![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dpjghm | Structured version Visualization version GIF version |
Description: The direct product is the binary subgroup product ("sum") of the direct products of the partition. (Contributed by Mario Carneiro, 26-Apr-2016.) |
Ref | Expression |
---|---|
dpjfval.1 | โข (๐ โ ๐บdom DProd ๐) |
dpjfval.2 | โข (๐ โ dom ๐ = ๐ผ) |
dpjfval.p | โข ๐ = (๐บdProj๐) |
dpjlid.3 | โข (๐ โ ๐ โ ๐ผ) |
Ref | Expression |
---|---|
dpjghm | โข (๐ โ (๐โ๐) โ ((๐บ โพs (๐บ DProd ๐)) GrpHom ๐บ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2732 | . . 3 โข (+gโ๐บ) = (+gโ๐บ) | |
2 | eqid 2732 | . . 3 โข (LSSumโ๐บ) = (LSSumโ๐บ) | |
3 | eqid 2732 | . . 3 โข (0gโ๐บ) = (0gโ๐บ) | |
4 | eqid 2732 | . . 3 โข (Cntzโ๐บ) = (Cntzโ๐บ) | |
5 | dpjfval.1 | . . . . 5 โข (๐ โ ๐บdom DProd ๐) | |
6 | dpjfval.2 | . . . . 5 โข (๐ โ dom ๐ = ๐ผ) | |
7 | 5, 6 | dprdf2 19918 | . . . 4 โข (๐ โ ๐:๐ผโถ(SubGrpโ๐บ)) |
8 | dpjlid.3 | . . . 4 โข (๐ โ ๐ โ ๐ผ) | |
9 | 7, 8 | ffvelcdmd 7087 | . . 3 โข (๐ โ (๐โ๐) โ (SubGrpโ๐บ)) |
10 | difssd 4132 | . . . . . 6 โข (๐ โ (๐ผ โ {๐}) โ ๐ผ) | |
11 | 5, 6, 10 | dprdres 19939 | . . . . 5 โข (๐ โ (๐บdom DProd (๐ โพ (๐ผ โ {๐})) โง (๐บ DProd (๐ โพ (๐ผ โ {๐}))) โ (๐บ DProd ๐))) |
12 | 11 | simpld 495 | . . . 4 โข (๐ โ ๐บdom DProd (๐ โพ (๐ผ โ {๐}))) |
13 | dprdsubg 19935 | . . . 4 โข (๐บdom DProd (๐ โพ (๐ผ โ {๐})) โ (๐บ DProd (๐ โพ (๐ผ โ {๐}))) โ (SubGrpโ๐บ)) | |
14 | 12, 13 | syl 17 | . . 3 โข (๐ โ (๐บ DProd (๐ โพ (๐ผ โ {๐}))) โ (SubGrpโ๐บ)) |
15 | 5, 6, 8, 3 | dpjdisj 19964 | . . 3 โข (๐ โ ((๐โ๐) โฉ (๐บ DProd (๐ โพ (๐ผ โ {๐})))) = {(0gโ๐บ)}) |
16 | 5, 6, 8, 4 | dpjcntz 19963 | . . 3 โข (๐ โ (๐โ๐) โ ((Cntzโ๐บ)โ(๐บ DProd (๐ โพ (๐ผ โ {๐}))))) |
17 | eqid 2732 | . . 3 โข (proj1โ๐บ) = (proj1โ๐บ) | |
18 | 1, 2, 3, 4, 9, 14, 15, 16, 17 | pj1ghm 19612 | . 2 โข (๐ โ ((๐โ๐)(proj1โ๐บ)(๐บ DProd (๐ โพ (๐ผ โ {๐})))) โ ((๐บ โพs ((๐โ๐)(LSSumโ๐บ)(๐บ DProd (๐ โพ (๐ผ โ {๐}))))) GrpHom ๐บ)) |
19 | dpjfval.p | . . 3 โข ๐ = (๐บdProj๐) | |
20 | 5, 6, 19, 17, 8 | dpjval 19967 | . 2 โข (๐ โ (๐โ๐) = ((๐โ๐)(proj1โ๐บ)(๐บ DProd (๐ โพ (๐ผ โ {๐}))))) |
21 | 5, 6, 8, 2 | dpjlsm 19965 | . . . 4 โข (๐ โ (๐บ DProd ๐) = ((๐โ๐)(LSSumโ๐บ)(๐บ DProd (๐ โพ (๐ผ โ {๐}))))) |
22 | 21 | oveq2d 7427 | . . 3 โข (๐ โ (๐บ โพs (๐บ DProd ๐)) = (๐บ โพs ((๐โ๐)(LSSumโ๐บ)(๐บ DProd (๐ โพ (๐ผ โ {๐})))))) |
23 | 22 | oveq1d 7426 | . 2 โข (๐ โ ((๐บ โพs (๐บ DProd ๐)) GrpHom ๐บ) = ((๐บ โพs ((๐โ๐)(LSSumโ๐บ)(๐บ DProd (๐ โพ (๐ผ โ {๐}))))) GrpHom ๐บ)) |
24 | 18, 20, 23 | 3eltr4d 2848 | 1 โข (๐ โ (๐โ๐) โ ((๐บ โพs (๐บ DProd ๐)) GrpHom ๐บ)) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 = wceq 1541 โ wcel 2106 โ cdif 3945 โ wss 3948 {csn 4628 class class class wbr 5148 dom cdm 5676 โพ cres 5678 โcfv 6543 (class class class)co 7411 โพs cress 17177 +gcplusg 17201 0gc0g 17389 SubGrpcsubg 19036 GrpHom cghm 19127 Cntzccntz 19220 LSSumclsm 19543 proj1cpj1 19544 DProd cdprd 19904 dProjcdpj 19905 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-of 7672 df-om 7858 df-1st 7977 df-2nd 7978 df-supp 8149 df-tpos 8213 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-er 8705 df-map 8824 df-ixp 8894 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-fsupp 9364 df-oi 9507 df-card 9936 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-n0 12477 df-z 12563 df-uz 12827 df-fz 13489 df-fzo 13632 df-seq 13971 df-hash 14295 df-sets 17101 df-slot 17119 df-ndx 17131 df-base 17149 df-ress 17178 df-plusg 17214 df-0g 17391 df-gsum 17392 df-mre 17534 df-mrc 17535 df-acs 17537 df-mgm 18565 df-sgrp 18644 df-mnd 18660 df-mhm 18705 df-submnd 18706 df-grp 18858 df-minusg 18859 df-sbg 18860 df-mulg 18987 df-subg 19039 df-ghm 19128 df-gim 19173 df-cntz 19222 df-oppg 19251 df-lsm 19545 df-pj1 19546 df-cmn 19691 df-dprd 19906 df-dpj 19907 |
This theorem is referenced by: dpjghm2 19975 dchrptlem2 26992 |
Copyright terms: Public domain | W3C validator |