| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dpjlid | Structured version Visualization version GIF version | ||
| Description: The 𝑋-th index projection acts as the identity on elements of the 𝑋-th factor. (Contributed by Mario Carneiro, 26-Apr-2016.) |
| Ref | Expression |
|---|---|
| dpjfval.1 | ⊢ (𝜑 → 𝐺dom DProd 𝑆) |
| dpjfval.2 | ⊢ (𝜑 → dom 𝑆 = 𝐼) |
| dpjfval.p | ⊢ 𝑃 = (𝐺dProj𝑆) |
| dpjlid.3 | ⊢ (𝜑 → 𝑋 ∈ 𝐼) |
| dpjlid.4 | ⊢ (𝜑 → 𝐴 ∈ (𝑆‘𝑋)) |
| Ref | Expression |
|---|---|
| dpjlid | ⊢ (𝜑 → ((𝑃‘𝑋)‘𝐴) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dpjfval.1 | . . . 4 ⊢ (𝜑 → 𝐺dom DProd 𝑆) | |
| 2 | dpjfval.2 | . . . 4 ⊢ (𝜑 → dom 𝑆 = 𝐼) | |
| 3 | dpjfval.p | . . . 4 ⊢ 𝑃 = (𝐺dProj𝑆) | |
| 4 | eqid 2729 | . . . 4 ⊢ (proj1‘𝐺) = (proj1‘𝐺) | |
| 5 | dpjlid.3 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐼) | |
| 6 | 1, 2, 3, 4, 5 | dpjval 19964 | . . 3 ⊢ (𝜑 → (𝑃‘𝑋) = ((𝑆‘𝑋)(proj1‘𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))))) |
| 7 | 6 | fveq1d 6842 | . 2 ⊢ (𝜑 → ((𝑃‘𝑋)‘𝐴) = (((𝑆‘𝑋)(proj1‘𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))))‘𝐴)) |
| 8 | dpjlid.4 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (𝑆‘𝑋)) | |
| 9 | eqid 2729 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 10 | eqid 2729 | . . . 4 ⊢ (LSSum‘𝐺) = (LSSum‘𝐺) | |
| 11 | eqid 2729 | . . . 4 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 12 | eqid 2729 | . . . 4 ⊢ (Cntz‘𝐺) = (Cntz‘𝐺) | |
| 13 | 1, 2 | dprdf2 19915 | . . . . 5 ⊢ (𝜑 → 𝑆:𝐼⟶(SubGrp‘𝐺)) |
| 14 | 13, 5 | ffvelcdmd 7039 | . . . 4 ⊢ (𝜑 → (𝑆‘𝑋) ∈ (SubGrp‘𝐺)) |
| 15 | difssd 4096 | . . . . . . 7 ⊢ (𝜑 → (𝐼 ∖ {𝑋}) ⊆ 𝐼) | |
| 16 | 1, 2, 15 | dprdres 19936 | . . . . . 6 ⊢ (𝜑 → (𝐺dom DProd (𝑆 ↾ (𝐼 ∖ {𝑋})) ∧ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))) ⊆ (𝐺 DProd 𝑆))) |
| 17 | 16 | simpld 494 | . . . . 5 ⊢ (𝜑 → 𝐺dom DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))) |
| 18 | dprdsubg 19932 | . . . . 5 ⊢ (𝐺dom DProd (𝑆 ↾ (𝐼 ∖ {𝑋})) → (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))) ∈ (SubGrp‘𝐺)) | |
| 19 | 17, 18 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))) ∈ (SubGrp‘𝐺)) |
| 20 | 1, 2, 5, 11 | dpjdisj 19961 | . . . 4 ⊢ (𝜑 → ((𝑆‘𝑋) ∩ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋})))) = {(0g‘𝐺)}) |
| 21 | 1, 2, 5, 12 | dpjcntz 19960 | . . . 4 ⊢ (𝜑 → (𝑆‘𝑋) ⊆ ((Cntz‘𝐺)‘(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))))) |
| 22 | 9, 10, 11, 12, 14, 19, 20, 21, 4 | pj1lid 19607 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ (𝑆‘𝑋)) → (((𝑆‘𝑋)(proj1‘𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))))‘𝐴) = 𝐴) |
| 23 | 8, 22 | mpdan 687 | . 2 ⊢ (𝜑 → (((𝑆‘𝑋)(proj1‘𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))))‘𝐴) = 𝐴) |
| 24 | 7, 23 | eqtrd 2764 | 1 ⊢ (𝜑 → ((𝑃‘𝑋)‘𝐴) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∖ cdif 3908 ⊆ wss 3911 {csn 4585 class class class wbr 5102 dom cdm 5631 ↾ cres 5633 ‘cfv 6499 (class class class)co 7369 +gcplusg 17196 0gc0g 17378 SubGrpcsubg 19028 Cntzccntz 19223 LSSumclsm 19540 proj1cpj1 19541 DProd cdprd 19901 dProjcdpj 19902 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-tpos 8182 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-map 8778 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-oi 9439 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-n0 12419 df-z 12506 df-uz 12770 df-fz 13445 df-fzo 13592 df-seq 13943 df-hash 14272 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-0g 17380 df-gsum 17381 df-mre 17523 df-mrc 17524 df-acs 17526 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-mhm 18686 df-submnd 18687 df-grp 18844 df-minusg 18845 df-sbg 18846 df-mulg 18976 df-subg 19031 df-ghm 19121 df-gim 19167 df-cntz 19225 df-oppg 19254 df-lsm 19542 df-pj1 19543 df-cmn 19688 df-dprd 19903 df-dpj 19904 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |