| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eengstr | Structured version Visualization version GIF version | ||
| Description: The Euclidean geometry as a structure. (Contributed by Thierry Arnoux, 15-Mar-2019.) |
| Ref | Expression |
|---|---|
| eengstr | ⊢ (𝑁 ∈ ℕ → (EEG‘𝑁) Struct 〈1, ;17〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eengv 28950 | . 2 ⊢ (𝑁 ∈ ℕ → (EEG‘𝑁) = ({〈(Base‘ndx), (𝔼‘𝑁)〉, 〈(dist‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥‘𝑖) − (𝑦‘𝑖))↑2))〉} ∪ {〈(Itv‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn 〈𝑥, 𝑦〉})〉, 〈(LineG‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn 〈𝑥, 𝑦〉 ∨ 𝑥 Btwn 〈𝑧, 𝑦〉 ∨ 𝑦 Btwn 〈𝑥, 𝑧〉)})〉})) | |
| 2 | 1nn 12128 | . . . 4 ⊢ 1 ∈ ℕ | |
| 3 | basendx 17121 | . . . 4 ⊢ (Base‘ndx) = 1 | |
| 4 | 2nn0 12390 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
| 5 | 1nn0 12389 | . . . . 5 ⊢ 1 ∈ ℕ0 | |
| 6 | 1lt10 12719 | . . . . 5 ⊢ 1 < ;10 | |
| 7 | 2, 4, 5, 6 | declti 12618 | . . . 4 ⊢ 1 < ;12 |
| 8 | 2nn 12190 | . . . . 5 ⊢ 2 ∈ ℕ | |
| 9 | 5, 8 | decnncl 12600 | . . . 4 ⊢ ;12 ∈ ℕ |
| 10 | dsndx 17281 | . . . 4 ⊢ (dist‘ndx) = ;12 | |
| 11 | 2, 3, 7, 9, 10 | strle2 17062 | . . 3 ⊢ {〈(Base‘ndx), (𝔼‘𝑁)〉, 〈(dist‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥‘𝑖) − (𝑦‘𝑖))↑2))〉} Struct 〈1, ;12〉 |
| 12 | 6nn 12206 | . . . . 5 ⊢ 6 ∈ ℕ | |
| 13 | 5, 12 | decnncl 12600 | . . . 4 ⊢ ;16 ∈ ℕ |
| 14 | itvndx 28408 | . . . 4 ⊢ (Itv‘ndx) = ;16 | |
| 15 | 6nn0 12394 | . . . . 5 ⊢ 6 ∈ ℕ0 | |
| 16 | 7nn 12209 | . . . . 5 ⊢ 7 ∈ ℕ | |
| 17 | 6lt7 12298 | . . . . 5 ⊢ 6 < 7 | |
| 18 | 5, 15, 16, 17 | declt 12608 | . . . 4 ⊢ ;16 < ;17 |
| 19 | 5, 16 | decnncl 12600 | . . . 4 ⊢ ;17 ∈ ℕ |
| 20 | lngndx 28409 | . . . 4 ⊢ (LineG‘ndx) = ;17 | |
| 21 | 13, 14, 18, 19, 20 | strle2 17062 | . . 3 ⊢ {〈(Itv‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn 〈𝑥, 𝑦〉})〉, 〈(LineG‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn 〈𝑥, 𝑦〉 ∨ 𝑥 Btwn 〈𝑧, 𝑦〉 ∨ 𝑦 Btwn 〈𝑥, 𝑧〉)})〉} Struct 〈;16, ;17〉 |
| 22 | 2lt6 12296 | . . . 4 ⊢ 2 < 6 | |
| 23 | 5, 4, 12, 22 | declt 12608 | . . 3 ⊢ ;12 < ;16 |
| 24 | 11, 21, 23 | strleun 17060 | . 2 ⊢ ({〈(Base‘ndx), (𝔼‘𝑁)〉, 〈(dist‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥‘𝑖) − (𝑦‘𝑖))↑2))〉} ∪ {〈(Itv‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn 〈𝑥, 𝑦〉})〉, 〈(LineG‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn 〈𝑥, 𝑦〉 ∨ 𝑥 Btwn 〈𝑧, 𝑦〉 ∨ 𝑦 Btwn 〈𝑥, 𝑧〉)})〉}) Struct 〈1, ;17〉 |
| 25 | 1, 24 | eqbrtrdi 5128 | 1 ⊢ (𝑁 ∈ ℕ → (EEG‘𝑁) Struct 〈1, ;17〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ w3o 1085 ∈ wcel 2110 {crab 3393 ∖ cdif 3897 ∪ cun 3898 {csn 4574 {cpr 4576 〈cop 4580 class class class wbr 5089 ‘cfv 6477 (class class class)co 7341 ∈ cmpo 7343 1c1 10999 − cmin 11336 ℕcn 12117 2c2 12172 6c6 12176 7c7 12177 ;cdc 12580 ...cfz 13399 ↑cexp 13960 Σcsu 15585 Struct cstr 17049 ndxcnx 17096 Basecbs 17112 distcds 17162 Itvcitv 28404 LineGclng 28405 𝔼cee 28859 Btwn cbtwn 28860 EEGceeng 28948 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-nn 12118 df-2 12180 df-3 12181 df-4 12182 df-5 12183 df-6 12184 df-7 12185 df-8 12186 df-9 12187 df-n0 12374 df-z 12461 df-dec 12581 df-uz 12725 df-fz 13400 df-seq 13901 df-sum 15586 df-struct 17050 df-slot 17085 df-ndx 17097 df-base 17113 df-ds 17175 df-itv 28406 df-lng 28407 df-eeng 28949 |
| This theorem is referenced by: eengbas 28952 ebtwntg 28953 ecgrtg 28954 elntg 28955 |
| Copyright terms: Public domain | W3C validator |