MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dpjf Structured version   Visualization version   GIF version

Theorem dpjf 19964
Description: The 𝑋-th index projection is a function from the direct product to the 𝑋-th factor. (Contributed by Mario Carneiro, 26-Apr-2016.)
Hypotheses
Ref Expression
dpjfval.1 (𝜑𝐺dom DProd 𝑆)
dpjfval.2 (𝜑 → dom 𝑆 = 𝐼)
dpjfval.p 𝑃 = (𝐺dProj𝑆)
dpjf.3 (𝜑𝑋𝐼)
Assertion
Ref Expression
dpjf (𝜑 → (𝑃𝑋):(𝐺 DProd 𝑆)⟶(𝑆𝑋))

Proof of Theorem dpjf
StepHypRef Expression
1 eqid 2730 . . 3 (+g𝐺) = (+g𝐺)
2 eqid 2730 . . 3 (LSSum‘𝐺) = (LSSum‘𝐺)
3 eqid 2730 . . 3 (0g𝐺) = (0g𝐺)
4 eqid 2730 . . 3 (Cntz‘𝐺) = (Cntz‘𝐺)
5 dpjfval.1 . . . . 5 (𝜑𝐺dom DProd 𝑆)
6 dpjfval.2 . . . . 5 (𝜑 → dom 𝑆 = 𝐼)
75, 6dprdf2 19914 . . . 4 (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))
8 dpjf.3 . . . 4 (𝜑𝑋𝐼)
97, 8ffvelcdmd 7013 . . 3 (𝜑 → (𝑆𝑋) ∈ (SubGrp‘𝐺))
10 difssd 4085 . . . . . 6 (𝜑 → (𝐼 ∖ {𝑋}) ⊆ 𝐼)
115, 6, 10dprdres 19935 . . . . 5 (𝜑 → (𝐺dom DProd (𝑆 ↾ (𝐼 ∖ {𝑋})) ∧ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))) ⊆ (𝐺 DProd 𝑆)))
1211simpld 494 . . . 4 (𝜑𝐺dom DProd (𝑆 ↾ (𝐼 ∖ {𝑋})))
13 dprdsubg 19931 . . . 4 (𝐺dom DProd (𝑆 ↾ (𝐼 ∖ {𝑋})) → (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))) ∈ (SubGrp‘𝐺))
1412, 13syl 17 . . 3 (𝜑 → (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))) ∈ (SubGrp‘𝐺))
155, 6, 8, 3dpjdisj 19960 . . 3 (𝜑 → ((𝑆𝑋) ∩ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋})))) = {(0g𝐺)})
165, 6, 8, 4dpjcntz 19959 . . 3 (𝜑 → (𝑆𝑋) ⊆ ((Cntz‘𝐺)‘(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋})))))
17 eqid 2730 . . 3 (proj1𝐺) = (proj1𝐺)
181, 2, 3, 4, 9, 14, 15, 16, 17pj1f 19602 . 2 (𝜑 → ((𝑆𝑋)(proj1𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋})))):((𝑆𝑋)(LSSum‘𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))))⟶(𝑆𝑋))
19 dpjfval.p . . . 4 𝑃 = (𝐺dProj𝑆)
205, 6, 19, 17, 8dpjval 19963 . . 3 (𝜑 → (𝑃𝑋) = ((𝑆𝑋)(proj1𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋})))))
215, 6, 8, 2dpjlsm 19961 . . 3 (𝜑 → (𝐺 DProd 𝑆) = ((𝑆𝑋)(LSSum‘𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋})))))
2220, 21feq12d 6635 . 2 (𝜑 → ((𝑃𝑋):(𝐺 DProd 𝑆)⟶(𝑆𝑋) ↔ ((𝑆𝑋)(proj1𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋})))):((𝑆𝑋)(LSSum‘𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))))⟶(𝑆𝑋)))
2318, 22mpbird 257 1 (𝜑 → (𝑃𝑋):(𝐺 DProd 𝑆)⟶(𝑆𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2110  cdif 3897  wss 3900  {csn 4574   class class class wbr 5089  dom cdm 5614  cres 5616  wf 6473  cfv 6477  (class class class)co 7341  +gcplusg 17153  0gc0g 17335  SubGrpcsubg 19025  Cntzccntz 19220  LSSumclsm 19539  proj1cpj1 19540   DProd cdprd 19900  dProjcdpj 19901
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-isom 6486  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-tpos 8151  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-er 8617  df-map 8747  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-oi 9391  df-card 9824  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-nn 12118  df-2 12180  df-n0 12374  df-z 12461  df-uz 12725  df-fz 13400  df-fzo 13547  df-seq 13901  df-hash 14230  df-sets 17067  df-slot 17085  df-ndx 17097  df-base 17113  df-ress 17134  df-plusg 17166  df-0g 17337  df-gsum 17338  df-mre 17480  df-mrc 17481  df-acs 17483  df-mgm 18540  df-sgrp 18619  df-mnd 18635  df-mhm 18683  df-submnd 18684  df-grp 18841  df-minusg 18842  df-sbg 18843  df-mulg 18973  df-subg 19028  df-ghm 19118  df-gim 19164  df-cntz 19222  df-oppg 19251  df-lsm 19541  df-pj1 19542  df-cmn 19687  df-dprd 19902  df-dpj 19903
This theorem is referenced by:  dpjidcl  19965  dpjghm2  19971  dchrptlem2  27196
  Copyright terms: Public domain W3C validator