![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dpjval | Structured version Visualization version GIF version |
Description: Value of the direct product projection (defined in terms of binary projection). (Contributed by Mario Carneiro, 26-Apr-2016.) |
Ref | Expression |
---|---|
dpjfval.1 | ⊢ (𝜑 → 𝐺dom DProd 𝑆) |
dpjfval.2 | ⊢ (𝜑 → dom 𝑆 = 𝐼) |
dpjfval.p | ⊢ 𝑃 = (𝐺dProj𝑆) |
dpjfval.q | ⊢ 𝑄 = (proj1‘𝐺) |
dpjval.3 | ⊢ (𝜑 → 𝑋 ∈ 𝐼) |
Ref | Expression |
---|---|
dpjval | ⊢ (𝜑 → (𝑃‘𝑋) = ((𝑆‘𝑋)𝑄(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dpjfval.1 | . . 3 ⊢ (𝜑 → 𝐺dom DProd 𝑆) | |
2 | dpjfval.2 | . . 3 ⊢ (𝜑 → dom 𝑆 = 𝐼) | |
3 | dpjfval.p | . . 3 ⊢ 𝑃 = (𝐺dProj𝑆) | |
4 | dpjfval.q | . . 3 ⊢ 𝑄 = (proj1‘𝐺) | |
5 | 1, 2, 3, 4 | dpjfval 20024 | . 2 ⊢ (𝜑 → 𝑃 = (𝑥 ∈ 𝐼 ↦ ((𝑆‘𝑥)𝑄(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥})))))) |
6 | simpr 483 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → 𝑥 = 𝑋) | |
7 | 6 | fveq2d 6900 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (𝑆‘𝑥) = (𝑆‘𝑋)) |
8 | 6 | sneqd 4642 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → {𝑥} = {𝑋}) |
9 | 8 | difeq2d 4118 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (𝐼 ∖ {𝑥}) = (𝐼 ∖ {𝑋})) |
10 | 9 | reseq2d 5985 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (𝑆 ↾ (𝐼 ∖ {𝑥})) = (𝑆 ↾ (𝐼 ∖ {𝑋}))) |
11 | 10 | oveq2d 7435 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))) = (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋})))) |
12 | 7, 11 | oveq12d 7437 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → ((𝑆‘𝑥)𝑄(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥})))) = ((𝑆‘𝑋)𝑄(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))))) |
13 | dpjval.3 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐼) | |
14 | ovexd 7454 | . 2 ⊢ (𝜑 → ((𝑆‘𝑋)𝑄(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋})))) ∈ V) | |
15 | 5, 12, 13, 14 | fvmptd 7011 | 1 ⊢ (𝜑 → (𝑃‘𝑋) = ((𝑆‘𝑋)𝑄(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 Vcvv 3461 ∖ cdif 3941 {csn 4630 class class class wbr 5149 dom cdm 5678 ↾ cres 5680 ‘cfv 6549 (class class class)co 7419 proj1cpj1 19602 DProd cdprd 19962 dProjcdpj 19963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-ov 7422 df-oprab 7423 df-mpo 7424 df-1st 7994 df-2nd 7995 df-ixp 8917 df-dprd 19964 df-dpj 19965 |
This theorem is referenced by: dpjf 20026 dpjidcl 20027 dpjlid 20030 dpjghm 20032 |
Copyright terms: Public domain | W3C validator |