Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dpjval | Structured version Visualization version GIF version |
Description: Value of the direct product projection (defined in terms of binary projection). (Contributed by Mario Carneiro, 26-Apr-2016.) |
Ref | Expression |
---|---|
dpjfval.1 | ⊢ (𝜑 → 𝐺dom DProd 𝑆) |
dpjfval.2 | ⊢ (𝜑 → dom 𝑆 = 𝐼) |
dpjfval.p | ⊢ 𝑃 = (𝐺dProj𝑆) |
dpjfval.q | ⊢ 𝑄 = (proj1‘𝐺) |
dpjval.3 | ⊢ (𝜑 → 𝑋 ∈ 𝐼) |
Ref | Expression |
---|---|
dpjval | ⊢ (𝜑 → (𝑃‘𝑋) = ((𝑆‘𝑋)𝑄(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dpjfval.1 | . . 3 ⊢ (𝜑 → 𝐺dom DProd 𝑆) | |
2 | dpjfval.2 | . . 3 ⊢ (𝜑 → dom 𝑆 = 𝐼) | |
3 | dpjfval.p | . . 3 ⊢ 𝑃 = (𝐺dProj𝑆) | |
4 | dpjfval.q | . . 3 ⊢ 𝑄 = (proj1‘𝐺) | |
5 | 1, 2, 3, 4 | dpjfval 19658 | . 2 ⊢ (𝜑 → 𝑃 = (𝑥 ∈ 𝐼 ↦ ((𝑆‘𝑥)𝑄(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥})))))) |
6 | simpr 485 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → 𝑥 = 𝑋) | |
7 | 6 | fveq2d 6778 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (𝑆‘𝑥) = (𝑆‘𝑋)) |
8 | 6 | sneqd 4573 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → {𝑥} = {𝑋}) |
9 | 8 | difeq2d 4057 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (𝐼 ∖ {𝑥}) = (𝐼 ∖ {𝑋})) |
10 | 9 | reseq2d 5891 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (𝑆 ↾ (𝐼 ∖ {𝑥})) = (𝑆 ↾ (𝐼 ∖ {𝑋}))) |
11 | 10 | oveq2d 7291 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))) = (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋})))) |
12 | 7, 11 | oveq12d 7293 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → ((𝑆‘𝑥)𝑄(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥})))) = ((𝑆‘𝑋)𝑄(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))))) |
13 | dpjval.3 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐼) | |
14 | ovexd 7310 | . 2 ⊢ (𝜑 → ((𝑆‘𝑋)𝑄(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋})))) ∈ V) | |
15 | 5, 12, 13, 14 | fvmptd 6882 | 1 ⊢ (𝜑 → (𝑃‘𝑋) = ((𝑆‘𝑋)𝑄(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ∖ cdif 3884 {csn 4561 class class class wbr 5074 dom cdm 5589 ↾ cres 5591 ‘cfv 6433 (class class class)co 7275 proj1cpj1 19240 DProd cdprd 19596 dProjcdpj 19597 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-ixp 8686 df-dprd 19598 df-dpj 19599 |
This theorem is referenced by: dpjf 19660 dpjidcl 19661 dpjlid 19664 dpjghm 19666 |
Copyright terms: Public domain | W3C validator |