Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eengstr | Structured version Visualization version GIF version |
Description: The Euclidean geometry as a structure. (Contributed by Thierry Arnoux, 15-Mar-2019.) |
Ref | Expression |
---|---|
eengstr | ⊢ (𝑁 ∈ ℕ → (EEG‘𝑁) Struct 〈1, ;17〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eengv 27250 | . 2 ⊢ (𝑁 ∈ ℕ → (EEG‘𝑁) = ({〈(Base‘ndx), (𝔼‘𝑁)〉, 〈(dist‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥‘𝑖) − (𝑦‘𝑖))↑2))〉} ∪ {〈(Itv‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn 〈𝑥, 𝑦〉})〉, 〈(LineG‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn 〈𝑥, 𝑦〉 ∨ 𝑥 Btwn 〈𝑧, 𝑦〉 ∨ 𝑦 Btwn 〈𝑥, 𝑧〉)})〉})) | |
2 | 1nn 11914 | . . . 4 ⊢ 1 ∈ ℕ | |
3 | basendx 16849 | . . . 4 ⊢ (Base‘ndx) = 1 | |
4 | 2nn0 12180 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
5 | 1nn0 12179 | . . . . 5 ⊢ 1 ∈ ℕ0 | |
6 | 1lt10 12505 | . . . . 5 ⊢ 1 < ;10 | |
7 | 2, 4, 5, 6 | declti 12404 | . . . 4 ⊢ 1 < ;12 |
8 | 2nn 11976 | . . . . 5 ⊢ 2 ∈ ℕ | |
9 | 5, 8 | decnncl 12386 | . . . 4 ⊢ ;12 ∈ ℕ |
10 | dsndx 17016 | . . . 4 ⊢ (dist‘ndx) = ;12 | |
11 | 2, 3, 7, 9, 10 | strle2 16788 | . . 3 ⊢ {〈(Base‘ndx), (𝔼‘𝑁)〉, 〈(dist‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥‘𝑖) − (𝑦‘𝑖))↑2))〉} Struct 〈1, ;12〉 |
12 | 6nn 11992 | . . . . 5 ⊢ 6 ∈ ℕ | |
13 | 5, 12 | decnncl 12386 | . . . 4 ⊢ ;16 ∈ ℕ |
14 | itvndx 26703 | . . . 4 ⊢ (Itv‘ndx) = ;16 | |
15 | 6nn0 12184 | . . . . 5 ⊢ 6 ∈ ℕ0 | |
16 | 7nn 11995 | . . . . 5 ⊢ 7 ∈ ℕ | |
17 | 6lt7 12089 | . . . . 5 ⊢ 6 < 7 | |
18 | 5, 15, 16, 17 | declt 12394 | . . . 4 ⊢ ;16 < ;17 |
19 | 5, 16 | decnncl 12386 | . . . 4 ⊢ ;17 ∈ ℕ |
20 | lngndx 26704 | . . . 4 ⊢ (LineG‘ndx) = ;17 | |
21 | 13, 14, 18, 19, 20 | strle2 16788 | . . 3 ⊢ {〈(Itv‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn 〈𝑥, 𝑦〉})〉, 〈(LineG‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn 〈𝑥, 𝑦〉 ∨ 𝑥 Btwn 〈𝑧, 𝑦〉 ∨ 𝑦 Btwn 〈𝑥, 𝑧〉)})〉} Struct 〈;16, ;17〉 |
22 | 2lt6 12087 | . . . 4 ⊢ 2 < 6 | |
23 | 5, 4, 12, 22 | declt 12394 | . . 3 ⊢ ;12 < ;16 |
24 | 11, 21, 23 | strleun 16786 | . 2 ⊢ ({〈(Base‘ndx), (𝔼‘𝑁)〉, 〈(dist‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥‘𝑖) − (𝑦‘𝑖))↑2))〉} ∪ {〈(Itv‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn 〈𝑥, 𝑦〉})〉, 〈(LineG‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn 〈𝑥, 𝑦〉 ∨ 𝑥 Btwn 〈𝑧, 𝑦〉 ∨ 𝑦 Btwn 〈𝑥, 𝑧〉)})〉}) Struct 〈1, ;17〉 |
25 | 1, 24 | eqbrtrdi 5109 | 1 ⊢ (𝑁 ∈ ℕ → (EEG‘𝑁) Struct 〈1, ;17〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ w3o 1084 ∈ wcel 2108 {crab 3067 ∖ cdif 3880 ∪ cun 3881 {csn 4558 {cpr 4560 〈cop 4564 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 ∈ cmpo 7257 1c1 10803 − cmin 11135 ℕcn 11903 2c2 11958 6c6 11962 7c7 11963 ;cdc 12366 ...cfz 13168 ↑cexp 13710 Σcsu 15325 Struct cstr 16775 ndxcnx 16822 Basecbs 16840 distcds 16897 Itvcitv 26699 LineGclng 26700 𝔼cee 27159 Btwn cbtwn 27160 EEGceeng 27248 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-fz 13169 df-seq 13650 df-sum 15326 df-struct 16776 df-slot 16811 df-ndx 16823 df-base 16841 df-ds 16910 df-itv 26701 df-lng 26702 df-eeng 27249 |
This theorem is referenced by: eengbas 27252 ebtwntg 27253 ecgrtg 27254 elntg 27255 |
Copyright terms: Public domain | W3C validator |