Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iocinioc2 Structured version   Visualization version   GIF version

Theorem iocinioc2 31100
Description: Intersection between two open-below, closed-above intervals sharing the same upper bound. (Contributed by Thierry Arnoux, 7-Aug-2017.)
Assertion
Ref Expression
iocinioc2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = (𝐵(,]𝐶))

Proof of Theorem iocinioc2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elin 3903 . . . 4 (𝑥 ∈ ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) ↔ (𝑥 ∈ (𝐴(,]𝐶) ∧ 𝑥 ∈ (𝐵(,]𝐶)))
2 simpl1 1190 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → 𝐴 ∈ ℝ*)
3 simpl3 1192 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → 𝐶 ∈ ℝ*)
4 elioc1 13121 . . . . . . 7 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) → (𝑥 ∈ (𝐴(,]𝐶) ↔ (𝑥 ∈ ℝ*𝐴 < 𝑥𝑥𝐶)))
52, 3, 4syl2anc 584 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → (𝑥 ∈ (𝐴(,]𝐶) ↔ (𝑥 ∈ ℝ*𝐴 < 𝑥𝑥𝐶)))
6 simpl2 1191 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → 𝐵 ∈ ℝ*)
7 elioc1 13121 . . . . . . 7 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝑥 ∈ (𝐵(,]𝐶) ↔ (𝑥 ∈ ℝ*𝐵 < 𝑥𝑥𝐶)))
86, 3, 7syl2anc 584 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → (𝑥 ∈ (𝐵(,]𝐶) ↔ (𝑥 ∈ ℝ*𝐵 < 𝑥𝑥𝐶)))
95, 8anbi12d 631 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → ((𝑥 ∈ (𝐴(,]𝐶) ∧ 𝑥 ∈ (𝐵(,]𝐶)) ↔ ((𝑥 ∈ ℝ*𝐴 < 𝑥𝑥𝐶) ∧ (𝑥 ∈ ℝ*𝐵 < 𝑥𝑥𝐶))))
10 simp31 1208 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵 ∧ (𝑥 ∈ ℝ*𝐵 < 𝑥𝑥𝐶)) → 𝑥 ∈ ℝ*)
1123adant3 1131 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵 ∧ (𝑥 ∈ ℝ*𝐵 < 𝑥𝑥𝐶)) → 𝐴 ∈ ℝ*)
1263adant3 1131 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵 ∧ (𝑥 ∈ ℝ*𝐵 < 𝑥𝑥𝐶)) → 𝐵 ∈ ℝ*)
13 simp2 1136 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵 ∧ (𝑥 ∈ ℝ*𝐵 < 𝑥𝑥𝐶)) → 𝐴𝐵)
14 simp32 1209 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵 ∧ (𝑥 ∈ ℝ*𝐵 < 𝑥𝑥𝐶)) → 𝐵 < 𝑥)
1511, 12, 10, 13, 14xrlelttrd 12894 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵 ∧ (𝑥 ∈ ℝ*𝐵 < 𝑥𝑥𝐶)) → 𝐴 < 𝑥)
16 simp33 1210 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵 ∧ (𝑥 ∈ ℝ*𝐵 < 𝑥𝑥𝐶)) → 𝑥𝐶)
1710, 15, 163jca 1127 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵 ∧ (𝑥 ∈ ℝ*𝐵 < 𝑥𝑥𝐶)) → (𝑥 ∈ ℝ*𝐴 < 𝑥𝑥𝐶))
18173expia 1120 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → ((𝑥 ∈ ℝ*𝐵 < 𝑥𝑥𝐶) → (𝑥 ∈ ℝ*𝐴 < 𝑥𝑥𝐶)))
1918pm4.71rd 563 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → ((𝑥 ∈ ℝ*𝐵 < 𝑥𝑥𝐶) ↔ ((𝑥 ∈ ℝ*𝐴 < 𝑥𝑥𝐶) ∧ (𝑥 ∈ ℝ*𝐵 < 𝑥𝑥𝐶))))
209, 19bitr4d 281 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → ((𝑥 ∈ (𝐴(,]𝐶) ∧ 𝑥 ∈ (𝐵(,]𝐶)) ↔ (𝑥 ∈ ℝ*𝐵 < 𝑥𝑥𝐶)))
211, 20syl5bb 283 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → (𝑥 ∈ ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) ↔ (𝑥 ∈ ℝ*𝐵 < 𝑥𝑥𝐶)))
2221, 8bitr4d 281 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → (𝑥 ∈ ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) ↔ 𝑥 ∈ (𝐵(,]𝐶)))
2322eqrdv 2736 1 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = (𝐵(,]𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  cin 3886   class class class wbr 5074  (class class class)co 7275  *cxr 11008   < clt 11009  cle 11010  (,]cioc 13080
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-pre-lttri 10945  ax-pre-lttrn 10946
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-ioc 13084
This theorem is referenced by:  iocinif  31102
  Copyright terms: Public domain W3C validator