MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sii Structured version   Visualization version   GIF version

Theorem sii 28281
Description: Schwarz inequality. Part of Lemma 3-2.1(a) of [Kreyszig] p. 137. This is also called the Cauchy-Schwarz inequality by some authors and Bunjakovaskij-Cauchy-Schwarz inequality by others. See also theorems bcseqi 28549, bcsiALT 28608, bcsiHIL 28609, csbren 23605. This is Metamath 100 proof #78. (Contributed by NM, 12-Jan-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
sii.1 𝑋 = (BaseSet‘𝑈)
sii.6 𝑁 = (normCV𝑈)
sii.7 𝑃 = (·𝑖OLD𝑈)
sii.9 𝑈 ∈ CPreHilOLD
Assertion
Ref Expression
sii ((𝐴𝑋𝐵𝑋) → (abs‘(𝐴𝑃𝐵)) ≤ ((𝑁𝐴) · (𝑁𝐵)))

Proof of Theorem sii
StepHypRef Expression
1 fvoveq1 6945 . . 3 (𝐴 = if(𝐴𝑋, 𝐴, (0vec𝑈)) → (abs‘(𝐴𝑃𝐵)) = (abs‘(if(𝐴𝑋, 𝐴, (0vec𝑈))𝑃𝐵)))
2 fveq2 6446 . . . 4 (𝐴 = if(𝐴𝑋, 𝐴, (0vec𝑈)) → (𝑁𝐴) = (𝑁‘if(𝐴𝑋, 𝐴, (0vec𝑈))))
32oveq1d 6937 . . 3 (𝐴 = if(𝐴𝑋, 𝐴, (0vec𝑈)) → ((𝑁𝐴) · (𝑁𝐵)) = ((𝑁‘if(𝐴𝑋, 𝐴, (0vec𝑈))) · (𝑁𝐵)))
41, 3breq12d 4899 . 2 (𝐴 = if(𝐴𝑋, 𝐴, (0vec𝑈)) → ((abs‘(𝐴𝑃𝐵)) ≤ ((𝑁𝐴) · (𝑁𝐵)) ↔ (abs‘(if(𝐴𝑋, 𝐴, (0vec𝑈))𝑃𝐵)) ≤ ((𝑁‘if(𝐴𝑋, 𝐴, (0vec𝑈))) · (𝑁𝐵))))
5 oveq2 6930 . . . 4 (𝐵 = if(𝐵𝑋, 𝐵, (0vec𝑈)) → (if(𝐴𝑋, 𝐴, (0vec𝑈))𝑃𝐵) = (if(𝐴𝑋, 𝐴, (0vec𝑈))𝑃if(𝐵𝑋, 𝐵, (0vec𝑈))))
65fveq2d 6450 . . 3 (𝐵 = if(𝐵𝑋, 𝐵, (0vec𝑈)) → (abs‘(if(𝐴𝑋, 𝐴, (0vec𝑈))𝑃𝐵)) = (abs‘(if(𝐴𝑋, 𝐴, (0vec𝑈))𝑃if(𝐵𝑋, 𝐵, (0vec𝑈)))))
7 fveq2 6446 . . . 4 (𝐵 = if(𝐵𝑋, 𝐵, (0vec𝑈)) → (𝑁𝐵) = (𝑁‘if(𝐵𝑋, 𝐵, (0vec𝑈))))
87oveq2d 6938 . . 3 (𝐵 = if(𝐵𝑋, 𝐵, (0vec𝑈)) → ((𝑁‘if(𝐴𝑋, 𝐴, (0vec𝑈))) · (𝑁𝐵)) = ((𝑁‘if(𝐴𝑋, 𝐴, (0vec𝑈))) · (𝑁‘if(𝐵𝑋, 𝐵, (0vec𝑈)))))
96, 8breq12d 4899 . 2 (𝐵 = if(𝐵𝑋, 𝐵, (0vec𝑈)) → ((abs‘(if(𝐴𝑋, 𝐴, (0vec𝑈))𝑃𝐵)) ≤ ((𝑁‘if(𝐴𝑋, 𝐴, (0vec𝑈))) · (𝑁𝐵)) ↔ (abs‘(if(𝐴𝑋, 𝐴, (0vec𝑈))𝑃if(𝐵𝑋, 𝐵, (0vec𝑈)))) ≤ ((𝑁‘if(𝐴𝑋, 𝐴, (0vec𝑈))) · (𝑁‘if(𝐵𝑋, 𝐵, (0vec𝑈))))))
10 sii.1 . . 3 𝑋 = (BaseSet‘𝑈)
11 sii.6 . . 3 𝑁 = (normCV𝑈)
12 sii.7 . . 3 𝑃 = (·𝑖OLD𝑈)
13 sii.9 . . 3 𝑈 ∈ CPreHilOLD
14 eqid 2778 . . . 4 (0vec𝑈) = (0vec𝑈)
1510, 14, 13elimph 28247 . . 3 if(𝐴𝑋, 𝐴, (0vec𝑈)) ∈ 𝑋
1610, 14, 13elimph 28247 . . 3 if(𝐵𝑋, 𝐵, (0vec𝑈)) ∈ 𝑋
1710, 11, 12, 13, 15, 16siii 28280 . 2 (abs‘(if(𝐴𝑋, 𝐴, (0vec𝑈))𝑃if(𝐵𝑋, 𝐵, (0vec𝑈)))) ≤ ((𝑁‘if(𝐴𝑋, 𝐴, (0vec𝑈))) · (𝑁‘if(𝐵𝑋, 𝐵, (0vec𝑈))))
184, 9, 17dedth2h 4364 1 ((𝐴𝑋𝐵𝑋) → (abs‘(𝐴𝑃𝐵)) ≤ ((𝑁𝐴) · (𝑁𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1601  wcel 2107  ifcif 4307   class class class wbr 4886  cfv 6135  (class class class)co 6922   · cmul 10277  cle 10412  abscabs 14381  BaseSetcba 28013  0veccn0v 28015  normCVcnmcv 28017  ·𝑖OLDcdip 28127  CPreHilOLDccphlo 28239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-inf2 8835  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350  ax-addf 10351  ax-mulf 10352
