MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eengstr Structured version   Visualization version   GIF version

Theorem eengstr 26768
Description: The Euclidean geometry as a structure. (Contributed by Thierry Arnoux, 15-Mar-2019.)
Assertion
Ref Expression
eengstr (𝑁 ∈ ℕ → (EEG‘𝑁) Struct ⟨1, 17⟩)

Proof of Theorem eengstr
Dummy variables 𝑖 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eengv 26767 . 2 (𝑁 ∈ ℕ → (EEG‘𝑁) = ({⟨(Base‘ndx), (𝔼‘𝑁)⟩, ⟨(dist‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥𝑖) − (𝑦𝑖))↑2))⟩} ∪ {⟨(Itv‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn ⟨𝑥, 𝑦⟩})⟩, ⟨(LineG‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn ⟨𝑥, 𝑦⟩ ∨ 𝑥 Btwn ⟨𝑧, 𝑦⟩ ∨ 𝑦 Btwn ⟨𝑥, 𝑧⟩)})⟩}))
2 1nn 11651 . . . 4 1 ∈ ℕ
3 basendx 16549 . . . 4 (Base‘ndx) = 1
4 2nn0 11917 . . . . 5 2 ∈ ℕ0
5 1nn0 11916 . . . . 5 1 ∈ ℕ0
6 1lt10 12240 . . . . 5 1 < 10
72, 4, 5, 6declti 12139 . . . 4 1 < 12
8 2nn 11713 . . . . 5 2 ∈ ℕ
95, 8decnncl 12121 . . . 4 12 ∈ ℕ
10 dsndx 16677 . . . 4 (dist‘ndx) = 12
112, 3, 7, 9, 10strle2 16595 . . 3 {⟨(Base‘ndx), (𝔼‘𝑁)⟩, ⟨(dist‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥𝑖) − (𝑦𝑖))↑2))⟩} Struct ⟨1, 12⟩
12 6nn 11729 . . . . 5 6 ∈ ℕ
135, 12decnncl 12121 . . . 4 16 ∈ ℕ
14 itvndx 26228 . . . 4 (Itv‘ndx) = 16
15 6nn0 11921 . . . . 5 6 ∈ ℕ0
16 7nn 11732 . . . . 5 7 ∈ ℕ
17 6lt7 11826 . . . . 5 6 < 7
185, 15, 16, 17declt 12129 . . . 4 16 < 17
195, 16decnncl 12121 . . . 4 17 ∈ ℕ
20 lngndx 26229 . . . 4 (LineG‘ndx) = 17
2113, 14, 18, 19, 20strle2 16595 . . 3 {⟨(Itv‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn ⟨𝑥, 𝑦⟩})⟩, ⟨(LineG‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn ⟨𝑥, 𝑦⟩ ∨ 𝑥 Btwn ⟨𝑧, 𝑦⟩ ∨ 𝑦 Btwn ⟨𝑥, 𝑧⟩)})⟩} Struct ⟨16, 17⟩
22 2lt6 11824 . . . 4 2 < 6
235, 4, 12, 22declt 12129 . . 3 12 < 16
2411, 21, 23strleun 16593 . 2 ({⟨(Base‘ndx), (𝔼‘𝑁)⟩, ⟨(dist‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥𝑖) − (𝑦𝑖))↑2))⟩} ∪ {⟨(Itv‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn ⟨𝑥, 𝑦⟩})⟩, ⟨(LineG‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn ⟨𝑥, 𝑦⟩ ∨ 𝑥 Btwn ⟨𝑧, 𝑦⟩ ∨ 𝑦 Btwn ⟨𝑥, 𝑧⟩)})⟩}) Struct ⟨1, 17⟩
251, 24eqbrtrdi 5107 1 (𝑁 ∈ ℕ → (EEG‘𝑁) Struct ⟨1, 17⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3o 1082  wcel 2114  {crab 3144  cdif 3935  cun 3936  {csn 4569  {cpr 4571  cop 4575   class class class wbr 5068  cfv 6357  (class class class)co 7158  cmpo 7160  1c1 10540  cmin 10872  cn 11640  2c2 11695  6c6 11699  7c7 11700  cdc 12101  ...cfz 12895  cexp 13432  Σcsu 15044   Struct cstr 16481  ndxcnx 16482  Basecbs 16485  distcds 16576  Itvcitv 26224  LineGclng 26225  𝔼cee 26676   Btwn cbtwn 26677  EEGceeng 26765
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-fz 12896  df-seq 13373  df-sum 15045  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-ds 16589  df-itv 26226  df-lng 26227  df-eeng 26766
This theorem is referenced by:  eengbas  26769  ebtwntg  26770  ecgrtg  26771  elntg  26772
  Copyright terms: Public domain W3C validator