![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dpjghm | Structured version Visualization version GIF version |
Description: The direct product is the binary subgroup product ("sum") of the direct products of the partition. (Contributed by Mario Carneiro, 26-Apr-2016.) |
Ref | Expression |
---|---|
dpjfval.1 | ⊢ (𝜑 → 𝐺dom DProd 𝑆) |
dpjfval.2 | ⊢ (𝜑 → dom 𝑆 = 𝐼) |
dpjfval.p | ⊢ 𝑃 = (𝐺dProj𝑆) |
dpjlid.3 | ⊢ (𝜑 → 𝑋 ∈ 𝐼) |
Ref | Expression |
---|---|
dpjghm | ⊢ (𝜑 → (𝑃‘𝑋) ∈ ((𝐺 ↾s (𝐺 DProd 𝑆)) GrpHom 𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2825 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
2 | eqid 2825 | . . 3 ⊢ (LSSum‘𝐺) = (LSSum‘𝐺) | |
3 | eqid 2825 | . . 3 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
4 | eqid 2825 | . . 3 ⊢ (Cntz‘𝐺) = (Cntz‘𝐺) | |
5 | dpjfval.1 | . . . . 5 ⊢ (𝜑 → 𝐺dom DProd 𝑆) | |
6 | dpjfval.2 | . . . . 5 ⊢ (𝜑 → dom 𝑆 = 𝐼) | |
7 | 5, 6 | dprdf2 18760 | . . . 4 ⊢ (𝜑 → 𝑆:𝐼⟶(SubGrp‘𝐺)) |
8 | dpjlid.3 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐼) | |
9 | 7, 8 | ffvelrnd 6609 | . . 3 ⊢ (𝜑 → (𝑆‘𝑋) ∈ (SubGrp‘𝐺)) |
10 | difssd 3965 | . . . . . 6 ⊢ (𝜑 → (𝐼 ∖ {𝑋}) ⊆ 𝐼) | |
11 | 5, 6, 10 | dprdres 18781 | . . . . 5 ⊢ (𝜑 → (𝐺dom DProd (𝑆 ↾ (𝐼 ∖ {𝑋})) ∧ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))) ⊆ (𝐺 DProd 𝑆))) |
12 | 11 | simpld 490 | . . . 4 ⊢ (𝜑 → 𝐺dom DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))) |
13 | dprdsubg 18777 | . . . 4 ⊢ (𝐺dom DProd (𝑆 ↾ (𝐼 ∖ {𝑋})) → (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))) ∈ (SubGrp‘𝐺)) | |
14 | 12, 13 | syl 17 | . . 3 ⊢ (𝜑 → (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))) ∈ (SubGrp‘𝐺)) |
15 | 5, 6, 8, 3 | dpjdisj 18806 | . . 3 ⊢ (𝜑 → ((𝑆‘𝑋) ∩ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋})))) = {(0g‘𝐺)}) |
16 | 5, 6, 8, 4 | dpjcntz 18805 | . . 3 ⊢ (𝜑 → (𝑆‘𝑋) ⊆ ((Cntz‘𝐺)‘(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))))) |
17 | eqid 2825 | . . 3 ⊢ (proj1‘𝐺) = (proj1‘𝐺) | |
18 | 1, 2, 3, 4, 9, 14, 15, 16, 17 | pj1ghm 18467 | . 2 ⊢ (𝜑 → ((𝑆‘𝑋)(proj1‘𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋})))) ∈ ((𝐺 ↾s ((𝑆‘𝑋)(LSSum‘𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))))) GrpHom 𝐺)) |
19 | dpjfval.p | . . 3 ⊢ 𝑃 = (𝐺dProj𝑆) | |
20 | 5, 6, 19, 17, 8 | dpjval 18809 | . 2 ⊢ (𝜑 → (𝑃‘𝑋) = ((𝑆‘𝑋)(proj1‘𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))))) |
21 | 5, 6, 8, 2 | dpjlsm 18807 | . . . 4 ⊢ (𝜑 → (𝐺 DProd 𝑆) = ((𝑆‘𝑋)(LSSum‘𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))))) |
