Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ipassi | Structured version Visualization version GIF version |
Description: Associative law for inner product. Equation I2 of [Ponnusamy] p. 363. (Contributed by NM, 25-Aug-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ip1i.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
ip1i.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
ip1i.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
ip1i.7 | ⊢ 𝑃 = (·𝑖OLD‘𝑈) |
ip1i.9 | ⊢ 𝑈 ∈ CPreHilOLD |
Ref | Expression |
---|---|
ipassi | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → ((𝐴𝑆𝐵)𝑃𝐶) = (𝐴 · (𝐵𝑃𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7263 | . . . . . . 7 ⊢ (𝐵 = if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈)) → (𝐴𝑆𝐵) = (𝐴𝑆if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈)))) | |
2 | 1 | oveq1d 7270 | . . . . . 6 ⊢ (𝐵 = if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈)) → ((𝐴𝑆𝐵)𝑃𝐶) = ((𝐴𝑆if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈)))𝑃𝐶)) |
3 | oveq1 7262 | . . . . . . 7 ⊢ (𝐵 = if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈)) → (𝐵𝑃𝐶) = (if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈))𝑃𝐶)) | |
4 | 3 | oveq2d 7271 | . . . . . 6 ⊢ (𝐵 = if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈)) → (𝐴 · (𝐵𝑃𝐶)) = (𝐴 · (if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈))𝑃𝐶))) |
5 | 2, 4 | eqeq12d 2754 | . . . . 5 ⊢ (𝐵 = if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈)) → (((𝐴𝑆𝐵)𝑃𝐶) = (𝐴 · (𝐵𝑃𝐶)) ↔ ((𝐴𝑆if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈)))𝑃𝐶) = (𝐴 · (if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈))𝑃𝐶)))) |
6 | 5 | imbi2d 340 | . . . 4 ⊢ (𝐵 = if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈)) → ((𝐴 ∈ ℂ → ((𝐴𝑆𝐵)𝑃𝐶) = (𝐴 · (𝐵𝑃𝐶))) ↔ (𝐴 ∈ ℂ → ((𝐴𝑆if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈)))𝑃𝐶) = (𝐴 · (if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈))𝑃𝐶))))) |
7 | oveq2 7263 | . . . . . 6 ⊢ (𝐶 = if(𝐶 ∈ 𝑋, 𝐶, (0vec‘𝑈)) → ((𝐴𝑆if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈)))𝑃𝐶) = ((𝐴𝑆if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈)))𝑃if(𝐶 ∈ 𝑋, 𝐶, (0vec‘𝑈)))) | |
8 | oveq2 7263 | . . . . . . 7 ⊢ (𝐶 = if(𝐶 ∈ 𝑋, 𝐶, (0vec‘𝑈)) → (if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈))𝑃𝐶) = (if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈))𝑃if(𝐶 ∈ 𝑋, 𝐶, (0vec‘𝑈)))) | |
9 | 8 | oveq2d 7271 | . . . . . 6 ⊢ (𝐶 = if(𝐶 ∈ 𝑋, 𝐶, (0vec‘𝑈)) → (𝐴 · (if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈))𝑃𝐶)) = (𝐴 · (if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈))𝑃if(𝐶 ∈ 𝑋, 𝐶, (0vec‘𝑈))))) |
10 | 7, 9 | eqeq12d 2754 | . . . . 5 ⊢ (𝐶 = if(𝐶 ∈ 𝑋, 𝐶, (0vec‘𝑈)) → (((𝐴𝑆if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈)))𝑃𝐶) = (𝐴 · (if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈))𝑃𝐶)) ↔ ((𝐴𝑆if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈)))𝑃if(𝐶 ∈ 𝑋, 𝐶, (0vec‘𝑈))) = (𝐴 · (if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈))𝑃if(𝐶 ∈ 𝑋, 𝐶, (0vec‘𝑈)))))) |
