| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dpjlid | Structured version Visualization version GIF version | ||
| Description: The 𝑋-th index projection acts as the identity on elements of the 𝑋-th factor. (Contributed by Mario Carneiro, 26-Apr-2016.) |
| Ref | Expression |
|---|---|
| dpjfval.1 | ⊢ (𝜑 → 𝐺dom DProd 𝑆) |
| dpjfval.2 | ⊢ (𝜑 → dom 𝑆 = 𝐼) |
| dpjfval.p | ⊢ 𝑃 = (𝐺dProj𝑆) |
| dpjlid.3 | ⊢ (𝜑 → 𝑋 ∈ 𝐼) |
| dpjlid.4 | ⊢ (𝜑 → 𝐴 ∈ (𝑆‘𝑋)) |
| Ref | Expression |
|---|---|
| dpjlid | ⊢ (𝜑 → ((𝑃‘𝑋)‘𝐴) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dpjfval.1 | . . . 4 ⊢ (𝜑 → 𝐺dom DProd 𝑆) | |
| 2 | dpjfval.2 | . . . 4 ⊢ (𝜑 → dom 𝑆 = 𝐼) | |
| 3 | dpjfval.p | . . . 4 ⊢ 𝑃 = (𝐺dProj𝑆) | |
| 4 | eqid 2733 | . . . 4 ⊢ (proj1‘𝐺) = (proj1‘𝐺) | |
| 5 | dpjlid.3 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐼) | |
| 6 | 1, 2, 3, 4, 5 | dpjval 19978 | . . 3 ⊢ (𝜑 → (𝑃‘𝑋) = ((𝑆‘𝑋)(proj1‘𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))))) |
| 7 | 6 | fveq1d 6833 | . 2 ⊢ (𝜑 → ((𝑃‘𝑋)‘𝐴) = (((𝑆‘𝑋)(proj1‘𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))))‘𝐴)) |
| 8 | dpjlid.4 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (𝑆‘𝑋)) | |
| 9 | eqid 2733 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 10 | eqid 2733 | . . . 4 ⊢ (LSSum‘𝐺) = (LSSum‘𝐺) | |
| 11 | eqid 2733 | . . . 4 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 12 | eqid 2733 | . . . 4 ⊢ (Cntz‘𝐺) = (Cntz‘𝐺) | |
| 13 | 1, 2 | dprdf2 19929 | . . . . 5 ⊢ (𝜑 → 𝑆:𝐼⟶(SubGrp‘𝐺)) |
| 14 | 13, 5 | ffvelcdmd 7027 | . . . 4 ⊢ (𝜑 → (𝑆‘𝑋) ∈ (SubGrp‘𝐺)) |
| 15 | difssd 4086 | . . . . . . 7 ⊢ (𝜑 → (𝐼 ∖ {𝑋}) ⊆ 𝐼) | |
| 16 | 1, 2, 15 | dprdres 19950 | . . . . . 6 ⊢ (𝜑 → (𝐺dom DProd (𝑆 ↾ (𝐼 ∖ {𝑋})) ∧ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))) ⊆ (𝐺 DProd 𝑆))) |
| 17 | 16 | simpld 494 | . . . . 5 ⊢ (𝜑 → 𝐺dom DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))) |
| 18 | dprdsubg 19946 | . . . . 5 ⊢ (𝐺dom DProd (𝑆 ↾ (𝐼 ∖ {𝑋})) → (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))) ∈ (SubGrp‘𝐺)) | |
| 19 | 17, 18 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))) ∈ (SubGrp‘𝐺)) |
| 20 | 1, 2, 5, 11 | dpjdisj 19975 | . . . 4 ⊢ (𝜑 → ((𝑆‘𝑋) ∩ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋})))) = {(0g‘𝐺)}) |
| 21 | 1, 2, 5, 12 | dpjcntz 19974 | . . . 4 ⊢ (𝜑 → (𝑆‘𝑋) ⊆ ((Cntz‘𝐺)‘(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))))) |
| 22 | 9, 10, 11, 12, 14, 19, 20, 21, 4 | pj1lid 19621 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ (𝑆‘𝑋)) → (((𝑆‘𝑋)(proj1‘𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))))‘𝐴) = 𝐴) |
| 23 | 8, 22 | mpdan 687 | . 2 ⊢ (𝜑 → (((𝑆‘𝑋)(proj1‘𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))))‘𝐴) = 𝐴) |
| 24 | 7, 23 | eqtrd 2768 | 1 ⊢ (𝜑 → ((𝑃‘𝑋)‘𝐴) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ∖ cdif 3895 ⊆ wss 3898 {csn 4577 class class class wbr 5095 dom cdm 5621 ↾ cres 5623 ‘cfv 6489 (class class class)co 7355 +gcplusg 17168 0gc0g 17350 SubGrpcsubg 19041 Cntzccntz 19235 LSSumclsm 19554 proj1cpj1 19555 DProd cdprd 19915 dProjcdpj 19916 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-iin 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-isom 6498 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-of 7619 df-om 7806 df-1st 7930 df-2nd 7931 df-supp 8100 df-tpos 8165 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-2o 8395 df-er 8631 df-map 8761 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9257 df-oi 9407 df-card 9843 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-2 12199 df-n0 12393 df-z 12480 df-uz 12743 df-fz 13415 df-fzo 13562 df-seq 13916 df-hash 14245 df-sets 17082 df-slot 17100 df-ndx 17112 df-base 17128 df-ress 17149 df-plusg 17181 df-0g 17352 df-gsum 17353 df-mre 17496 df-mrc 17497 df-acs 17499 df-mgm 18556 df-sgrp 18635 df-mnd 18651 df-mhm 18699 df-submnd 18700 df-grp 18857 df-minusg 18858 df-sbg 18859 df-mulg 18989 df-subg 19044 df-ghm 19133 df-gim 19179 df-cntz 19237 df-oppg 19266 df-lsm 19556 df-pj1 19557 df-cmn 19702 df-dprd 19917 df-dpj 19918 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |