![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eengstr | Structured version Visualization version GIF version |
Description: The Euclidean geometry as a structure. (Contributed by Thierry Arnoux, 15-Mar-2019.) |
Ref | Expression |
---|---|
eengstr | β’ (π β β β (EEGβπ) Struct β¨1, ;17β©) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eengv 28234 | . 2 β’ (π β β β (EEGβπ) = ({β¨(Baseβndx), (πΌβπ)β©, β¨(distβndx), (π₯ β (πΌβπ), π¦ β (πΌβπ) β¦ Ξ£π β (1...π)(((π₯βπ) β (π¦βπ))β2))β©} βͺ {β¨(Itvβndx), (π₯ β (πΌβπ), π¦ β (πΌβπ) β¦ {π§ β (πΌβπ) β£ π§ Btwn β¨π₯, π¦β©})β©, β¨(LineGβndx), (π₯ β (πΌβπ), π¦ β ((πΌβπ) β {π₯}) β¦ {π§ β (πΌβπ) β£ (π§ Btwn β¨π₯, π¦β© β¨ π₯ Btwn β¨π§, π¦β© β¨ π¦ Btwn β¨π₯, π§β©)})β©})) | |
2 | 1nn 12222 | . . . 4 β’ 1 β β | |
3 | basendx 17152 | . . . 4 β’ (Baseβndx) = 1 | |
4 | 2nn0 12488 | . . . . 5 β’ 2 β β0 | |
5 | 1nn0 12487 | . . . . 5 β’ 1 β β0 | |
6 | 1lt10 12815 | . . . . 5 β’ 1 < ;10 | |
7 | 2, 4, 5, 6 | declti 12714 | . . . 4 β’ 1 < ;12 |
8 | 2nn 12284 | . . . . 5 β’ 2 β β | |
9 | 5, 8 | decnncl 12696 | . . . 4 β’ ;12 β β |
10 | dsndx 17329 | . . . 4 β’ (distβndx) = ;12 | |
11 | 2, 3, 7, 9, 10 | strle2 17091 | . . 3 β’ {β¨(Baseβndx), (πΌβπ)β©, β¨(distβndx), (π₯ β (πΌβπ), π¦ β (πΌβπ) β¦ Ξ£π β (1...π)(((π₯βπ) β (π¦βπ))β2))β©} Struct β¨1, ;12β© |
12 | 6nn 12300 | . . . . 5 β’ 6 β β | |
13 | 5, 12 | decnncl 12696 | . . . 4 β’ ;16 β β |
14 | itvndx 27685 | . . . 4 β’ (Itvβndx) = ;16 | |
15 | 6nn0 12492 | . . . . 5 β’ 6 β β0 | |
16 | 7nn 12303 | . . . . 5 β’ 7 β β | |
17 | 6lt7 12397 | . . . . 5 β’ 6 < 7 | |
18 | 5, 15, 16, 17 | declt 12704 | . . . 4 β’ ;16 < ;17 |
19 | 5, 16 | decnncl 12696 | . . . 4 β’ ;17 β β |
20 | lngndx 27686 | . . . 4 β’ (LineGβndx) = ;17 | |
21 | 13, 14, 18, 19, 20 | strle2 17091 | . . 3 β’ {β¨(Itvβndx), (π₯ β (πΌβπ), π¦ β (πΌβπ) β¦ {π§ β (πΌβπ) β£ π§ Btwn β¨π₯, π¦β©})β©, β¨(LineGβndx), (π₯ β (πΌβπ), π¦ β ((πΌβπ) β {π₯}) β¦ {π§ β (πΌβπ) β£ (π§ Btwn β¨π₯, π¦β© β¨ π₯ Btwn β¨π§, π¦β© β¨ π¦ Btwn β¨π₯, π§β©)})β©} Struct β¨;16, ;17β© |
22 | 2lt6 12395 | . . . 4 β’ 2 < 6 | |
23 | 5, 4, 12, 22 | declt 12704 | . . 3 β’ ;12 < ;16 |
24 | 11, 21, 23 | strleun 17089 | . 2 β’ ({β¨(Baseβndx), (πΌβπ)β©, β¨(distβndx), (π₯ β (πΌβπ), π¦ β (πΌβπ) β¦ Ξ£π β (1...π)(((π₯βπ) β (π¦βπ))β2))β©} βͺ {β¨(Itvβndx), (π₯ β (πΌβπ), π¦ β (πΌβπ) β¦ {π§ β (πΌβπ) β£ π§ Btwn β¨π₯, π¦β©})β©, β¨(LineGβndx), (π₯ β (πΌβπ), π¦ β ((πΌβπ) β {π₯}) β¦ {π§ β (πΌβπ) β£ (π§ Btwn β¨π₯, π¦β© β¨ π₯ Btwn β¨π§, π¦β© β¨ π¦ Btwn β¨π₯, π§β©)})β©}) Struct β¨1, ;17β© |
25 | 1, 24 | eqbrtrdi 5187 | 1 β’ (π β β β (EEGβπ) Struct β¨1, ;17β©) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β¨ w3o 1086 β wcel 2106 {crab 3432 β cdif 3945 βͺ cun 3946 {csn 4628 {cpr 4630 β¨cop 4634 class class class wbr 5148 βcfv 6543 (class class class)co 7408 β cmpo 7410 1c1 11110 β cmin 11443 βcn 12211 2c2 12266 6c6 12270 7c7 12271 ;cdc 12676 ...cfz 13483 βcexp 14026 Ξ£csu 15631 Struct cstr 17078 ndxcnx 17125 Basecbs 17143 distcds 17205 Itvcitv 27681 LineGclng 27682 πΌcee 28143 Btwn cbtwn 28144 EEGceeng 28232 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-7 12279 df-8 12280 df-9 12281 df-n0 12472 df-z 12558 df-dec 12677 df-uz 12822 df-fz 13484 df-seq 13966 df-sum 15632 df-struct 17079 df-slot 17114 df-ndx 17126 df-base 17144 df-ds 17218 df-itv 27683 df-lng 27684 df-eeng 28233 |
This theorem is referenced by: eengbas 28236 ebtwntg 28237 ecgrtg 28238 elntg 28239 |
Copyright terms: Public domain | W3C validator |