MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dpjf Structured version   Visualization version   GIF version

Theorem dpjf 19996
Description: The 𝑋-th index projection is a function from the direct product to the 𝑋-th factor. (Contributed by Mario Carneiro, 26-Apr-2016.)
Hypotheses
Ref Expression
dpjfval.1 (𝜑𝐺dom DProd 𝑆)
dpjfval.2 (𝜑 → dom 𝑆 = 𝐼)
dpjfval.p 𝑃 = (𝐺dProj𝑆)
dpjf.3 (𝜑𝑋𝐼)
Assertion
Ref Expression
dpjf (𝜑 → (𝑃𝑋):(𝐺 DProd 𝑆)⟶(𝑆𝑋))

Proof of Theorem dpjf
StepHypRef Expression
1 eqid 2730 . . 3 (+g𝐺) = (+g𝐺)
2 eqid 2730 . . 3 (LSSum‘𝐺) = (LSSum‘𝐺)
3 eqid 2730 . . 3 (0g𝐺) = (0g𝐺)
4 eqid 2730 . . 3 (Cntz‘𝐺) = (Cntz‘𝐺)
5 dpjfval.1 . . . . 5 (𝜑𝐺dom DProd 𝑆)
6 dpjfval.2 . . . . 5 (𝜑 → dom 𝑆 = 𝐼)
75, 6dprdf2 19946 . . . 4 (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))
8 dpjf.3 . . . 4 (𝜑𝑋𝐼)
97, 8ffvelcdmd 7060 . . 3 (𝜑 → (𝑆𝑋) ∈ (SubGrp‘𝐺))
10 difssd 4103 . . . . . 6 (𝜑 → (𝐼 ∖ {𝑋}) ⊆ 𝐼)
115, 6, 10dprdres 19967 . . . . 5 (𝜑 → (𝐺dom DProd (𝑆 ↾ (𝐼 ∖ {𝑋})) ∧ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))) ⊆ (𝐺 DProd 𝑆)))
1211simpld 494 . . . 4 (𝜑𝐺dom DProd (𝑆 ↾ (𝐼 ∖ {𝑋})))
13 dprdsubg 19963 . . . 4 (𝐺dom DProd (𝑆 ↾ (𝐼 ∖ {𝑋})) → (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))) ∈ (SubGrp‘𝐺))
1412, 13syl 17 . . 3 (𝜑 → (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))) ∈ (SubGrp‘𝐺))
155, 6, 8, 3dpjdisj 19992 . . 3 (𝜑 → ((𝑆𝑋) ∩ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋})))) = {(0g𝐺)})
165, 6, 8, 4dpjcntz 19991 . . 3 (𝜑 → (𝑆𝑋) ⊆ ((Cntz‘𝐺)‘(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋})))))
17 eqid 2730 . . 3 (proj1𝐺) = (proj1𝐺)
181, 2, 3, 4, 9, 14, 15, 16, 17pj1f 19634 . 2 (𝜑 → ((𝑆𝑋)(proj1𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋})))):((𝑆𝑋)(LSSum‘𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))))⟶(𝑆𝑋))
19 dpjfval.p . . . 4 𝑃 = (𝐺dProj𝑆)
205, 6, 19, 17, 8dpjval 19995 . . 3 (𝜑 → (𝑃𝑋) = ((𝑆𝑋)(proj1𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋})))))
215, 6, 8, 2dpjlsm 19993 . . 3 (𝜑 → (𝐺 DProd 𝑆) = ((𝑆𝑋)(LSSum‘𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋})))))
2220, 21feq12d 6679 . 2 (𝜑 → ((𝑃𝑋):(𝐺 DProd 𝑆)⟶(𝑆𝑋) ↔ ((𝑆𝑋)(proj1𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋})))):((𝑆𝑋)(LSSum‘𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))))⟶(𝑆𝑋)))
2318, 22mpbird 257 1 (𝜑 → (𝑃𝑋):(𝐺 DProd 𝑆)⟶(𝑆𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cdif 3914  wss 3917  {csn 4592   class class class wbr 5110  dom cdm 5641  cres 5643  wf 6510  cfv 6514  (class class class)co 7390  +gcplusg 17227  0gc0g 17409  SubGrpcsubg 19059  Cntzccntz 19254  LSSumclsm 19571  proj1cpj1 19572   DProd cdprd 19932  dProjcdpj 19933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623  df-seq 13974  df-hash 14303  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-0g 17411  df-gsum 17412  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-ghm 19152  df-gim 19198  df-cntz 19256  df-oppg 19285  df-lsm 19573  df-pj1 19574  df-cmn 19719  df-dprd 19934  df-dpj 19935
This theorem is referenced by:  dpjidcl  19997  dpjghm2  20003  dchrptlem2  27183
  Copyright terms: Public domain W3C validator