MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dpjlid Structured version   Visualization version   GIF version

Theorem dpjlid 19662
Description: The 𝑋-th index projection acts as the identity on elements of the 𝑋-th factor. (Contributed by Mario Carneiro, 26-Apr-2016.)
Hypotheses
Ref Expression
dpjfval.1 (𝜑𝐺dom DProd 𝑆)
dpjfval.2 (𝜑 → dom 𝑆 = 𝐼)
dpjfval.p 𝑃 = (𝐺dProj𝑆)
dpjlid.3 (𝜑𝑋𝐼)
dpjlid.4 (𝜑𝐴 ∈ (𝑆𝑋))
Assertion
Ref Expression
dpjlid (𝜑 → ((𝑃𝑋)‘𝐴) = 𝐴)

Proof of Theorem dpjlid
StepHypRef Expression
1 dpjfval.1 . . . 4 (𝜑𝐺dom DProd 𝑆)
2 dpjfval.2 . . . 4 (𝜑 → dom 𝑆 = 𝐼)
3 dpjfval.p . . . 4 𝑃 = (𝐺dProj𝑆)
4 eqid 2740 . . . 4 (proj1𝐺) = (proj1𝐺)
5 dpjlid.3 . . . 4 (𝜑𝑋𝐼)
61, 2, 3, 4, 5dpjval 19657 . . 3 (𝜑 → (𝑃𝑋) = ((𝑆𝑋)(proj1𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋})))))
76fveq1d 6773 . 2 (𝜑 → ((𝑃𝑋)‘𝐴) = (((𝑆𝑋)(proj1𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))))‘𝐴))
8 dpjlid.4 . . 3 (𝜑𝐴 ∈ (𝑆𝑋))
9 eqid 2740 . . . 4 (+g𝐺) = (+g𝐺)
10 eqid 2740 . . . 4 (LSSum‘𝐺) = (LSSum‘𝐺)
11 eqid 2740 . . . 4 (0g𝐺) = (0g𝐺)
12 eqid 2740 . . . 4 (Cntz‘𝐺) = (Cntz‘𝐺)
131, 2dprdf2 19608 . . . . 5 (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))
1413, 5ffvelrnd 6959 . . . 4 (𝜑 → (𝑆𝑋) ∈ (SubGrp‘𝐺))
15 difssd 4072 . . . . . . 7 (𝜑 → (𝐼 ∖ {𝑋}) ⊆ 𝐼)
161, 2, 15dprdres 19629 . . . . . 6 (𝜑 → (𝐺dom DProd (𝑆 ↾ (𝐼 ∖ {𝑋})) ∧ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))) ⊆ (𝐺 DProd 𝑆)))
1716simpld 495 . . . . 5 (𝜑𝐺dom DProd (𝑆 ↾ (𝐼 ∖ {𝑋})))
18 dprdsubg 19625 . . . . 5 (𝐺dom DProd (𝑆 ↾ (𝐼 ∖ {𝑋})) → (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))) ∈ (SubGrp‘𝐺))
1917, 18syl 17 . . . 4 (𝜑 → (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))) ∈ (SubGrp‘𝐺))
201, 2, 5, 11dpjdisj 19654 . . . 4 (𝜑 → ((𝑆𝑋) ∩ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋})))) = {(0g𝐺)})
211, 2, 5, 12dpjcntz 19653 . . . 4 (𝜑 → (𝑆𝑋) ⊆ ((Cntz‘𝐺)‘(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋})))))
229, 10, 11, 12, 14, 19, 20, 21, 4pj1lid 19305 . . 3 ((𝜑𝐴 ∈ (𝑆𝑋)) → (((𝑆𝑋)(proj1𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))))‘𝐴) = 𝐴)
238, 22mpdan 684 . 2 (𝜑 → (((𝑆𝑋)(proj1𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))))‘𝐴) = 𝐴)
247, 23eqtrd 2780 1 (𝜑 → ((𝑃𝑋)‘𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2110  cdif 3889  wss 3892  {csn 4567   class class class wbr 5079  dom cdm 5590  cres 5592  cfv 6432  (class class class)co 7271  +gcplusg 16960  0gc0g 17148  SubGrpcsubg 18747  Cntzccntz 18919  LSSumclsm 19237  proj1cpj1 19238   DProd cdprd 19594  dProjcdpj 19595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-iin 4933  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-isom 6441  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-of 7527  df-om 7707  df-1st 7824  df-2nd 7825  df-supp 7969  df-tpos 8033  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-1o 8288  df-er 8481  df-map 8600  df-ixp 8669  df-en 8717  df-dom 8718  df-sdom 8719  df-fin 8720  df-fsupp 9107  df-oi 9247  df-card 9698  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12582  df-fz 13239  df-fzo 13382  df-seq 13720  df-hash 14043  df-sets 16863  df-slot 16881  df-ndx 16893  df-base 16911  df-ress 16940  df-plusg 16973  df-0g 17150  df-gsum 17151  df-mre 17293  df-mrc 17294  df-acs 17296  df-mgm 18324  df-sgrp 18373  df-mnd 18384  df-mhm 18428  df-submnd 18429  df-grp 18578  df-minusg 18579  df-sbg 18580  df-mulg 18699  df-subg 18750  df-ghm 18830  df-gim 18873  df-cntz 18921  df-oppg 18948  df-lsm 19239  df-pj1 19240  df-cmn 19386  df-dprd 19596  df-dpj 19597
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator