 3 ⊢ (𝐴 ∈ dom card → (𝐵 ≼ (card‘𝐴) ↔ 𝐵 ≼ 𝐴)) |
| 5 | 4 | biimpar 477 | . 2 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ≼ 𝐴) → 𝐵 ≼ (card‘𝐴)) |
| 6 | ondomen 9935 | . 2 ⊢ (((card‘𝐴) ∈ On ∧ 𝐵 ≼ (card‘𝐴)) → 𝐵 ∈ dom card) | |
| 7 | 1, 5, 6 | sylancr 587 | 1 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ≼ 𝐴) → 𝐵 ∈ dom card) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2113 class class class wbr 5093 dom cdm 5619 Oncon0 6311 ‘cfv 6486 ≈ cen 8872 ≼ cdom 8873 cardccrd 9835 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7309 df-ov 7355 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-er 8628 df-en 8876 df-dom 8877 df-card 9839 |
| This theorem is referenced by: ssnum 9937 indcardi 9939 fonum 9956 infpwfien 9960 inffien 9961 unnum 10095 infdif 10106 infxpabs 10109 infunsdom1 10110 infunsdom 10111 infmap2 10115 gchac 10579 grothac 10728 mbfimaopnlem 25584 ttac 43153 isnumbasgrplem2 43221 |
| Copyright terms: Public domain | W3C validator |