MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dpjlid Structured version   Visualization version   GIF version

Theorem dpjlid 19970
Description: The 𝑋-th index projection acts as the identity on elements of the 𝑋-th factor. (Contributed by Mario Carneiro, 26-Apr-2016.)
Hypotheses
Ref Expression
dpjfval.1 (𝜑𝐺dom DProd 𝑆)
dpjfval.2 (𝜑 → dom 𝑆 = 𝐼)
dpjfval.p 𝑃 = (𝐺dProj𝑆)
dpjlid.3 (𝜑𝑋𝐼)
dpjlid.4 (𝜑𝐴 ∈ (𝑆𝑋))
Assertion
Ref Expression
dpjlid (𝜑 → ((𝑃𝑋)‘𝐴) = 𝐴)

Proof of Theorem dpjlid
StepHypRef Expression
1 dpjfval.1 . . . 4 (𝜑𝐺dom DProd 𝑆)
2 dpjfval.2 . . . 4 (𝜑 → dom 𝑆 = 𝐼)
3 dpjfval.p . . . 4 𝑃 = (𝐺dProj𝑆)
4 eqid 2731 . . . 4 (proj1𝐺) = (proj1𝐺)
5 dpjlid.3 . . . 4 (𝜑𝑋𝐼)
61, 2, 3, 4, 5dpjval 19965 . . 3 (𝜑 → (𝑃𝑋) = ((𝑆𝑋)(proj1𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋})))))
76fveq1d 6819 . 2 (𝜑 → ((𝑃𝑋)‘𝐴) = (((𝑆𝑋)(proj1𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))))‘𝐴))
8 dpjlid.4 . . 3 (𝜑𝐴 ∈ (𝑆𝑋))
9 eqid 2731 . . . 4 (+g𝐺) = (+g𝐺)
10 eqid 2731 . . . 4 (LSSum‘𝐺) = (LSSum‘𝐺)
11 eqid 2731 . . . 4 (0g𝐺) = (0g𝐺)
12 eqid 2731 . . . 4 (Cntz‘𝐺) = (Cntz‘𝐺)
131, 2dprdf2 19916 . . . . 5 (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))
1413, 5ffvelcdmd 7013 . . . 4 (𝜑 → (𝑆𝑋) ∈ (SubGrp‘𝐺))
15 difssd 4082 . . . . . . 7 (𝜑 → (𝐼 ∖ {𝑋}) ⊆ 𝐼)
161, 2, 15dprdres 19937 . . . . . 6 (𝜑 → (𝐺dom DProd (𝑆 ↾ (𝐼 ∖ {𝑋})) ∧ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))) ⊆ (𝐺 DProd 𝑆)))
1716simpld 494 . . . . 5 (𝜑𝐺dom DProd (𝑆 ↾ (𝐼 ∖ {𝑋})))
18 dprdsubg 19933 . . . . 5 (𝐺dom DProd (𝑆 ↾ (𝐼 ∖ {𝑋})) → (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))) ∈ (SubGrp‘𝐺))
1917, 18syl 17 . . . 4 (𝜑 → (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))) ∈ (SubGrp‘𝐺))
201, 2, 5, 11dpjdisj 19962 . . . 4 (𝜑 → ((𝑆𝑋) ∩ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋})))) = {(0g𝐺)})
211, 2, 5, 12dpjcntz 19961 . . . 4 (𝜑 → (𝑆𝑋) ⊆ ((Cntz‘𝐺)‘(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋})))))
229, 10, 11, 12, 14, 19, 20, 21, 4pj1lid 19608 . . 3 ((𝜑𝐴 ∈ (𝑆𝑋)) → (((𝑆𝑋)(proj1𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))))‘𝐴) = 𝐴)
238, 22mpdan 687 . 2 (𝜑 → (((𝑆𝑋)(proj1𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))))‘𝐴) = 𝐴)
247, 23eqtrd 2766 1 (𝜑 → ((𝑃𝑋)‘𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  cdif 3894  wss 3897  {csn 4571   class class class wbr 5086  dom cdm 5611  cres 5613  cfv 6476  (class class class)co 7341  +gcplusg 17156  0gc0g 17338  SubGrpcsubg 19028  Cntzccntz 19222  LSSumclsm 19541  proj1cpj1 19542   DProd cdprd 19902  dProjcdpj 19903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-iin 4939  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-se 5565  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-isom 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-tpos 8151  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-er 8617  df-map 8747  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-oi 9391  df-card 9827  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-nn 12121  df-2 12183  df-n0 12377  df-z 12464  df-uz 12728  df-fz 13403  df-fzo 13550  df-seq 13904  df-hash 14233  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-ress 17137  df-plusg 17169  df-0g 17340  df-gsum 17341  df-mre 17483  df-mrc 17484  df-acs 17486  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-mhm 18686  df-submnd 18687  df-grp 18844  df-minusg 18845  df-sbg 18846  df-mulg 18976  df-subg 19031  df-ghm 19120  df-gim 19166  df-cntz 19224  df-oppg 19253  df-lsm 19543  df-pj1 19544  df-cmn 19689  df-dprd 19904  df-dpj 19905
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator