![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sii | Structured version Visualization version GIF version |
Description: Schwarz inequality. Part of Lemma 3-2.1(a) of [Kreyszig] p. 137. This is also called the Cauchy-Schwarz inequality by some authors and Bunjakovaskij-Cauchy-Schwarz inequality by others. See also theorems bcseqi 28549, bcsiALT 28608, bcsiHIL 28609, csbren 23605. This is Metamath 100 proof #78. (Contributed by NM, 12-Jan-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
sii.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
sii.6 | ⊢ 𝑁 = (normCV‘𝑈) |
sii.7 | ⊢ 𝑃 = (·𝑖OLD‘𝑈) |
sii.9 | ⊢ 𝑈 ∈ CPreHilOLD |
Ref | Expression |
---|---|
sii | ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (abs‘(𝐴𝑃𝐵)) ≤ ((𝑁‘𝐴) · (𝑁‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvoveq1 6945 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈)) → (abs‘(𝐴𝑃𝐵)) = (abs‘(if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝑃𝐵))) | |
2 | fveq2 6446 | . . . 4 ⊢ (𝐴 = if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈)) → (𝑁‘𝐴) = (𝑁‘if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈)))) | |
3 | 2 | oveq1d 6937 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈)) → ((𝑁‘𝐴) · (𝑁‘𝐵)) = ((𝑁‘if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))) · (𝑁‘𝐵))) |
4 | 1, 3 | breq12d 4899 | . 2 ⊢ (𝐴 = if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈)) → ((abs‘(𝐴𝑃𝐵)) ≤ ((𝑁‘𝐴) · (𝑁‘𝐵)) ↔ (abs‘(if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝑃𝐵)) ≤ ((𝑁‘if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))) · (𝑁‘𝐵)))) |
5 | oveq2 6930 | . . . 4 ⊢ (𝐵 = if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈)) → (if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝑃𝐵) = (if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝑃if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈)))) | |
6 | 5 | fveq2d 6450 | . . 3 ⊢ (𝐵 = if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈)) → (abs‘(if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝑃𝐵)) = (abs‘(if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝑃if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈))))) |
7 | fveq2 6446 | . . . 4 ⊢ (𝐵 = if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈)) → (𝑁‘𝐵) = (𝑁‘if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈)))) | |
8 | 7 | oveq2d 6938 | . . 3 ⊢ (𝐵 = if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈)) → ((𝑁‘if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))) · (𝑁‘𝐵)) = ((𝑁‘if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))) · (𝑁‘if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈))))) |
9 | 6, 8 | breq12d 4899 | . 2 ⊢ (𝐵 = if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈)) → ((abs‘(if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝑃𝐵)) ≤ ((𝑁‘if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))) · (𝑁‘𝐵)) ↔ (abs‘(if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝑃if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈)))) ≤ ((𝑁‘if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))) · (𝑁‘if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈)))))) |
10 | sii.1 | . . 3 ⊢ 𝑋 = (BaseSet‘𝑈) | |
11 | sii.6 | . . 3 ⊢ 𝑁 = (normCV‘𝑈) | |
12 | sii.7 | . . 3 ⊢ 𝑃 = (·𝑖OLD‘𝑈) | |
13 | sii.9 | . . 3 ⊢ 𝑈 ∈ CPreHilOLD | |
14 | eqid 2778 | . . . 4 ⊢ (0vec‘𝑈) = (0vec‘𝑈) | |
15 | 10, 14, 13 | elimph 28247 | . . 3 ⊢ if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈)) ∈ 𝑋 |
16 | 10, 14, 13 | elimph 28247 | . . 3 ⊢ if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈)) ∈ 𝑋 |
17 | 10, 11, 12, 13, 15, 16 | siii 28280 | . 2 ⊢ (abs‘(if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))𝑃if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈)))) ≤ ((𝑁‘if(𝐴 ∈ 𝑋, 𝐴, (0vec‘𝑈))) · (𝑁‘if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈)))) |
18 | 4, 9, 17 | dedth2h 4364 | 1 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (abs‘(𝐴𝑃𝐵)) ≤ ((𝑁‘𝐴) · (𝑁‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1601 ∈ wcel 2107 ifcif 4307 class class class wbr 4886 ‘cfv 6135 (class class class)co 6922 · cmul 10277 ≤ cle 10412 abscabs 14381 BaseSetcba 28013 0veccn0v 28015 normCVcnmcv 28017 ·𝑖OLDcdip 28127 CPreHilOLDccphlo 28239 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-inf2 8835 ax-cnex 10328 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-pre-mulgt0 10349 ax-pre-sup 10350 ax-addf 10351 ax-mulf 10352 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-fal 1615 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4672 df-int 4711 df-iun 4755 df-iin 4756 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-se 5315 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-isom 6144 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-of 7174 df-om 7344 df-1st 7445 df-2nd 7446 df-supp 7577 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-1o 7843 df-2o 7844 df-oadd 7847 df-er 8026 df-map 8142 df-ixp 8195 df-en 8242 df-dom 8243 df-sdom 8244 df-fin 8245 df-fsupp 8564 df-fi 8605 df-sup 8636 df-inf 8637 df-oi 8704 df-card 9098 df-cda 9325 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-le 10417 df-sub 10608 df-neg 10609 df-div 11033 df-nn 11375 df-2 11438 df-3 11439 df-4 11440 df-5 11441 df-6 11442 df-7 11443 df-8 11444 df-9 11445 df-n0 11643 df-z 11729 df-dec 11846 df-uz 11993 df-q 12096 df-rp 12138 df-xneg 12257 df-xadd 12258 df-xmul 12259 df-ioo 12491 df-icc 12494 df-fz 12644 df-fzo 12785 df-seq 13120 df-exp 13179 df-hash 13436 df-cj 14246 df-re 14247 df-im 14248 df-sqrt 14382 df-abs 14383 df-clim 14627 df-sum 14825 df-struct 16257 df-ndx 16258 df-slot 16259 df-base 16261 df-sets 16262 df-ress 16263 df-plusg 16351 df-mulr 16352 df-starv 16353 df-sca 16354 df-vsca 16355 df-ip 16356 df-tset 16357 df-ple 16358 df-ds 16360 df-unif 16361 df-hom 16362 df-cco 16363 df-rest 16469 df-topn 16470 df-0g 16488 df-gsum 16489 df-topgen 16490 df-pt 16491 df-prds 16494 df-xrs 16548 df-qtop 16553 df-imas 16554 df-xps 16556 df-mre 16632 df-mrc 16633 df-acs 16635 df-mgm 17628 df-sgrp 17670 df-mnd 17681 df-submnd 17722 df-mulg 17928 df-cntz 18133 df-cmn 18581 df-psmet 20134 df-xmet 20135 df-met 20136 df-bl 20137 df-mopn 20138 df-cnfld 20143 df-top 21106 df-topon 21123 df-topsp 21145 df-bases 21158 df-cld 21231 df-ntr 21232 df-cls 21233 df-cn 21439 df-cnp 21440 df-t1 21526 df-haus 21527 df-tx 21774 df-hmeo 21967 df-xms 22533 df-ms 22534 df-tms 22535 df-grpo 27920 df-gid 27921 df-ginv 27922 df-gdiv 27923 df-ablo 27972 df-vc 27986 df-nv 28019 df-va 28022 df-ba 28023 df-sm 28024 df-0v 28025 df-vs 28026 df-nmcv 28027 df-ims 28028 df-dip 28128 df-ph 28240 |
This theorem is referenced by: ipblnfi 28283 htthlem 28346 |
Copyright terms: Public domain | W3C validator |