Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iocinioc2 Structured version   Visualization version   GIF version

Theorem iocinioc2 30261
Description: Intersection between two open-below, closed-above intervals sharing the same upper bound. (Contributed by Thierry Arnoux, 7-Aug-2017.)
Assertion
Ref Expression
iocinioc2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = (𝐵(,]𝐶))

Proof of Theorem iocinioc2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elin 4057 . . . 4 (𝑥 ∈ ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) ↔ (𝑥 ∈ (𝐴(,]𝐶) ∧ 𝑥 ∈ (𝐵(,]𝐶)))
2 simpl1 1171 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → 𝐴 ∈ ℝ*)
3 simpl3 1173 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → 𝐶 ∈ ℝ*)
4 elioc1 12596 . . . . . . 7 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) → (𝑥 ∈ (𝐴(,]𝐶) ↔ (𝑥 ∈ ℝ*𝐴 < 𝑥𝑥𝐶)))
52, 3, 4syl2anc 576 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → (𝑥 ∈ (𝐴(,]𝐶) ↔ (𝑥 ∈ ℝ*𝐴 < 𝑥𝑥𝐶)))
6 simpl2 1172 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → 𝐵 ∈ ℝ*)
7 elioc1 12596 . . . . . . 7 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝑥 ∈ (𝐵(,]𝐶) ↔ (𝑥 ∈ ℝ*𝐵 < 𝑥𝑥𝐶)))
86, 3, 7syl2anc 576 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → (𝑥 ∈ (𝐵(,]𝐶) ↔ (𝑥 ∈ ℝ*𝐵 < 𝑥𝑥𝐶)))
95, 8anbi12d 621 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → ((𝑥 ∈ (𝐴(,]𝐶) ∧ 𝑥 ∈ (𝐵(,]𝐶)) ↔ ((𝑥 ∈ ℝ*𝐴 < 𝑥𝑥𝐶) ∧ (𝑥 ∈ ℝ*𝐵 < 𝑥𝑥𝐶))))
10 simp31 1189 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵 ∧ (𝑥 ∈ ℝ*𝐵 < 𝑥𝑥𝐶)) → 𝑥 ∈ ℝ*)
1123adant3 1112 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵 ∧ (𝑥 ∈ ℝ*𝐵 < 𝑥𝑥𝐶)) → 𝐴 ∈ ℝ*)
1263adant3 1112 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵 ∧ (𝑥 ∈ ℝ*𝐵 < 𝑥𝑥𝐶)) → 𝐵 ∈ ℝ*)
13 simp2 1117 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵 ∧ (𝑥 ∈ ℝ*𝐵 < 𝑥𝑥𝐶)) → 𝐴𝐵)
14 simp32 1190 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵 ∧ (𝑥 ∈ ℝ*𝐵 < 𝑥𝑥𝐶)) → 𝐵 < 𝑥)
1511, 12, 10, 13, 14xrlelttrd 12370 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵 ∧ (𝑥 ∈ ℝ*𝐵 < 𝑥𝑥𝐶)) → 𝐴 < 𝑥)
16 simp33 1191 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵 ∧ (𝑥 ∈ ℝ*𝐵 < 𝑥𝑥𝐶)) → 𝑥𝐶)
1710, 15, 163jca 1108 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵 ∧ (𝑥 ∈ ℝ*𝐵 < 𝑥𝑥𝐶)) → (𝑥 ∈ ℝ*𝐴 < 𝑥𝑥𝐶))
18173expia 1101 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → ((𝑥 ∈ ℝ*𝐵 < 𝑥𝑥𝐶) → (𝑥 ∈ ℝ*𝐴 < 𝑥𝑥𝐶)))
1918pm4.71rd 555 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → ((𝑥 ∈ ℝ*𝐵 < 𝑥𝑥𝐶) ↔ ((𝑥 ∈ ℝ*𝐴 < 𝑥𝑥𝐶) ∧ (𝑥 ∈ ℝ*𝐵 < 𝑥𝑥𝐶))))
209, 19bitr4d 274 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → ((𝑥 ∈ (𝐴(,]𝐶) ∧ 𝑥 ∈ (𝐵(,]𝐶)) ↔ (𝑥 ∈ ℝ*𝐵 < 𝑥𝑥𝐶)))
211, 20syl5bb 275 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → (𝑥 ∈ ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) ↔ (𝑥 ∈ ℝ*𝐵 < 𝑥𝑥𝐶)))
2221, 8bitr4d 274 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → (𝑥 ∈ ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) ↔ 𝑥 ∈ (𝐵(,]𝐶)))
2322eqrdv 2776 1 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = (𝐵(,]𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  w3a 1068   = wceq 1507  wcel 2050  cin 3828   class class class wbr 4929  (class class class)co 6976  *cxr 10473   < clt 10474  cle 10475  (,]cioc 12555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279  ax-cnex 10391  ax-resscn 10392  ax-pre-lttri 10409  ax-pre-lttrn 10410
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-nel 3074  df-ral 3093  df-rex 3094  df-rab 3097  df-v 3417  df-sbc 3682  df-csb 3787  df-dif 3832  df-un 3834  df-in 3836  df-ss 3843  df-nul 4179  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-op 4448  df-uni 4713  df-br 4930  df-opab 4992  df-mpt 5009  df-id 5312  df-po 5326  df-so 5327  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-ov 6979  df-oprab 6980  df-mpo 6981  df-er 8089  df-en 8307  df-dom 8308  df-sdom 8309  df-pnf 10476  df-mnf 10477  df-xr 10478  df-ltxr 10479  df-le 10480  df-ioc 12559
This theorem is referenced by:  iocinif  30263
  Copyright terms: Public domain W3C validator