| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eengstr | Structured version Visualization version GIF version | ||
| Description: The Euclidean geometry as a structure. (Contributed by Thierry Arnoux, 15-Mar-2019.) |
| Ref | Expression |
|---|---|
| eengstr | ⊢ (𝑁 ∈ ℕ → (EEG‘𝑁) Struct 〈1, ;17〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eengv 28942 | . 2 ⊢ (𝑁 ∈ ℕ → (EEG‘𝑁) = ({〈(Base‘ndx), (𝔼‘𝑁)〉, 〈(dist‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥‘𝑖) − (𝑦‘𝑖))↑2))〉} ∪ {〈(Itv‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn 〈𝑥, 𝑦〉})〉, 〈(LineG‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn 〈𝑥, 𝑦〉 ∨ 𝑥 Btwn 〈𝑧, 𝑦〉 ∨ 𝑦 Btwn 〈𝑥, 𝑧〉)})〉})) | |
| 2 | 1nn 12157 | . . . 4 ⊢ 1 ∈ ℕ | |
| 3 | basendx 17147 | . . . 4 ⊢ (Base‘ndx) = 1 | |
| 4 | 2nn0 12419 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
| 5 | 1nn0 12418 | . . . . 5 ⊢ 1 ∈ ℕ0 | |
| 6 | 1lt10 12748 | . . . . 5 ⊢ 1 < ;10 | |
| 7 | 2, 4, 5, 6 | declti 12647 | . . . 4 ⊢ 1 < ;12 |
| 8 | 2nn 12219 | . . . . 5 ⊢ 2 ∈ ℕ | |
| 9 | 5, 8 | decnncl 12629 | . . . 4 ⊢ ;12 ∈ ℕ |
| 10 | dsndx 17307 | . . . 4 ⊢ (dist‘ndx) = ;12 | |
| 11 | 2, 3, 7, 9, 10 | strle2 17088 | . . 3 ⊢ {〈(Base‘ndx), (𝔼‘𝑁)〉, 〈(dist‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥‘𝑖) − (𝑦‘𝑖))↑2))〉} Struct 〈1, ;12〉 |
| 12 | 6nn 12235 | . . . . 5 ⊢ 6 ∈ ℕ | |
| 13 | 5, 12 | decnncl 12629 | . . . 4 ⊢ ;16 ∈ ℕ |
| 14 | itvndx 28400 | . . . 4 ⊢ (Itv‘ndx) = ;16 | |
| 15 | 6nn0 12423 | . . . . 5 ⊢ 6 ∈ ℕ0 | |
| 16 | 7nn 12238 | . . . . 5 ⊢ 7 ∈ ℕ | |
| 17 | 6lt7 12327 | . . . . 5 ⊢ 6 < 7 | |
| 18 | 5, 15, 16, 17 | declt 12637 | . . . 4 ⊢ ;16 < ;17 |
| 19 | 5, 16 | decnncl 12629 | . . . 4 ⊢ ;17 ∈ ℕ |
| 20 | lngndx 28401 | . . . 4 ⊢ (LineG‘ndx) = ;17 | |
| 21 | 13, 14, 18, 19, 20 | strle2 17088 | . . 3 ⊢ {〈(Itv‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn 〈𝑥, 𝑦〉})〉, 〈(LineG‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn 〈𝑥, 𝑦〉 ∨ 𝑥 Btwn 〈𝑧, 𝑦〉 ∨ 𝑦 Btwn 〈𝑥, 𝑧〉)})〉} Struct 〈;16, ;17〉 |
| 22 | 2lt6 12325 | . . . 4 ⊢ 2 < 6 | |
| 23 | 5, 4, 12, 22 | declt 12637 | . . 3 ⊢ ;12 < ;16 |
| 24 | 11, 21, 23 | strleun 17086 | . 2 ⊢ ({〈(Base‘ndx), (𝔼‘𝑁)〉, 〈(dist‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥‘𝑖) − (𝑦‘𝑖))↑2))〉} ∪ {〈(Itv‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn 〈𝑥, 𝑦〉})〉, 〈(LineG‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn 〈𝑥, 𝑦〉 ∨ 𝑥 Btwn 〈𝑧, 𝑦〉 ∨ 𝑦 Btwn 〈𝑥, 𝑧〉)})〉}) Struct 〈1, ;17〉 |
| 25 | 1, 24 | eqbrtrdi 5134 | 1 ⊢ (𝑁 ∈ ℕ → (EEG‘𝑁) Struct 〈1, ;17〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ w3o 1085 ∈ wcel 2109 {crab 3396 ∖ cdif 3902 ∪ cun 3903 {csn 4579 {cpr 4581 〈cop 4585 class class class wbr 5095 ‘cfv 6486 (class class class)co 7353 ∈ cmpo 7355 1c1 11029 − cmin 11365 ℕcn 12146 2c2 12201 6c6 12205 7c7 12206 ;cdc 12609 ...cfz 13428 ↑cexp 13986 Σcsu 15611 Struct cstr 17075 ndxcnx 17122 Basecbs 17138 distcds 17188 Itvcitv 28396 LineGclng 28397 𝔼cee 28851 Btwn cbtwn 28852 EEGceeng 28940 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-fz 13429 df-seq 13927 df-sum 15612 df-struct 17076 df-slot 17111 df-ndx 17123 df-base 17139 df-ds 17201 df-itv 28398 df-lng 28399 df-eeng 28941 |
| This theorem is referenced by: eengbas 28944 ebtwntg 28945 ecgrtg 28946 elntg 28947 |
| Copyright terms: Public domain | W3C validator |