MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dpjval Structured version   Visualization version   GIF version

Theorem dpjval 19994
Description: Value of the direct product projection (defined in terms of binary projection). (Contributed by Mario Carneiro, 26-Apr-2016.)
Hypotheses
Ref Expression
dpjfval.1 (𝜑𝐺dom DProd 𝑆)
dpjfval.2 (𝜑 → dom 𝑆 = 𝐼)
dpjfval.p 𝑃 = (𝐺dProj𝑆)
dpjfval.q 𝑄 = (proj1𝐺)
dpjval.3 (𝜑𝑋𝐼)
Assertion
Ref Expression
dpjval (𝜑 → (𝑃𝑋) = ((𝑆𝑋)𝑄(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋})))))

Proof of Theorem dpjval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dpjfval.1 . . 3 (𝜑𝐺dom DProd 𝑆)
2 dpjfval.2 . . 3 (𝜑 → dom 𝑆 = 𝐼)
3 dpjfval.p . . 3 𝑃 = (𝐺dProj𝑆)
4 dpjfval.q . . 3 𝑄 = (proj1𝐺)
51, 2, 3, 4dpjfval 19993 . 2 (𝜑𝑃 = (𝑥𝐼 ↦ ((𝑆𝑥)𝑄(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))))))
6 simpr 484 . . . 4 ((𝜑𝑥 = 𝑋) → 𝑥 = 𝑋)
76fveq2d 6864 . . 3 ((𝜑𝑥 = 𝑋) → (𝑆𝑥) = (𝑆𝑋))
86sneqd 4603 . . . . . 6 ((𝜑𝑥 = 𝑋) → {𝑥} = {𝑋})
98difeq2d 4091 . . . . 5 ((𝜑𝑥 = 𝑋) → (𝐼 ∖ {𝑥}) = (𝐼 ∖ {𝑋}))
109reseq2d 5952 . . . 4 ((𝜑𝑥 = 𝑋) → (𝑆 ↾ (𝐼 ∖ {𝑥})) = (𝑆 ↾ (𝐼 ∖ {𝑋})))
1110oveq2d 7405 . . 3 ((𝜑𝑥 = 𝑋) → (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))) = (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))))
127, 11oveq12d 7407 . 2 ((𝜑𝑥 = 𝑋) → ((𝑆𝑥)𝑄(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥})))) = ((𝑆𝑋)𝑄(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋})))))
13 dpjval.3 . 2 (𝜑𝑋𝐼)
14 ovexd 7424 . 2 (𝜑 → ((𝑆𝑋)𝑄(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋})))) ∈ V)
155, 12, 13, 14fvmptd 6977 1 (𝜑 → (𝑃𝑋) = ((𝑆𝑋)𝑄(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋})))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  cdif 3913  {csn 4591   class class class wbr 5109  dom cdm 5640  cres 5642  cfv 6513  (class class class)co 7389  proj1cpj1 19571   DProd cdprd 19931  dProjcdpj 19932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-ov 7392  df-oprab 7393  df-mpo 7394  df-1st 7970  df-2nd 7971  df-ixp 8873  df-dprd 19933  df-dpj 19934
This theorem is referenced by:  dpjf  19995  dpjidcl  19996  dpjlid  19999  dpjghm  20001
  Copyright terms: Public domain W3C validator