| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eengstr | Structured version Visualization version GIF version | ||
| Description: The Euclidean geometry as a structure. (Contributed by Thierry Arnoux, 15-Mar-2019.) |
| Ref | Expression |
|---|---|
| eengstr | ⊢ (𝑁 ∈ ℕ → (EEG‘𝑁) Struct 〈1, ;17〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eengv 28963 | . 2 ⊢ (𝑁 ∈ ℕ → (EEG‘𝑁) = ({〈(Base‘ndx), (𝔼‘𝑁)〉, 〈(dist‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥‘𝑖) − (𝑦‘𝑖))↑2))〉} ∪ {〈(Itv‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn 〈𝑥, 𝑦〉})〉, 〈(LineG‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn 〈𝑥, 𝑦〉 ∨ 𝑥 Btwn 〈𝑧, 𝑦〉 ∨ 𝑦 Btwn 〈𝑥, 𝑧〉)})〉})) | |
| 2 | 1nn 12256 | . . . 4 ⊢ 1 ∈ ℕ | |
| 3 | basendx 17242 | . . . 4 ⊢ (Base‘ndx) = 1 | |
| 4 | 2nn0 12523 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
| 5 | 1nn0 12522 | . . . . 5 ⊢ 1 ∈ ℕ0 | |
| 6 | 1lt10 12852 | . . . . 5 ⊢ 1 < ;10 | |
| 7 | 2, 4, 5, 6 | declti 12751 | . . . 4 ⊢ 1 < ;12 |
| 8 | 2nn 12318 | . . . . 5 ⊢ 2 ∈ ℕ | |
| 9 | 5, 8 | decnncl 12733 | . . . 4 ⊢ ;12 ∈ ℕ |
| 10 | dsndx 17404 | . . . 4 ⊢ (dist‘ndx) = ;12 | |
| 11 | 2, 3, 7, 9, 10 | strle2 17183 | . . 3 ⊢ {〈(Base‘ndx), (𝔼‘𝑁)〉, 〈(dist‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥‘𝑖) − (𝑦‘𝑖))↑2))〉} Struct 〈1, ;12〉 |
| 12 | 6nn 12334 | . . . . 5 ⊢ 6 ∈ ℕ | |
| 13 | 5, 12 | decnncl 12733 | . . . 4 ⊢ ;16 ∈ ℕ |
| 14 | itvndx 28421 | . . . 4 ⊢ (Itv‘ndx) = ;16 | |
| 15 | 6nn0 12527 | . . . . 5 ⊢ 6 ∈ ℕ0 | |
| 16 | 7nn 12337 | . . . . 5 ⊢ 7 ∈ ℕ | |
| 17 | 6lt7 12431 | . . . . 5 ⊢ 6 < 7 | |
| 18 | 5, 15, 16, 17 | declt 12741 | . . . 4 ⊢ ;16 < ;17 |
| 19 | 5, 16 | decnncl 12733 | . . . 4 ⊢ ;17 ∈ ℕ |
| 20 | lngndx 28422 | . . . 4 ⊢ (LineG‘ndx) = ;17 | |
| 21 | 13, 14, 18, 19, 20 | strle2 17183 | . . 3 ⊢ {〈(Itv‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn 〈𝑥, 𝑦〉})〉, 〈(LineG‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn 〈𝑥, 𝑦〉 ∨ 𝑥 Btwn 〈𝑧, 𝑦〉 ∨ 𝑦 Btwn 〈𝑥, 𝑧〉)})〉} Struct 〈;16, ;17〉 |
| 22 | 2lt6 12429 | . . . 4 ⊢ 2 < 6 | |
| 23 | 5, 4, 12, 22 | declt 12741 | . . 3 ⊢ ;12 < ;16 |
| 24 | 11, 21, 23 | strleun 17181 | . 2 ⊢ ({〈(Base‘ndx), (𝔼‘𝑁)〉, 〈(dist‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥‘𝑖) − (𝑦‘𝑖))↑2))〉} ∪ {〈(Itv‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn 〈𝑥, 𝑦〉})〉, 〈(LineG‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn 〈𝑥, 𝑦〉 ∨ 𝑥 Btwn 〈𝑧, 𝑦〉 ∨ 𝑦 Btwn 〈𝑥, 𝑧〉)})〉}) Struct 〈1, ;17〉 |
| 25 | 1, 24 | eqbrtrdi 5163 | 1 ⊢ (𝑁 ∈ ℕ → (EEG‘𝑁) Struct 〈1, ;17〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ w3o 1085 ∈ wcel 2109 {crab 3420 ∖ cdif 3928 ∪ cun 3929 {csn 4606 {cpr 4608 〈cop 4612 class class class wbr 5124 ‘cfv 6536 (class class class)co 7410 ∈ cmpo 7412 1c1 11135 − cmin 11471 ℕcn 12245 2c2 12300 6c6 12304 7c7 12305 ;cdc 12713 ...cfz 13529 ↑cexp 14084 Σcsu 15707 Struct cstr 17170 ndxcnx 17217 Basecbs 17233 distcds 17285 Itvcitv 28417 LineGclng 28418 𝔼cee 28872 Btwn cbtwn 28873 EEGceeng 28961 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-z 12594 df-dec 12714 df-uz 12858 df-fz 13530 df-seq 14025 df-sum 15708 df-struct 17171 df-slot 17206 df-ndx 17218 df-base 17234 df-ds 17298 df-itv 28419 df-lng 28420 df-eeng 28962 |
| This theorem is referenced by: eengbas 28965 ebtwntg 28966 ecgrtg 28967 elntg 28968 |
| Copyright terms: Public domain | W3C validator |