![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dpjval | Structured version Visualization version GIF version |
Description: Value of the direct product projection (defined in terms of binary projection). (Contributed by Mario Carneiro, 26-Apr-2016.) |
Ref | Expression |
---|---|
dpjfval.1 | ⊢ (𝜑 → 𝐺dom DProd 𝑆) |
dpjfval.2 | ⊢ (𝜑 → dom 𝑆 = 𝐼) |
dpjfval.p | ⊢ 𝑃 = (𝐺dProj𝑆) |
dpjfval.q | ⊢ 𝑄 = (proj1‘𝐺) |
dpjval.3 | ⊢ (𝜑 → 𝑋 ∈ 𝐼) |
Ref | Expression |
---|---|
dpjval | ⊢ (𝜑 → (𝑃‘𝑋) = ((𝑆‘𝑋)𝑄(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dpjfval.1 | . . 3 ⊢ (𝜑 → 𝐺dom DProd 𝑆) | |
2 | dpjfval.2 | . . 3 ⊢ (𝜑 → dom 𝑆 = 𝐼) | |
3 | dpjfval.p | . . 3 ⊢ 𝑃 = (𝐺dProj𝑆) | |
4 | dpjfval.q | . . 3 ⊢ 𝑄 = (proj1‘𝐺) | |
5 | 1, 2, 3, 4 | dpjfval 20003 | . 2 ⊢ (𝜑 → 𝑃 = (𝑥 ∈ 𝐼 ↦ ((𝑆‘𝑥)𝑄(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥})))))) |
6 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → 𝑥 = 𝑋) | |
7 | 6 | fveq2d 6895 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (𝑆‘𝑥) = (𝑆‘𝑋)) |
8 | 6 | sneqd 4636 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → {𝑥} = {𝑋}) |
9 | 8 | difeq2d 4118 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (𝐼 ∖ {𝑥}) = (𝐼 ∖ {𝑋})) |
10 | 9 | reseq2d 5979 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (𝑆 ↾ (𝐼 ∖ {𝑥})) = (𝑆 ↾ (𝐼 ∖ {𝑋}))) |
11 | 10 | oveq2d 7430 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))) = (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋})))) |
12 | 7, 11 | oveq12d 7432 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → ((𝑆‘𝑥)𝑄(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥})))) = ((𝑆‘𝑋)𝑄(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))))) |
13 | dpjval.3 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐼) | |
14 | ovexd 7449 | . 2 ⊢ (𝜑 → ((𝑆‘𝑋)𝑄(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋})))) ∈ V) | |
15 | 5, 12, 13, 14 | fvmptd 7006 | 1 ⊢ (𝜑 → (𝑃‘𝑋) = ((𝑆‘𝑋)𝑄(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 Vcvv 3469 ∖ cdif 3941 {csn 4624 class class class wbr 5142 dom cdm 5672 ↾ cres 5674 ‘cfv 6542 (class class class)co 7414 proj1cpj1 19581 DProd cdprd 19941 dProjcdpj 19942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-1st 7987 df-2nd 7988 df-ixp 8908 df-dprd 19943 df-dpj 19944 |
This theorem is referenced by: dpjf 20005 dpjidcl 20006 dpjlid 20009 dpjghm 20011 |
Copyright terms: Public domain | W3C validator |