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-int 4711  df-iun 4755  df-iin 4756  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-se 5315  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-isom 6144  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-of 7174  df-om 7344  df-1st 7445  df-2nd 7446  df-supp 7577  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-2o 7844  df-oadd 7847  df-er 8026  df-map 8142  df-ixp 8195  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-fsupp 8564  df-fi 8605  df-sup 8636  df-inf 8637  df-oi 8704  df-card 9098  df-cda 9325  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-4 11440  df-5 11441  df-6 11442  df-7 11443  df-8 11444  df-9 11445  df-n0 11643  df-z 11729  df-dec 11846  df-uz 11993  df-q 12096  df-rp 12138  df-xneg 12257  df-xadd 12258  df-xmul 12259  df-ioo 12491  df-icc 12494  df-fz 12644  df-fzo 12785  df-seq 13120  df-exp 13179  df-hash 13436  df-cj 14246  df-re 14247  df-im 14248  df-sqrt 14382  df-abs 14383  df-clim 14627  df-sum 14825  df-struct 16257  df-ndx 16258  df-slot 16259  df-base 16261  df-sets 16262  df-ress 16263  df-plusg 16351  df-mulr 16352  df-starv 16353  df-sca 16354  df-vsca 16355  df-ip 16356  df-tset 16357  df-ple 16358  df-ds 16360  df-unif 16361  df-hom 16362  df-cco 16363  df-rest 16469  df-topn 16470  df-0g 16488  df-gsum 16489  df-topgen 16490  df-pt 16491  df-prds 16494  df-xrs 16548  df-qtop 16553  df-imas 16554  df-xps 16556  df-mre 16632  df-mrc 16633  df-acs 16635  df-mgm 17628  df-sgrp 17670  df-mnd 17681  df-submnd 17722  df-mulg 17928  df-cntz 18133  df-cmn 18581  df-psmet 20134  df-xmet 20135  df-met 20136  df-bl 20137  df-mopn 20138  df-cnfld 20143  df-top 21106  df-topon 21123  df-topsp 21145  df-bases 21158  df-cld 21231  df-ntr 21232  df-cls 21233  df-cn 21439  df-cnp 21440  df-t1 21526  df-haus 21527  df-tx 21774  df-hmeo 21967  df-xms 22533  df-ms 22534  df-tms 22535  df-grpo 27920  df-gid 27921  df-ginv 27922  df-gdiv 27923  df-ablo 27972  df-vc 27986  df-nv 28019  df-va 28022  df-ba 28023  df-sm 28024  df-0v 28025  df-vs 28026  df-nmcv 28027  df-ims 28028  df-dip 28128  df-ph 28240
This theorem is referenced by:  ipblnfi  28283  htthlem  28346
  Copyright terms: Public domain W3C validator