Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dpjghm Structured version   Visualization version   GIF version

Theorem dpjghm 18816
 Description: The direct product is the binary subgroup product ("sum") of the direct products of the partition. (Contributed by Mario Carneiro, 26-Apr-2016.)
Hypotheses
Ref Expression
dpjfval.1 (𝜑𝐺dom DProd 𝑆)
dpjfval.2 (𝜑 → dom 𝑆 = 𝐼)
dpjfval.p 𝑃 = (𝐺dProj𝑆)
dpjlid.3 (𝜑𝑋𝐼)
Assertion
Ref Expression
dpjghm (𝜑 → (𝑃𝑋) ∈ ((𝐺s (𝐺 DProd 𝑆)) GrpHom 𝐺))

Proof of Theorem dpjghm
StepHypRef Expression
1 eqid 2825 . . 3 (+g𝐺) = (+g𝐺)
2 eqid 2825 . . 3 (LSSum‘𝐺) = (LSSum‘𝐺)
3 eqid 2825 . . 3 (0g𝐺) = (0g𝐺)
4 eqid 2825 . . 3 (Cntz‘𝐺) = (Cntz‘𝐺)
5 dpjfval.1 . . . . 5 (𝜑𝐺dom DProd 𝑆)
6 dpjfval.2 . . . . 5 (𝜑 → dom 𝑆 = 𝐼)
75, 6dprdf2 18760 . . . 4 (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))
8 dpjlid.3 . . . 4 (𝜑𝑋𝐼)
97, 8ffvelrnd 6609 . . 3 (𝜑 → (𝑆𝑋) ∈ (SubGrp‘𝐺))
10 difssd 3965 . . . . . 6 (𝜑 → (𝐼 ∖ {𝑋}) ⊆ 𝐼)
115, 6, 10dprdres 18781 . . . . 5 (𝜑 → (𝐺dom DProd (𝑆 ↾ (𝐼 ∖ {𝑋})) ∧ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))) ⊆ (𝐺 DProd 𝑆)))
1211simpld 490 . . . 4 (𝜑𝐺dom DProd (𝑆 ↾ (𝐼 ∖ {𝑋})))
13 dprdsubg 18777 . . . 4 (𝐺dom DProd (𝑆 ↾ (𝐼 ∖ {𝑋})) → (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))) ∈ (SubGrp‘𝐺))
1412, 13syl 17 . . 3 (𝜑 → (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))) ∈ (SubGrp‘𝐺))
155, 6, 8, 3dpjdisj 18806 . . 3 (𝜑 → ((𝑆𝑋) ∩ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋})))) = {(0g𝐺)})
165, 6, 8, 4dpjcntz 18805 . . 3 (𝜑 → (𝑆𝑋) ⊆ ((Cntz‘𝐺)‘(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋})))))
17 eqid 2825 . . 3 (proj1𝐺) = (proj1𝐺)
181, 2, 3, 4, 9, 14, 15, 16, 17pj1ghm 18467 . 2 (𝜑 → ((𝑆𝑋)(proj1𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋})))) ∈ ((𝐺s ((𝑆𝑋)(LSSum‘𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))))) GrpHom 𝐺))
19 dpjfval.p . . 3 𝑃 = (𝐺dProj𝑆)
205, 6, 19, 17, 8dpjval 18809 . 2 (𝜑 → (𝑃𝑋) = ((𝑆𝑋)(proj1𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋})))))
215, 6, 8, 2dpjlsm 18807 . . . 4 (𝜑 → (𝐺 DProd 𝑆) = ((𝑆𝑋)(LSSum‘𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋})))))
2221oveq2d 6921 . . 3 (𝜑 → (𝐺s (𝐺 DProd 𝑆)) = (𝐺s ((𝑆𝑋)(LSSum‘𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))))))
2322oveq1d 6920 . 2 (𝜑 → ((𝐺s (𝐺 DProd 𝑆)) GrpHom 𝐺) = ((𝐺s ((𝑆𝑋)(LSSum‘𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))))) GrpHom 𝐺))
2418, 20, 233eltr4d 2921 1 (𝜑 → (𝑃𝑋) ∈ ((𝐺s (𝐺 DProd 𝑆)) GrpHom 𝐺))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1658   ∈ wcel 2166   ∖ cdif 3795   ⊆ wss 3798  {csn 4397   class class class wbr 4873  dom cdm 5342   ↾ cres 5344  ‘cfv 6123  (class class class)co 6905   ↾s cress 16223  +gcplusg 16305  0gc0g 16453  SubGrpcsubg 17939   GrpHom cghm 18008  Cntzccntz 18098  LSSumclsm 18400  proj1cpj1 18401   DProd cdprd 18746  dProjcdpj 18747 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-inf2 8815  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-iin 4743  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-se 5302  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-isom 6132  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-of 7157  df-om 7327  df-1st 7428  df-2nd 7429  df-supp 7560  df-tpos 7617  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-1o 7826  df-oadd 7830  df-er 8009  df-map 8124  df-ixp 8176  df-en 8223  df-dom 8224  df-sdom 8225  df-fin 8226  df-fsupp 8545  df-oi 8684  df-card 9078  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-nn 11351  df-2 11414  df-n0 11619  df-z 11705  df-uz 11969  df-fz 12620  df-fzo 12761  df-seq 13096  df-hash 13411  df-ndx 16225  df-slot 16226  df-base 16228  df-sets 16229  df-ress 16230  df-plusg 16318  df-0g 16455  df-gsum 16456  df-mre 16599  df-mrc 16600  df-acs 16602  df-mgm 17595  df-sgrp 17637  df-mnd 17648  df-mhm 17688  df-submnd 17689  df-grp 17779  df-minusg 17780  df-sbg 17781  df-mulg 17895  df-subg 17942  df-ghm 18009  df-gim 18052  df-cntz 18100  df-oppg 18126  df-lsm 18402  df-pj1 18403  df-cmn 18548  df-dprd 18748  df-dpj 18749 This theorem is referenced by:  dpjghm2  18817  dchrptlem2  25403
 Copyright terms: Public domain W3C validator