11 | 10 | imbi2d 340 | . . . 4 ⊢ (𝐶 = if(𝐶 ∈ 𝑋, 𝐶, (0vec‘𝑈)) → ((𝐴 ∈ ℂ → ((𝐴𝑆if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈)))𝑃𝐶) = (𝐴 · (if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈))𝑃𝐶))) ↔ (𝐴 ∈ ℂ → ((𝐴𝑆if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈)))𝑃if(𝐶 ∈ 𝑋, 𝐶, (0vec‘𝑈))) = (𝐴 · (if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈))𝑃if(𝐶 ∈ 𝑋, 𝐶, (0vec‘𝑈))))))) |
12 | ip1i.1 | . . . . 5 ⊢ 𝑋 = (BaseSet‘𝑈) | |
13 | ip1i.2 | . . . . 5 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
14 | ip1i.4 | . . . . 5 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
15 | ip1i.7 | . . . . 5 ⊢ 𝑃 = (·𝑖OLD‘𝑈) | |
16 | ip1i.9 | . . . . 5 ⊢ 𝑈 ∈ CPreHilOLD | |
17 | eqid 2738 | . . . . . 6 ⊢ (0vec‘𝑈) = (0vec‘𝑈) | |
18 | 12, 17, 16 | elimph 29083 | . . . . 5 ⊢ if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈)) ∈ 𝑋 |
19 | 12, 17, 16 | elimph 29083 | . . . . 5 ⊢ if(𝐶 ∈ 𝑋, 𝐶, (0vec‘𝑈)) ∈ 𝑋 |
20 | 12, 13, 14, 15, 16, 18, 19 | ipasslem11 29103 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((𝐴𝑆if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈)))𝑃if(𝐶 ∈ 𝑋, 𝐶, (0vec‘𝑈))) = (𝐴 · (if(𝐵 ∈ 𝑋, 𝐵, (0vec‘𝑈))𝑃if(𝐶 ∈ 𝑋, 𝐶, (0vec‘𝑈))))) |
21 | 6, 11, 20 | dedth2h 4515 | . . 3 ⊢ ((𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐴 ∈ ℂ → ((𝐴𝑆𝐵)𝑃𝐶) = (𝐴 · (𝐵𝑃𝐶)))) |
22 | 21 | com12 32 | . 2 ⊢ (𝐴 ∈ ℂ → ((𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → ((𝐴𝑆𝐵)𝑃𝐶) = (𝐴 · (𝐵𝑃𝐶)))) |
23 | 22 | 3impib 1114 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → ((𝐴𝑆𝐵)𝑃𝐶) = (𝐴 · (𝐵𝑃𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ifcif 4456 ‘cfv 6418 (class class class)co 7255 ℂcc 10800 · cmul 10807 +𝑣 cpv 28848 BaseSetcba 28849 ·𝑠OLD cns 28850 0veccn0v 28851 ·𝑖OLDcdip 28963 CPreHilOLDccphlo 29075 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-addf 10881 ax-mulf 10882 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-er 8456 df-map 8575 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-fi 9100 df-sup 9131 df-inf 9132 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-q 12618 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-ioo 13012 df-icc 13015 df-fz 13169 df-fzo 13312 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 df-sum 15326 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-hom 16912 df-cco 16913 df-rest 17050 df-topn 17051 df-0g 17069 df-gsum 17070 df-topgen 17071 df-pt 17072 df-prds 17075 df-xrs 17130 df-qtop 17135 df-imas 17136 df-xps 17138 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-mulg 18616 df-cntz 18838 df-cmn 19303 df-psmet 20502 df-xmet 20503 df-met 20504 df-bl 20505 df-mopn 20506 df-cnfld 20511 df-top 21951 df-topon 21968 df-topsp 21990 df-bases 22004 df-cld 22078 df-ntr 22079 df-cls 22080 df-cn 22286 df-cnp 22287 df-t1 22373 df-haus 22374 df-tx 22621 df-hmeo 22814 df-xms 23381 df-ms 23382 df-tms 23383 df-grpo 28756 df-gid 28757 df-ginv 28758 df-gdiv 28759 df-ablo 28808 df-vc 28822 df-nv 28855 df-va 28858 df-ba 28859 df-sm 28860 df-0v 28861 df-vs 28862 df-nmcv 28863 df-ims 28864 df-dip 28964 df-ph 29076 |
This theorem is referenced by: dipass 29108 ipblnfi 29118 |
Copyright terms: Public domain | W3C validator |