Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elpadd Structured version   Visualization version   GIF version

Theorem elpadd 36417
Description: Member of a projective subspace sum. (Contributed by NM, 29-Dec-2011.)
Hypotheses
Ref Expression
paddfval.l = (le‘𝐾)
paddfval.j = (join‘𝐾)
paddfval.a 𝐴 = (Atoms‘𝐾)
paddfval.p + = (+𝑃𝐾)
Assertion
Ref Expression
elpadd ((𝐾𝐵𝑋𝐴𝑌𝐴) → (𝑆 ∈ (𝑋 + 𝑌) ↔ ((𝑆𝑋𝑆𝑌) ∨ (𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟)))))
Distinct variable groups:   𝑟,𝑞,𝐾   𝑋,𝑞   𝑌,𝑞,𝑟   𝑆,𝑞,𝑟
Allowed substitution hints:   𝐴(𝑟,𝑞)   𝐵(𝑟,𝑞)   + (𝑟,𝑞)   (𝑟,𝑞)   (𝑟,𝑞)   𝑋(𝑟)

Proof of Theorem elpadd
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 paddfval.l . . . 4 = (le‘𝐾)
2 paddfval.j . . . 4 = (join‘𝐾)
3 paddfval.a . . . 4 𝐴 = (Atoms‘𝐾)
4 paddfval.p . . . 4 + = (+𝑃𝐾)
51, 2, 3, 4paddval 36416 . . 3 ((𝐾𝐵𝑋𝐴𝑌𝐴) → (𝑋 + 𝑌) = ((𝑋𝑌) ∪ {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝 (𝑞 𝑟)}))
65eleq2d 2844 . 2 ((𝐾𝐵𝑋𝐴𝑌𝐴) → (𝑆 ∈ (𝑋 + 𝑌) ↔ 𝑆 ∈ ((𝑋𝑌) ∪ {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝 (𝑞 𝑟)})))
7 elun 4007 . . 3 (𝑆 ∈ ((𝑋𝑌) ∪ {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝 (𝑞 𝑟)}) ↔ (𝑆 ∈ (𝑋𝑌) ∨ 𝑆 ∈ {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝 (𝑞 𝑟)}))
8 elun 4007 . . . 4 (𝑆 ∈ (𝑋𝑌) ↔ (𝑆𝑋𝑆𝑌))
9 breq1 4928 . . . . . 6 (𝑝 = 𝑆 → (𝑝 (𝑞 𝑟) ↔ 𝑆 (𝑞 𝑟)))
1092rexbidv 3238 . . . . 5 (𝑝 = 𝑆 → (∃𝑞𝑋𝑟𝑌 𝑝 (𝑞 𝑟) ↔ ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟)))
1110elrab 3588 . . . 4 (𝑆 ∈ {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝 (𝑞 𝑟)} ↔ (𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟)))
128, 11orbi12i 899 . . 3 ((𝑆 ∈ (𝑋𝑌) ∨ 𝑆 ∈ {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝 (𝑞 𝑟)}) ↔ ((𝑆𝑋𝑆𝑌) ∨ (𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟))))
137, 12bitri 267 . 2 (𝑆 ∈ ((𝑋𝑌) ∪ {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝 (𝑞 𝑟)}) ↔ ((𝑆𝑋𝑆𝑌) ∨ (𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟))))
146, 13syl6bb 279 1 ((𝐾𝐵𝑋𝐴𝑌𝐴) → (𝑆 ∈ (𝑋 + 𝑌) ↔ ((𝑆𝑋𝑆𝑌) ∨ (𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  wo 834  w3a 1069   = wceq 1508  wcel 2051  wrex 3082  {crab 3085  cun 3820  wss 3822   class class class wbr 4925  cfv 6185  (class class class)co 6974  lecple 16426  joincjn 17424  Atomscatm 35881  +𝑃cpadd 36413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2743  ax-rep 5045  ax-sep 5056  ax-nul 5063  ax-pow 5115  ax-pr 5182  ax-un 7277
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2752  df-cleq 2764  df-clel 2839  df-nfc 2911  df-ne 2961  df-ral 3086  df-rex 3087  df-reu 3088  df-rab 3090  df-v 3410  df-sbc 3675  df-csb 3780  df-dif 3825  df-un 3827  df-in 3829  df-ss 3836  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-op 4442  df-uni 4709  df-iun 4790  df-br 4926  df-opab 4988  df-mpt 5005  df-id 5308  df-xp 5409  df-rel 5410  df-cnv 5411  df-co 5412  df-dm 5413  df-rn 5414  df-res 5415  df-ima 5416  df-iota 6149  df-fun 6187  df-fn 6188  df-f 6189  df-f1 6190  df-fo 6191  df-f1o 6192  df-fv 6193  df-ov 6977  df-oprab 6978  df-mpo 6979  df-1st 7499  df-2nd 7500  df-padd 36414
This theorem is referenced by:  elpaddn0  36418  elpadd0  36427  paddss1  36435  paddss2  36436  paddidm  36459  paddclN  36460  pmapjoin  36470
  Copyright terms: Public domain W3C validator