MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eengstr Structured version   Visualization version   GIF version

Theorem eengstr 26217
Description: The Euclidean geometry as a structure. (Contributed by Thierry Arnoux, 15-Mar-2019.)
Assertion
Ref Expression
eengstr (𝑁 ∈ ℕ → (EEG‘𝑁) Struct ⟨1, 17⟩)

Proof of Theorem eengstr
Dummy variables 𝑖 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eengv 26216 . 2 (𝑁 ∈ ℕ → (EEG‘𝑁) = ({⟨(Base‘ndx), (𝔼‘𝑁)⟩, ⟨(dist‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥𝑖) − (𝑦𝑖))↑2))⟩} ∪ {⟨(Itv‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn ⟨𝑥, 𝑦⟩})⟩, ⟨(LineG‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn ⟨𝑥, 𝑦⟩ ∨ 𝑥 Btwn ⟨𝑧, 𝑦⟩ ∨ 𝑦 Btwn ⟨𝑥, 𝑧⟩)})⟩}))
2 1nn 11325 . . . 4 1 ∈ ℕ
3 basendx 16248 . . . 4 (Base‘ndx) = 1
4 2nn0 11599 . . . . 5 2 ∈ ℕ0
5 1nn0 11598 . . . . 5 1 ∈ ℕ0
6 1lt10 11924 . . . . 5 1 < 10
72, 4, 5, 6declti 11822 . . . 4 1 < 12
8 2nn 11386 . . . . 5 2 ∈ ℕ
95, 8decnncl 11804 . . . 4 12 ∈ ℕ
10 dsndx 16377 . . . 4 (dist‘ndx) = 12
112, 3, 7, 9, 10strle2 16295 . . 3 {⟨(Base‘ndx), (𝔼‘𝑁)⟩, ⟨(dist‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥𝑖) − (𝑦𝑖))↑2))⟩} Struct ⟨1, 12⟩
12 6nn 11405 . . . . 5 6 ∈ ℕ
135, 12decnncl 11804 . . . 4 16 ∈ ℕ
14 itvndx 25691 . . . 4 (Itv‘ndx) = 16
15 6nn0 11603 . . . . 5 6 ∈ ℕ0
16 7nn 11409 . . . . 5 7 ∈ ℕ
17 6lt7 11506 . . . . 5 6 < 7
185, 15, 16, 17declt 11812 . . . 4 16 < 17
195, 16decnncl 11804 . . . 4 17 ∈ ℕ
20 lngndx 25692 . . . 4 (LineG‘ndx) = 17
2113, 14, 18, 19, 20strle2 16295 . . 3 {⟨(Itv‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn ⟨𝑥, 𝑦⟩})⟩, ⟨(LineG‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn ⟨𝑥, 𝑦⟩ ∨ 𝑥 Btwn ⟨𝑧, 𝑦⟩ ∨ 𝑦 Btwn ⟨𝑥, 𝑧⟩)})⟩} Struct ⟨16, 17⟩
22 2lt6 11504 . . . 4 2 < 6
235, 4, 12, 22declt 11812 . . 3 12 < 16
2411, 21, 23strleun 16293 . 2 ({⟨(Base‘ndx), (𝔼‘𝑁)⟩, ⟨(dist‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥𝑖) − (𝑦𝑖))↑2))⟩} ∪ {⟨(Itv‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn ⟨𝑥, 𝑦⟩})⟩, ⟨(LineG‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn ⟨𝑥, 𝑦⟩ ∨ 𝑥 Btwn ⟨𝑧, 𝑦⟩ ∨ 𝑦 Btwn ⟨𝑥, 𝑧⟩)})⟩}) Struct ⟨1, 17⟩
251, 24syl6eqbr 4882 1 (𝑁 ∈ ℕ → (EEG‘𝑁) Struct ⟨1, 17⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3o 1107  wcel 2157  {crab 3093  cdif 3766  cun 3767  {csn 4368  {cpr 4370  cop 4374   class class class wbr 4843  cfv 6101  (class class class)co 6878  cmpt2 6880  1c1 10225  cmin 10556  cn 11312  2c2 11368  6c6 11372  7c7 11373  cdc 11783  ...cfz 12580  cexp 13114  Σcsu 14757   Struct cstr 16180  ndxcnx 16181  Basecbs 16184  distcds 16276  Itvcitv 25687  LineGclng 25688  𝔼cee 26125   Btwn cbtwn 26126  EEGceeng 26214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-int 4668  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-om 7300  df-1st 7401  df-2nd 7402  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-1o 7799  df-oadd 7803  df-er 7982  df-en 8196  df-dom 8197  df-sdom 8198  df-fin 8199  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-nn 11313  df-2 11376  df-3 11377  df-4 11378  df-5 11379  df-6 11380  df-7 11381  df-8 11382  df-9 11383  df-n0 11581  df-z 11667  df-dec 11784  df-uz 11931  df-fz 12581  df-seq 13056  df-sum 14758  df-struct 16186  df-ndx 16187  df-slot 16188  df-base 16190  df-ds 16289  df-itv 25689  df-lng 25690  df-eeng 26215
This theorem is referenced by:  eengbas  26218  ebtwntg  26219  ecgrtg  26220  elntg  26221
  Copyright terms: Public domain W3C validator