|   | Mathbox for Scott Fenton | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hfelhf | Structured version Visualization version GIF version | ||
| Description: Any member of an HF set is itself an HF set. (Contributed by Scott Fenton, 16-Jul-2015.) | 
| Ref | Expression | 
|---|---|
| hfelhf | ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ Hf ) → 𝐴 ∈ Hf ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rankelg 36169 | . . 3 ⊢ ((𝐵 ∈ Hf ∧ 𝐴 ∈ 𝐵) → (rank‘𝐴) ∈ (rank‘𝐵)) | |
| 2 | 1 | ancoms 458 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ Hf ) → (rank‘𝐴) ∈ (rank‘𝐵)) | 
| 3 | elhf2g 36177 | . . . 4 ⊢ (𝐵 ∈ Hf → (𝐵 ∈ Hf ↔ (rank‘𝐵) ∈ ω)) | |
| 4 | 3 | ibi 267 | . . 3 ⊢ (𝐵 ∈ Hf → (rank‘𝐵) ∈ ω) | 
| 5 | elnn 7898 | . . . . . 6 ⊢ (((rank‘𝐴) ∈ (rank‘𝐵) ∧ (rank‘𝐵) ∈ ω) → (rank‘𝐴) ∈ ω) | |
| 6 | elhf2g 36177 | . . . . . 6 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ Hf ↔ (rank‘𝐴) ∈ ω)) | |
| 7 | 5, 6 | imbitrrid 246 | . . . . 5 ⊢ (𝐴 ∈ 𝐵 → (((rank‘𝐴) ∈ (rank‘𝐵) ∧ (rank‘𝐵) ∈ ω) → 𝐴 ∈ Hf )) | 
| 8 | 7 | expcomd 416 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → ((rank‘𝐵) ∈ ω → ((rank‘𝐴) ∈ (rank‘𝐵) → 𝐴 ∈ Hf ))) | 
| 9 | 8 | imp 406 | . . 3 ⊢ ((𝐴 ∈ 𝐵 ∧ (rank‘𝐵) ∈ ω) → ((rank‘𝐴) ∈ (rank‘𝐵) → 𝐴 ∈ Hf )) | 
| 10 | 4, 9 | sylan2 593 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ Hf ) → ((rank‘𝐴) ∈ (rank‘𝐵) → 𝐴 ∈ Hf )) | 
| 11 | 2, 10 | mpd 15 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ Hf ) → 𝐴 ∈ Hf ) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ‘cfv 6561 ωcom 7887 rankcrnk 9803 Hf chf 36173 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-reg 9632 ax-inf2 9681 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-om 7888 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-r1 9804 df-rank 9805 df-hf 36174 | 
| This theorem is referenced by: hftr 36183 hfext 36184 | 
| Copyright terms: Public domain | W3C validator |