Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eengstr | Structured version Visualization version GIF version |
Description: The Euclidean geometry as a structure. (Contributed by Thierry Arnoux, 15-Mar-2019.) |
Ref | Expression |
---|---|
eengstr | ⊢ (𝑁 ∈ ℕ → (EEG‘𝑁) Struct 〈1, ;17〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eengv 27101 | . 2 ⊢ (𝑁 ∈ ℕ → (EEG‘𝑁) = ({〈(Base‘ndx), (𝔼‘𝑁)〉, 〈(dist‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥‘𝑖) − (𝑦‘𝑖))↑2))〉} ∪ {〈(Itv‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn 〈𝑥, 𝑦〉})〉, 〈(LineG‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn 〈𝑥, 𝑦〉 ∨ 𝑥 Btwn 〈𝑧, 𝑦〉 ∨ 𝑦 Btwn 〈𝑥, 𝑧〉)})〉})) | |
2 | 1nn 11870 | . . . 4 ⊢ 1 ∈ ℕ | |
3 | basendx 16801 | . . . 4 ⊢ (Base‘ndx) = 1 | |
4 | 2nn0 12136 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
5 | 1nn0 12135 | . . . . 5 ⊢ 1 ∈ ℕ0 | |
6 | 1lt10 12461 | . . . . 5 ⊢ 1 < ;10 | |
7 | 2, 4, 5, 6 | declti 12360 | . . . 4 ⊢ 1 < ;12 |
8 | 2nn 11932 | . . . . 5 ⊢ 2 ∈ ℕ | |
9 | 5, 8 | decnncl 12342 | . . . 4 ⊢ ;12 ∈ ℕ |
10 | dsndx 16935 | . . . 4 ⊢ (dist‘ndx) = ;12 | |
11 | 2, 3, 7, 9, 10 | strle2 16744 | . . 3 ⊢ {〈(Base‘ndx), (𝔼‘𝑁)〉, 〈(dist‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥‘𝑖) − (𝑦‘𝑖))↑2))〉} Struct 〈1, ;12〉 |
12 | 6nn 11948 | . . . . 5 ⊢ 6 ∈ ℕ | |
13 | 5, 12 | decnncl 12342 | . . . 4 ⊢ ;16 ∈ ℕ |
14 | itvndx 26562 | . . . 4 ⊢ (Itv‘ndx) = ;16 | |
15 | 6nn0 12140 | . . . . 5 ⊢ 6 ∈ ℕ0 | |
16 | 7nn 11951 | . . . . 5 ⊢ 7 ∈ ℕ | |
17 | 6lt7 12045 | . . . . 5 ⊢ 6 < 7 | |
18 | 5, 15, 16, 17 | declt 12350 | . . . 4 ⊢ ;16 < ;17 |
19 | 5, 16 | decnncl 12342 | . . . 4 ⊢ ;17 ∈ ℕ |
20 | lngndx 26563 | . . . 4 ⊢ (LineG‘ndx) = ;17 | |
21 | 13, 14, 18, 19, 20 | strle2 16744 | . . 3 ⊢ {〈(Itv‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn 〈𝑥, 𝑦〉})〉, 〈(LineG‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn 〈𝑥, 𝑦〉 ∨ 𝑥 Btwn 〈𝑧, 𝑦〉 ∨ 𝑦 Btwn 〈𝑥, 𝑧〉)})〉} Struct 〈;16, ;17〉 |
22 | 2lt6 12043 | . . . 4 ⊢ 2 < 6 | |
23 | 5, 4, 12, 22 | declt 12350 | . . 3 ⊢ ;12 < ;16 |
24 | 11, 21, 23 | strleun 16742 | . 2 ⊢ ({〈(Base‘ndx), (𝔼‘𝑁)〉, 〈(dist‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥‘𝑖) − (𝑦‘𝑖))↑2))〉} ∪ {〈(Itv‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn 〈𝑥, 𝑦〉})〉, 〈(LineG‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn 〈𝑥, 𝑦〉 ∨ 𝑥 Btwn 〈𝑧, 𝑦〉 ∨ 𝑦 Btwn 〈𝑥, 𝑧〉)})〉}) Struct 〈1, ;17〉 |
25 | 1, 24 | eqbrtrdi 5108 | 1 ⊢ (𝑁 ∈ ℕ → (EEG‘𝑁) Struct 〈1, ;17〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ w3o 1088 ∈ wcel 2112 {crab 3068 ∖ cdif 3880 ∪ cun 3881 {csn 4557 {cpr 4559 〈cop 4563 class class class wbr 5069 ‘cfv 6400 (class class class)co 7234 ∈ cmpo 7236 1c1 10759 − cmin 11091 ℕcn 11859 2c2 11914 6c6 11918 7c7 11919 ;cdc 12322 ...cfz 13124 ↑cexp 13666 Σcsu 15281 Struct cstr 16731 ndxcnx 16776 Basecbs 16792 distcds 16843 Itvcitv 26558 LineGclng 26559 𝔼cee 27010 Btwn cbtwn 27011 EEGceeng 27099 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-sep 5208 ax-nul 5215 ax-pow 5274 ax-pr 5338 ax-un 7544 ax-cnex 10814 ax-resscn 10815 ax-1cn 10816 ax-icn 10817 ax-addcl 10818 ax-addrcl 10819 ax-mulcl 10820 ax-mulrcl 10821 ax-mulcom 10822 ax-addass 10823 ax-mulass 10824 ax-distr 10825 ax-i2m1 10826 ax-1ne0 10827 ax-1rid 10828 ax-rnegex 10829 ax-rrecex 10830 ax-cnre 10831 ax-pre-lttri 10832 ax-pre-lttrn 10833 ax-pre-ltadd 10834 ax-pre-mulgt0 10835 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rab 3073 df-v 3425 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4456 df-pw 4531 df-sn 4558 df-pr 4560 df-tp 4562 df-op 4564 df-uni 4836 df-iun 4922 df-br 5070 df-opab 5132 df-mpt 5152 df-tr 5178 df-id 5471 df-eprel 5477 df-po 5485 df-so 5486 df-fr 5526 df-we 5528 df-xp 5574 df-rel 5575 df-cnv 5576 df-co 5577 df-dm 5578 df-rn 5579 df-res 5580 df-ima 5581 df-pred 6178 df-ord 6236 df-on 6237 df-lim 6238 df-suc 6239 df-iota 6358 df-fun 6402 df-fn 6403 df-f 6404 df-f1 6405 df-fo 6406 df-f1o 6407 df-fv 6408 df-riota 7191 df-ov 7237 df-oprab 7238 df-mpo 7239 df-om 7666 df-1st 7782 df-2nd 7783 df-wrecs 8070 df-recs 8131 df-rdg 8169 df-1o 8225 df-er 8414 df-en 8650 df-dom 8651 df-sdom 8652 df-fin 8653 df-pnf 10898 df-mnf 10899 df-xr 10900 df-ltxr 10901 df-le 10902 df-sub 11093 df-neg 11094 df-nn 11860 df-2 11922 df-3 11923 df-4 11924 df-5 11925 df-6 11926 df-7 11927 df-8 11928 df-9 11929 df-n0 12120 df-z 12206 df-dec 12323 df-uz 12468 df-fz 13125 df-seq 13606 df-sum 15282 df-struct 16732 df-slot 16767 df-ndx 16777 df-base 16793 df-ds 16856 df-itv 26560 df-lng 26561 df-eeng 27100 |
This theorem is referenced by: eengbas 27103 ebtwntg 27104 ecgrtg 27105 elntg 27106 |
Copyright terms: Public domain | W3C validator |