22 | 21 | oveq2d 6921 | . . 3 ⊢ (𝜑 → (𝐺 ↾s (𝐺 DProd 𝑆)) = (𝐺 ↾s ((𝑆‘𝑋)(LSSum‘𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋})))))) |
23 | 22 | oveq1d 6920 | . 2 ⊢ (𝜑 → ((𝐺 ↾s (𝐺 DProd 𝑆)) GrpHom 𝐺) = ((𝐺 ↾s ((𝑆‘𝑋)(LSSum‘𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))))) GrpHom 𝐺)) |
24 | 18, 20, 23 | 3eltr4d 2921 | 1 ⊢ (𝜑 → (𝑃‘𝑋) ∈ ((𝐺 ↾s (𝐺 DProd 𝑆)) GrpHom 𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1658 ∈ wcel 2166 ∖ cdif 3795 ⊆ wss 3798 {csn 4397 class class class wbr 4873 dom cdm 5342 ↾ cres 5344 ‘cfv 6123 (class class class)co 6905 ↾s cress 16223 +gcplusg 16305 0gc0g 16453 SubGrpcsubg 17939 GrpHom cghm 18008 Cntzccntz 18098 LSSumclsm 18400 proj1cpj1 18401 DProd cdprd 18746 dProjcdpj 18747 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-rep 4994 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 ax-inf2 8815 ax-cnex 10308 ax-resscn 10309 ax-1cn 10310 ax-icn 10311 ax-addcl 10312 ax-addrcl 10313 ax-mulcl 10314 ax-mulrcl 10315 ax-mulcom 10316 ax-addass 10317 ax-mulass 10318 ax-distr 10319 ax-i2m1 10320 ax-1ne0 10321 ax-1rid 10322 ax-rnegex 10323 ax-rrecex 10324 ax-cnre 10325 ax-pre-lttri 10326 ax-pre-lttrn 10327 ax-pre-ltadd 10328 ax-pre-mulgt0 10329 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4659 df-int 4698 df-iun 4742 df-iin 4743 df-br 4874 df-opab 4936 df-mpt 4953 df-tr 4976 df-id 5250 df-eprel 5255 df-po 5263 df-so 5264 df-fr 5301 df-se 5302 df-we 5303 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-pred 5920 df-ord 5966 df-on 5967 df-lim 5968 df-suc 5969 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-isom 6132 df-riota 6866 df-ov 6908 df-oprab 6909 df-mpt2 6910 df-of 7157 df-om 7327 df-1st 7428 df-2nd 7429 df-supp 7560 df-tpos 7617 df-wrecs 7672 df-recs 7734 df-rdg 7772 df-1o 7826 df-oadd 7830 df-er 8009 df-map 8124 df-ixp 8176 df-en 8223 df-dom 8224 df-sdom 8225 df-fin 8226 df-fsupp 8545 df-oi 8684 df-card 9078 df-pnf 10393 df-mnf 10394 df-xr 10395 df-ltxr 10396 df-le 10397 df-sub 10587 df-neg 10588 df-nn 11351 df-2 11414 df-n0 11619 df-z 11705 df-uz 11969 df-fz 12620 df-fzo 12761 df-seq 13096 df-hash 13411 df-ndx 16225 df-slot 16226 df-base 16228 df-sets 16229 df-ress 16230 df-plusg 16318 df-0g 16455 df-gsum 16456 df-mre 16599 df-mrc 16600 df-acs 16602 df-mgm 17595 df-sgrp 17637 df-mnd 17648 df-mhm 17688 df-submnd 17689 df-grp 17779 df-minusg 17780 df-sbg 17781 df-mulg 17895 df-subg 17942 df-ghm 18009 df-gim 18052 df-cntz 18100 df-oppg 18126 df-lsm 18402 df-pj1 18403 df-cmn 18548 df-dprd 18748 df-dpj 18749 |
This theorem is referenced by: dpjghm2 18817 dchrptlem2 25403 |
Copyright terms: Public domain | W3C validator |