![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eengstr | Structured version Visualization version GIF version |
Description: The Euclidean geometry as a structure. (Contributed by Thierry Arnoux, 15-Mar-2019.) |
Ref | Expression |
---|---|
eengstr | ⊢ (𝑁 ∈ ℕ → (EEG‘𝑁) Struct 〈1, ;17〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eengv 26216 | . 2 ⊢ (𝑁 ∈ ℕ → (EEG‘𝑁) = ({〈(Base‘ndx), (𝔼‘𝑁)〉, 〈(dist‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥‘𝑖) − (𝑦‘𝑖))↑2))〉} ∪ {〈(Itv‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn 〈𝑥, 𝑦〉})〉, 〈(LineG‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn 〈𝑥, 𝑦〉 ∨ 𝑥 Btwn 〈𝑧, 𝑦〉 ∨ 𝑦 Btwn 〈𝑥, 𝑧〉)})〉})) | |
2 | 1nn 11325 | . . . 4 ⊢ 1 ∈ ℕ | |
3 | basendx 16248 | . . . 4 ⊢ (Base‘ndx) = 1 | |
4 | 2nn0 11599 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
5 | 1nn0 11598 | . . . . 5 ⊢ 1 ∈ ℕ0 | |
6 | 1lt10 11924 | . . . . 5 ⊢ 1 < ;10 | |
7 | 2, 4, 5, 6 | declti 11822 | . . . 4 ⊢ 1 < ;12 |
8 | 2nn 11386 | . . . . 5 ⊢ 2 ∈ ℕ | |
9 | 5, 8 | decnncl 11804 | . . . 4 ⊢ ;12 ∈ ℕ |
10 | dsndx 16377 | . . . 4 ⊢ (dist‘ndx) = ;12 | |
11 | 2, 3, 7, 9, 10 | strle2 16295 | . . 3 ⊢ {〈(Base‘ndx), (𝔼‘𝑁)〉, 〈(dist‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥‘𝑖) − (𝑦‘𝑖))↑2))〉} Struct 〈1, ;12〉 |
12 | 6nn 11405 | . . . . 5 ⊢ 6 ∈ ℕ | |
13 | 5, 12 | decnncl 11804 | . . . 4 ⊢ ;16 ∈ ℕ |
14 | itvndx 25691 | . . . 4 ⊢ (Itv‘ndx) = ;16 | |
15 | 6nn0 11603 | . . . . 5 ⊢ 6 ∈ ℕ0 | |
16 | 7nn 11409 | . . . . 5 ⊢ 7 ∈ ℕ | |
17 | 6lt7 11506 | . . . . 5 ⊢ 6 < 7 | |
18 | 5, 15, 16, 17 | declt 11812 | . . . 4 ⊢ ;16 < ;17 |
19 | 5, 16 | decnncl 11804 | . . . 4 ⊢ ;17 ∈ ℕ |
20 | lngndx 25692 | . . . 4 ⊢ (LineG‘ndx) = ;17 | |
21 | 13, 14, 18, 19, 20 | strle2 16295 | . . 3 ⊢ {〈(Itv‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn 〈𝑥, 𝑦〉})〉, 〈(LineG‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn 〈𝑥, 𝑦〉 ∨ 𝑥 Btwn 〈𝑧, 𝑦〉 ∨ 𝑦 Btwn 〈𝑥, 𝑧〉)})〉} Struct 〈;16, ;17〉 |
22 | 2lt6 11504 | . . . 4 ⊢ 2 < 6 | |
23 | 5, 4, 12, 22 | declt 11812 | . . 3 ⊢ ;12 < ;16 |
24 | 11, 21, 23 | strleun 16293 | . 2 ⊢ ({〈(Base‘ndx), (𝔼‘𝑁)〉, 〈(dist‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥‘𝑖) − (𝑦‘𝑖))↑2))〉} ∪ {〈(Itv‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn 〈𝑥, 𝑦〉})〉, 〈(LineG‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn 〈𝑥, 𝑦〉 ∨ 𝑥 Btwn 〈𝑧, 𝑦〉 ∨ 𝑦 Btwn 〈𝑥, 𝑧〉)})〉}) Struct 〈1, ;17〉 |
25 | 1, 24 | syl6eqbr 4882 | 1 ⊢ (𝑁 ∈ ℕ → (EEG‘𝑁) Struct 〈1, ;17〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ w3o 1107 ∈ wcel 2157 {crab 3093 ∖ cdif 3766 ∪ cun 3767 {csn 4368 {cpr 4370 〈cop 4374 class class class wbr 4843 ‘cfv 6101 (class class class)co 6878 ↦ cmpt2 6880 1c1 10225 − cmin 10556 ℕcn 11312 2c2 11368 6c6 11372 7c7 11373 ;cdc 11783 ...cfz 12580 ↑cexp 13114 Σcsu 14757 Struct cstr 16180 ndxcnx 16181 Basecbs 16184 distcds 16276 Itvcitv 25687 LineGclng 25688 𝔼cee 26125 Btwn cbtwn 26126 EEGceeng 26214 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-cnex 10280 ax-resscn 10281 ax-1cn 10282 ax-icn 10283 ax-addcl 10284 ax-addrcl 10285 ax-mulcl 10286 ax-mulrcl 10287 ax-mulcom 10288 ax-addass 10289 ax-mulass 10290 ax-distr 10291 ax-i2m1 10292 ax-1ne0 10293 ax-1rid 10294 ax-rnegex 10295 ax-rrecex 10296 ax-cnre 10297 ax-pre-lttri 10298 ax-pre-lttrn 10299 ax-pre-ltadd 10300 ax-pre-mulgt0 10301 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-int 4668 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-riota 6839 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-om 7300 df-1st 7401 df-2nd 7402 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-1o 7799 df-oadd 7803 df-er 7982 df-en 8196 df-dom 8197 df-sdom 8198 df-fin 8199 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-le 10369 df-sub 10558 df-neg 10559 df-nn 11313 df-2 11376 df-3 11377 df-4 11378 df-5 11379 df-6 11380 df-7 11381 df-8 11382 df-9 11383 df-n0 11581 df-z 11667 df-dec 11784 df-uz 11931 df-fz 12581 df-seq 13056 df-sum 14758 df-struct 16186 df-ndx 16187 df-slot 16188 df-base 16190 df-ds 16289 df-itv 25689 df-lng 25690 df-eeng 26215 |
This theorem is referenced by: eengbas 26218 ebtwntg 26219 ecgrtg 26220 elntg 26221 |
Copyright terms: Public domain | W3C validator |