Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iocinioc2 Structured version   Visualization version   GIF version

Theorem iocinioc2 30820
Description: Intersection between two open-below, closed-above intervals sharing the same upper bound. (Contributed by Thierry Arnoux, 7-Aug-2017.)
Assertion
Ref Expression
iocinioc2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = (𝐵(,]𝐶))

Proof of Theorem iocinioc2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elin 3882 . . . 4 (𝑥 ∈ ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) ↔ (𝑥 ∈ (𝐴(,]𝐶) ∧ 𝑥 ∈ (𝐵(,]𝐶)))
2 simpl1 1193 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → 𝐴 ∈ ℝ*)
3 simpl3 1195 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → 𝐶 ∈ ℝ*)
4 elioc1 12977 . . . . . . 7 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) → (𝑥 ∈ (𝐴(,]𝐶) ↔ (𝑥 ∈ ℝ*𝐴 < 𝑥𝑥𝐶)))
52, 3, 4syl2anc 587 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → (𝑥 ∈ (𝐴(,]𝐶) ↔ (𝑥 ∈ ℝ*𝐴 < 𝑥𝑥𝐶)))
6 simpl2 1194 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → 𝐵 ∈ ℝ*)
7 elioc1 12977 . . . . . . 7 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝑥 ∈ (𝐵(,]𝐶) ↔ (𝑥 ∈ ℝ*𝐵 < 𝑥𝑥𝐶)))
86, 3, 7syl2anc 587 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → (𝑥 ∈ (𝐵(,]𝐶) ↔ (𝑥 ∈ ℝ*𝐵 < 𝑥𝑥𝐶)))
95, 8anbi12d 634 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → ((𝑥 ∈ (𝐴(,]𝐶) ∧ 𝑥 ∈ (𝐵(,]𝐶)) ↔ ((𝑥 ∈ ℝ*𝐴 < 𝑥𝑥𝐶) ∧ (𝑥 ∈ ℝ*𝐵 < 𝑥𝑥𝐶))))
10 simp31 1211 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵 ∧ (𝑥 ∈ ℝ*𝐵 < 𝑥𝑥𝐶)) → 𝑥 ∈ ℝ*)
1123adant3 1134 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵 ∧ (𝑥 ∈ ℝ*𝐵 < 𝑥𝑥𝐶)) → 𝐴 ∈ ℝ*)
1263adant3 1134 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵 ∧ (𝑥 ∈ ℝ*𝐵 < 𝑥𝑥𝐶)) → 𝐵 ∈ ℝ*)
13 simp2 1139 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵 ∧ (𝑥 ∈ ℝ*𝐵 < 𝑥𝑥𝐶)) → 𝐴𝐵)
14 simp32 1212 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵 ∧ (𝑥 ∈ ℝ*𝐵 < 𝑥𝑥𝐶)) → 𝐵 < 𝑥)
1511, 12, 10, 13, 14xrlelttrd 12750 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵 ∧ (𝑥 ∈ ℝ*𝐵 < 𝑥𝑥𝐶)) → 𝐴 < 𝑥)
16 simp33 1213 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵 ∧ (𝑥 ∈ ℝ*𝐵 < 𝑥𝑥𝐶)) → 𝑥𝐶)
1710, 15, 163jca 1130 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵 ∧ (𝑥 ∈ ℝ*𝐵 < 𝑥𝑥𝐶)) → (𝑥 ∈ ℝ*𝐴 < 𝑥𝑥𝐶))
18173expia 1123 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → ((𝑥 ∈ ℝ*𝐵 < 𝑥𝑥𝐶) → (𝑥 ∈ ℝ*𝐴 < 𝑥𝑥𝐶)))
1918pm4.71rd 566 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → ((𝑥 ∈ ℝ*𝐵 < 𝑥𝑥𝐶) ↔ ((𝑥 ∈ ℝ*𝐴 < 𝑥𝑥𝐶) ∧ (𝑥 ∈ ℝ*𝐵 < 𝑥𝑥𝐶))))
209, 19bitr4d 285 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → ((𝑥 ∈ (𝐴(,]𝐶) ∧ 𝑥 ∈ (𝐵(,]𝐶)) ↔ (𝑥 ∈ ℝ*𝐵 < 𝑥𝑥𝐶)))
211, 20syl5bb 286 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → (𝑥 ∈ ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) ↔ (𝑥 ∈ ℝ*𝐵 < 𝑥𝑥𝐶)))
2221, 8bitr4d 285 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → (𝑥 ∈ ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) ↔ 𝑥 ∈ (𝐵(,]𝐶)))
2322eqrdv 2735 1 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = (𝐵(,]𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2110  cin 3865   class class class wbr 5053  (class class class)co 7213  *cxr 10866   < clt 10867  cle 10868  (,]cioc 12936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-pre-lttri 10803  ax-pre-lttrn 10804
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-po 5468  df-so 5469  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-ov 7216  df-oprab 7217  df-mpo 7218  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-ioc 12940
This theorem is referenced by:  iocinif  30822
  Copyright terms: Public domain W3C validator