MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ubioc1 Structured version   Visualization version   GIF version

Theorem ubioc1 13431
Description: The upper bound belongs to an open-below, closed-above interval. See ubicc2 13496. (Contributed by FL, 29-May-2014.)
Assertion
Ref Expression
ubioc1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → 𝐵 ∈ (𝐴(,]𝐵))

Proof of Theorem ubioc1
StepHypRef Expression
1 simp2 1134 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → 𝐵 ∈ ℝ*)
2 simp3 1135 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → 𝐴 < 𝐵)
3 xrleid 13184 . . 3 (𝐵 ∈ ℝ*𝐵𝐵)
433ad2ant2 1131 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → 𝐵𝐵)
5 elioc1 13420 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐵 ∈ (𝐴(,]𝐵) ↔ (𝐵 ∈ ℝ*𝐴 < 𝐵𝐵𝐵)))
653adant3 1129 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → (𝐵 ∈ (𝐴(,]𝐵) ↔ (𝐵 ∈ ℝ*𝐴 < 𝐵𝐵𝐵)))
71, 2, 4, 6mpbir3and 1339 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → 𝐵 ∈ (𝐴(,]𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1084  wcel 2099   class class class wbr 5153  (class class class)co 7424  *cxr 11297   < clt 11298  cle 11299  (,]cioc 13379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-pre-lttri 11232  ax-pre-lttrn 11233
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-br 5154  df-opab 5216  df-mpt 5237  df-id 5580  df-po 5594  df-so 5595  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-ov 7427  df-oprab 7428  df-mpo 7429  df-er 8734  df-en 8975  df-dom 8976  df-sdom 8977  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-ioc 13383
This theorem is referenced by:  xrlimcnp  26996  pnfneige0  33766  lmxrge0  33767  bj-minftyccb  36932  dvasin  37405  dvacos  37406  limcresiooub  45263  xlimpnfvlem1  45457  fourierdlem79  45806  fourierdlem93  45820  fouriersw  45852
  Copyright terms: Public domain W3C validator