Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dpjghm | Structured version Visualization version GIF version |
Description: The direct product is the binary subgroup product ("sum") of the direct products of the partition. (Contributed by Mario Carneiro, 26-Apr-2016.) |
Ref | Expression |
---|---|
dpjfval.1 | ⊢ (𝜑 → 𝐺dom DProd 𝑆) |
dpjfval.2 | ⊢ (𝜑 → dom 𝑆 = 𝐼) |
dpjfval.p | ⊢ 𝑃 = (𝐺dProj𝑆) |
dpjlid.3 | ⊢ (𝜑 → 𝑋 ∈ 𝐼) |
Ref | Expression |
---|---|
dpjghm | ⊢ (𝜑 → (𝑃‘𝑋) ∈ ((𝐺 ↾s (𝐺 DProd 𝑆)) GrpHom 𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
2 | eqid 2738 | . . 3 ⊢ (LSSum‘𝐺) = (LSSum‘𝐺) | |
3 | eqid 2738 | . . 3 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
4 | eqid 2738 | . . 3 ⊢ (Cntz‘𝐺) = (Cntz‘𝐺) | |
5 | dpjfval.1 | . . . . 5 ⊢ (𝜑 → 𝐺dom DProd 𝑆) | |
6 | dpjfval.2 | . . . . 5 ⊢ (𝜑 → dom 𝑆 = 𝐼) | |
7 | 5, 6 | dprdf2 19525 | . . . 4 ⊢ (𝜑 → 𝑆:𝐼⟶(SubGrp‘𝐺)) |
8 | dpjlid.3 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐼) | |
9 | 7, 8 | ffvelrnd 6944 | . . 3 ⊢ (𝜑 → (𝑆‘𝑋) ∈ (SubGrp‘𝐺)) |
10 | difssd 4063 | . . . . . 6 ⊢ (𝜑 → (𝐼 ∖ {𝑋}) ⊆ 𝐼) | |
11 | 5, 6, 10 | dprdres 19546 | . . . . 5 ⊢ (𝜑 → (𝐺dom DProd (𝑆 ↾ (𝐼 ∖ {𝑋})) ∧ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))) ⊆ (𝐺 DProd 𝑆))) |
12 | 11 | simpld 494 | . . . 4 ⊢ (𝜑 → 𝐺dom DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))) |
13 | dprdsubg 19542 | . . . 4 ⊢ (𝐺dom DProd (𝑆 ↾ (𝐼 ∖ {𝑋})) → (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))) ∈ (SubGrp‘𝐺)) | |
14 | 12, 13 | syl 17 | . . 3 ⊢ (𝜑 → (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))) ∈ (SubGrp‘𝐺)) |
15 | 5, 6, 8, 3 | dpjdisj 19571 | . . 3 ⊢ (𝜑 → ((𝑆‘𝑋) ∩ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋})))) = {(0g‘𝐺)}) |
16 | 5, 6, 8, 4 | dpjcntz 19570 | . . 3 ⊢ (𝜑 → (𝑆‘𝑋) ⊆ ((Cntz‘𝐺)‘(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))))) |
17 | eqid 2738 | . . 3 ⊢ (proj1‘𝐺) = (proj1‘𝐺) | |
18 | 1, 2, 3, 4, 9, 14, 15, 16, 17 | pj1ghm 19224 | . 2 ⊢ (𝜑 → ((𝑆‘𝑋)(proj1‘𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋})))) ∈ ((𝐺 ↾s ((𝑆‘𝑋)(LSSum‘𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))))) GrpHom 𝐺)) |
19 | dpjfval.p | . . 3 ⊢ 𝑃 = (𝐺dProj𝑆) | |
20 | 5, 6, 19, 17, 8 | dpjval 19574 | . 2 ⊢ (𝜑 → (𝑃‘𝑋) = ((𝑆‘𝑋)(proj1‘𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))))) |
21 | 5, 6, 8, 2 | dpjlsm 19572 | . . . 4 ⊢ (𝜑 → (𝐺 DProd 𝑆) = ((𝑆‘𝑋)(LSSum‘𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))))) |
22 | 21 | oveq2d 7271 | . . 3 ⊢ (𝜑 → (𝐺 ↾s (𝐺 DProd 𝑆)) = (𝐺 ↾s ((𝑆‘𝑋)(LSSum‘𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋})))))) |
23 | 22 | oveq1d 7270 | . 2 ⊢ (𝜑 → ((𝐺 ↾s (𝐺 DProd 𝑆)) GrpHom 𝐺) = ((𝐺 ↾s ((𝑆‘𝑋)(LSSum‘𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))))) GrpHom 𝐺)) |
24 | 18, 20, 23 | 3eltr4d 2854 | 1 ⊢ (𝜑 → (𝑃‘𝑋) ∈ ((𝐺 ↾s (𝐺 DProd 𝑆)) GrpHom 𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ∖ cdif 3880 ⊆ wss 3883 {csn 4558 class class class wbr 5070 dom cdm 5580 ↾ cres 5582 ‘cfv 6418 (class class class)co 7255 ↾s cress 16867 +gcplusg 16888 0gc0g 17067 SubGrpcsubg 18664 GrpHom cghm 18746 Cntzccntz 18836 LSSumclsm 19154 proj1cpj1 19155 DProd cdprd 19511 dProjcdpj 19512 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-tpos 8013 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-fzo 13312 df-seq 13650 df-hash 13973 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-0g 17069 df-gsum 17070 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-mhm 18345 df-submnd 18346 df-grp 18495 df-minusg 18496 df-sbg 18497 df-mulg 18616 df-subg 18667 df-ghm 18747 df-gim 18790 df-cntz 18838 df-oppg 18865 df-lsm 19156 df-pj1 19157 df-cmn 19303 df-dprd 19513 df-dpj 19514 |
This theorem is referenced by: dpjghm2 19582 dchrptlem2 26318 |
Copyright terms: Public domain | W3C validator |