Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iocinioc2 Structured version   Visualization version   GIF version

Theorem iocinioc2 32702
Description: Intersection between two open-below, closed-above intervals sharing the same upper bound. (Contributed by Thierry Arnoux, 7-Aug-2017.)
Assertion
Ref Expression
iocinioc2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = (𝐵(,]𝐶))

Proof of Theorem iocinioc2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elin 3930 . . . 4 (𝑥 ∈ ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) ↔ (𝑥 ∈ (𝐴(,]𝐶) ∧ 𝑥 ∈ (𝐵(,]𝐶)))
2 simpl1 1192 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → 𝐴 ∈ ℝ*)
3 simpl3 1194 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → 𝐶 ∈ ℝ*)
4 elioc1 13348 . . . . . . 7 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) → (𝑥 ∈ (𝐴(,]𝐶) ↔ (𝑥 ∈ ℝ*𝐴 < 𝑥𝑥𝐶)))
52, 3, 4syl2anc 584 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → (𝑥 ∈ (𝐴(,]𝐶) ↔ (𝑥 ∈ ℝ*𝐴 < 𝑥𝑥𝐶)))
6 simpl2 1193 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → 𝐵 ∈ ℝ*)
7 elioc1 13348 . . . . . . 7 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝑥 ∈ (𝐵(,]𝐶) ↔ (𝑥 ∈ ℝ*𝐵 < 𝑥𝑥𝐶)))
86, 3, 7syl2anc 584 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → (𝑥 ∈ (𝐵(,]𝐶) ↔ (𝑥 ∈ ℝ*𝐵 < 𝑥𝑥𝐶)))
95, 8anbi12d 632 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → ((𝑥 ∈ (𝐴(,]𝐶) ∧ 𝑥 ∈ (𝐵(,]𝐶)) ↔ ((𝑥 ∈ ℝ*𝐴 < 𝑥𝑥𝐶) ∧ (𝑥 ∈ ℝ*𝐵 < 𝑥𝑥𝐶))))
10 simp31 1210 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵 ∧ (𝑥 ∈ ℝ*𝐵 < 𝑥𝑥𝐶)) → 𝑥 ∈ ℝ*)
1123adant3 1132 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵 ∧ (𝑥 ∈ ℝ*𝐵 < 𝑥𝑥𝐶)) → 𝐴 ∈ ℝ*)
1263adant3 1132 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵 ∧ (𝑥 ∈ ℝ*𝐵 < 𝑥𝑥𝐶)) → 𝐵 ∈ ℝ*)
13 simp2 1137 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵 ∧ (𝑥 ∈ ℝ*𝐵 < 𝑥𝑥𝐶)) → 𝐴𝐵)
14 simp32 1211 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵 ∧ (𝑥 ∈ ℝ*𝐵 < 𝑥𝑥𝐶)) → 𝐵 < 𝑥)
1511, 12, 10, 13, 14xrlelttrd 13120 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵 ∧ (𝑥 ∈ ℝ*𝐵 < 𝑥𝑥𝐶)) → 𝐴 < 𝑥)
16 simp33 1212 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵 ∧ (𝑥 ∈ ℝ*𝐵 < 𝑥𝑥𝐶)) → 𝑥𝐶)
1710, 15, 163jca 1128 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵 ∧ (𝑥 ∈ ℝ*𝐵 < 𝑥𝑥𝐶)) → (𝑥 ∈ ℝ*𝐴 < 𝑥𝑥𝐶))
18173expia 1121 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → ((𝑥 ∈ ℝ*𝐵 < 𝑥𝑥𝐶) → (𝑥 ∈ ℝ*𝐴 < 𝑥𝑥𝐶)))
1918pm4.71rd 562 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → ((𝑥 ∈ ℝ*𝐵 < 𝑥𝑥𝐶) ↔ ((𝑥 ∈ ℝ*𝐴 < 𝑥𝑥𝐶) ∧ (𝑥 ∈ ℝ*𝐵 < 𝑥𝑥𝐶))))
209, 19bitr4d 282 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → ((𝑥 ∈ (𝐴(,]𝐶) ∧ 𝑥 ∈ (𝐵(,]𝐶)) ↔ (𝑥 ∈ ℝ*𝐵 < 𝑥𝑥𝐶)))
211, 20bitrid 283 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → (𝑥 ∈ ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) ↔ (𝑥 ∈ ℝ*𝐵 < 𝑥𝑥𝐶)))
2221, 8bitr4d 282 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → (𝑥 ∈ ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) ↔ 𝑥 ∈ (𝐵(,]𝐶)))
2322eqrdv 2727 1 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = (𝐵(,]𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  cin 3913   class class class wbr 5107  (class class class)co 7387  *cxr 11207   < clt 11208  cle 11209  (,]cioc 13307
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-pre-lttri 11142  ax-pre-lttrn 11143
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-po 5546  df-so 5547  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-ioc 13311
This theorem is referenced by:  iocinif  32704
  Copyright terms: Public domain W3C validator