| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dpjval | Structured version Visualization version GIF version | ||
| Description: Value of the direct product projection (defined in terms of binary projection). (Contributed by Mario Carneiro, 26-Apr-2016.) |
| Ref | Expression |
|---|---|
| dpjfval.1 | ⊢ (𝜑 → 𝐺dom DProd 𝑆) |
| dpjfval.2 | ⊢ (𝜑 → dom 𝑆 = 𝐼) |
| dpjfval.p | ⊢ 𝑃 = (𝐺dProj𝑆) |
| dpjfval.q | ⊢ 𝑄 = (proj1‘𝐺) |
| dpjval.3 | ⊢ (𝜑 → 𝑋 ∈ 𝐼) |
| Ref | Expression |
|---|---|
| dpjval | ⊢ (𝜑 → (𝑃‘𝑋) = ((𝑆‘𝑋)𝑄(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dpjfval.1 | . . 3 ⊢ (𝜑 → 𝐺dom DProd 𝑆) | |
| 2 | dpjfval.2 | . . 3 ⊢ (𝜑 → dom 𝑆 = 𝐼) | |
| 3 | dpjfval.p | . . 3 ⊢ 𝑃 = (𝐺dProj𝑆) | |
| 4 | dpjfval.q | . . 3 ⊢ 𝑄 = (proj1‘𝐺) | |
| 5 | 1, 2, 3, 4 | dpjfval 19987 | . 2 ⊢ (𝜑 → 𝑃 = (𝑥 ∈ 𝐼 ↦ ((𝑆‘𝑥)𝑄(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥})))))) |
| 6 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → 𝑥 = 𝑋) | |
| 7 | 6 | fveq2d 6862 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (𝑆‘𝑥) = (𝑆‘𝑋)) |
| 8 | 6 | sneqd 4601 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → {𝑥} = {𝑋}) |
| 9 | 8 | difeq2d 4089 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (𝐼 ∖ {𝑥}) = (𝐼 ∖ {𝑋})) |
| 10 | 9 | reseq2d 5950 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (𝑆 ↾ (𝐼 ∖ {𝑥})) = (𝑆 ↾ (𝐼 ∖ {𝑋}))) |
| 11 | 10 | oveq2d 7403 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))) = (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋})))) |
| 12 | 7, 11 | oveq12d 7405 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → ((𝑆‘𝑥)𝑄(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥})))) = ((𝑆‘𝑋)𝑄(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))))) |
| 13 | dpjval.3 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐼) | |
| 14 | ovexd 7422 | . 2 ⊢ (𝜑 → ((𝑆‘𝑋)𝑄(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋})))) ∈ V) | |
| 15 | 5, 12, 13, 14 | fvmptd 6975 | 1 ⊢ (𝜑 → (𝑃‘𝑋) = ((𝑆‘𝑋)𝑄(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∖ cdif 3911 {csn 4589 class class class wbr 5107 dom cdm 5638 ↾ cres 5640 ‘cfv 6511 (class class class)co 7387 proj1cpj1 19565 DProd cdprd 19925 dProjcdpj 19926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-ixp 8871 df-dprd 19927 df-dpj 19928 |
| This theorem is referenced by: dpjf 19989 dpjidcl 19990 dpjlid 19993 dpjghm 19995 |
| Copyright terms: Public domain | W3C validator |