Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iocinioc2 Structured version   Visualization version   GIF version

Theorem iocinioc2 32756
Description: Intersection between two open-below, closed-above intervals sharing the same upper bound. (Contributed by Thierry Arnoux, 7-Aug-2017.)
Assertion
Ref Expression
iocinioc2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = (𝐵(,]𝐶))

Proof of Theorem iocinioc2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elin 3942 . . . 4 (𝑥 ∈ ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) ↔ (𝑥 ∈ (𝐴(,]𝐶) ∧ 𝑥 ∈ (𝐵(,]𝐶)))
2 simpl1 1192 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → 𝐴 ∈ ℝ*)
3 simpl3 1194 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → 𝐶 ∈ ℝ*)
4 elioc1 13404 . . . . . . 7 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) → (𝑥 ∈ (𝐴(,]𝐶) ↔ (𝑥 ∈ ℝ*𝐴 < 𝑥𝑥𝐶)))
52, 3, 4syl2anc 584 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → (𝑥 ∈ (𝐴(,]𝐶) ↔ (𝑥 ∈ ℝ*𝐴 < 𝑥𝑥𝐶)))
6 simpl2 1193 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → 𝐵 ∈ ℝ*)
7 elioc1 13404 . . . . . . 7 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝑥 ∈ (𝐵(,]𝐶) ↔ (𝑥 ∈ ℝ*𝐵 < 𝑥𝑥𝐶)))
86, 3, 7syl2anc 584 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → (𝑥 ∈ (𝐵(,]𝐶) ↔ (𝑥 ∈ ℝ*𝐵 < 𝑥𝑥𝐶)))
95, 8anbi12d 632 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → ((𝑥 ∈ (𝐴(,]𝐶) ∧ 𝑥 ∈ (𝐵(,]𝐶)) ↔ ((𝑥 ∈ ℝ*𝐴 < 𝑥𝑥𝐶) ∧ (𝑥 ∈ ℝ*𝐵 < 𝑥𝑥𝐶))))
10 simp31 1210 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵 ∧ (𝑥 ∈ ℝ*𝐵 < 𝑥𝑥𝐶)) → 𝑥 ∈ ℝ*)
1123adant3 1132 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵 ∧ (𝑥 ∈ ℝ*𝐵 < 𝑥𝑥𝐶)) → 𝐴 ∈ ℝ*)
1263adant3 1132 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵 ∧ (𝑥 ∈ ℝ*𝐵 < 𝑥𝑥𝐶)) → 𝐵 ∈ ℝ*)
13 simp2 1137 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵 ∧ (𝑥 ∈ ℝ*𝐵 < 𝑥𝑥𝐶)) → 𝐴𝐵)
14 simp32 1211 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵 ∧ (𝑥 ∈ ℝ*𝐵 < 𝑥𝑥𝐶)) → 𝐵 < 𝑥)
1511, 12, 10, 13, 14xrlelttrd 13176 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵 ∧ (𝑥 ∈ ℝ*𝐵 < 𝑥𝑥𝐶)) → 𝐴 < 𝑥)
16 simp33 1212 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵 ∧ (𝑥 ∈ ℝ*𝐵 < 𝑥𝑥𝐶)) → 𝑥𝐶)
1710, 15, 163jca 1128 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵 ∧ (𝑥 ∈ ℝ*𝐵 < 𝑥𝑥𝐶)) → (𝑥 ∈ ℝ*𝐴 < 𝑥𝑥𝐶))
18173expia 1121 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → ((𝑥 ∈ ℝ*𝐵 < 𝑥𝑥𝐶) → (𝑥 ∈ ℝ*𝐴 < 𝑥𝑥𝐶)))
1918pm4.71rd 562 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → ((𝑥 ∈ ℝ*𝐵 < 𝑥𝑥𝐶) ↔ ((𝑥 ∈ ℝ*𝐴 < 𝑥𝑥𝐶) ∧ (𝑥 ∈ ℝ*𝐵 < 𝑥𝑥𝐶))))
209, 19bitr4d 282 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → ((𝑥 ∈ (𝐴(,]𝐶) ∧ 𝑥 ∈ (𝐵(,]𝐶)) ↔ (𝑥 ∈ ℝ*𝐵 < 𝑥𝑥𝐶)))
211, 20bitrid 283 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → (𝑥 ∈ ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) ↔ (𝑥 ∈ ℝ*𝐵 < 𝑥𝑥𝐶)))
2221, 8bitr4d 282 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → (𝑥 ∈ ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) ↔ 𝑥 ∈ (𝐵(,]𝐶)))
2322eqrdv 2733 1 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = (𝐵(,]𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  cin 3925   class class class wbr 5119  (class class class)co 7405  *cxr 11268   < clt 11269  cle 11270  (,]cioc 13363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-pre-lttri 11203  ax-pre-lttrn 11204
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-po 5561  df-so 5562  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-ioc 13367
This theorem is referenced by:  iocinif  32758
  Copyright terms: Public domain W3C validator