MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dpjlid Structured version   Visualization version   GIF version

Theorem dpjlid 19993
Description: The 𝑋-th index projection acts as the identity on elements of the 𝑋-th factor. (Contributed by Mario Carneiro, 26-Apr-2016.)
Hypotheses
Ref Expression
dpjfval.1 (𝜑𝐺dom DProd 𝑆)
dpjfval.2 (𝜑 → dom 𝑆 = 𝐼)
dpjfval.p 𝑃 = (𝐺dProj𝑆)
dpjlid.3 (𝜑𝑋𝐼)
dpjlid.4 (𝜑𝐴 ∈ (𝑆𝑋))
Assertion
Ref Expression
dpjlid (𝜑 → ((𝑃𝑋)‘𝐴) = 𝐴)

Proof of Theorem dpjlid
StepHypRef Expression
1 dpjfval.1 . . . 4 (𝜑𝐺dom DProd 𝑆)
2 dpjfval.2 . . . 4 (𝜑 → dom 𝑆 = 𝐼)
3 dpjfval.p . . . 4 𝑃 = (𝐺dProj𝑆)
4 eqid 2729 . . . 4 (proj1𝐺) = (proj1𝐺)
5 dpjlid.3 . . . 4 (𝜑𝑋𝐼)
61, 2, 3, 4, 5dpjval 19988 . . 3 (𝜑 → (𝑃𝑋) = ((𝑆𝑋)(proj1𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋})))))
76fveq1d 6860 . 2 (𝜑 → ((𝑃𝑋)‘𝐴) = (((𝑆𝑋)(proj1𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))))‘𝐴))
8 dpjlid.4 . . 3 (𝜑𝐴 ∈ (𝑆𝑋))
9 eqid 2729 . . . 4 (+g𝐺) = (+g𝐺)
10 eqid 2729 . . . 4 (LSSum‘𝐺) = (LSSum‘𝐺)
11 eqid 2729 . . . 4 (0g𝐺) = (0g𝐺)
12 eqid 2729 . . . 4 (Cntz‘𝐺) = (Cntz‘𝐺)
131, 2dprdf2 19939 . . . . 5 (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))
1413, 5ffvelcdmd 7057 . . . 4 (𝜑 → (𝑆𝑋) ∈ (SubGrp‘𝐺))
15 difssd 4100 . . . . . . 7 (𝜑 → (𝐼 ∖ {𝑋}) ⊆ 𝐼)
161, 2, 15dprdres 19960 . . . . . 6 (𝜑 → (𝐺dom DProd (𝑆 ↾ (𝐼 ∖ {𝑋})) ∧ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))) ⊆ (𝐺 DProd 𝑆)))
1716simpld 494 . . . . 5 (𝜑𝐺dom DProd (𝑆 ↾ (𝐼 ∖ {𝑋})))
18 dprdsubg 19956 . . . . 5 (𝐺dom DProd (𝑆 ↾ (𝐼 ∖ {𝑋})) → (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))) ∈ (SubGrp‘𝐺))
1917, 18syl 17 . . . 4 (𝜑 → (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))) ∈ (SubGrp‘𝐺))
201, 2, 5, 11dpjdisj 19985 . . . 4 (𝜑 → ((𝑆𝑋) ∩ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋})))) = {(0g𝐺)})
211, 2, 5, 12dpjcntz 19984 . . . 4 (𝜑 → (𝑆𝑋) ⊆ ((Cntz‘𝐺)‘(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋})))))
229, 10, 11, 12, 14, 19, 20, 21, 4pj1lid 19631 . . 3 ((𝜑𝐴 ∈ (𝑆𝑋)) → (((𝑆𝑋)(proj1𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))))‘𝐴) = 𝐴)
238, 22mpdan 687 . 2 (𝜑 → (((𝑆𝑋)(proj1𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))))‘𝐴) = 𝐴)
247, 23eqtrd 2764 1 (𝜑 → ((𝑃𝑋)‘𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cdif 3911  wss 3914  {csn 4589   class class class wbr 5107  dom cdm 5638  cres 5640  cfv 6511  (class class class)co 7387  +gcplusg 17220  0gc0g 17402  SubGrpcsubg 19052  Cntzccntz 19247  LSSumclsm 19564  proj1cpj1 19565   DProd cdprd 19925  dProjcdpj 19926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-fzo 13616  df-seq 13967  df-hash 14296  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-0g 17404  df-gsum 17405  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-mulg 19000  df-subg 19055  df-ghm 19145  df-gim 19191  df-cntz 19249  df-oppg 19278  df-lsm 19566  df-pj1 19567  df-cmn 19712  df-dprd 19927  df-dpj 19928
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator