| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elpadd | Structured version Visualization version GIF version | ||
| Description: Member of a projective subspace sum. (Contributed by NM, 29-Dec-2011.) |
| Ref | Expression |
|---|---|
| paddfval.l | ⊢ ≤ = (le‘𝐾) |
| paddfval.j | ⊢ ∨ = (join‘𝐾) |
| paddfval.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| paddfval.p | ⊢ + = (+𝑃‘𝐾) |
| Ref | Expression |
|---|---|
| elpadd | ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → (𝑆 ∈ (𝑋 + 𝑌) ↔ ((𝑆 ∈ 𝑋 ∨ 𝑆 ∈ 𝑌) ∨ (𝑆 ∈ 𝐴 ∧ ∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑌 𝑆 ≤ (𝑞 ∨ 𝑟))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | paddfval.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 2 | paddfval.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
| 3 | paddfval.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 4 | paddfval.p | . . . 4 ⊢ + = (+𝑃‘𝐾) | |
| 5 | 1, 2, 3, 4 | paddval 39765 | . . 3 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → (𝑋 + 𝑌) = ((𝑋 ∪ 𝑌) ∪ {𝑝 ∈ 𝐴 ∣ ∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑌 𝑝 ≤ (𝑞 ∨ 𝑟)})) |
| 6 | 5 | eleq2d 2814 | . 2 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → (𝑆 ∈ (𝑋 + 𝑌) ↔ 𝑆 ∈ ((𝑋 ∪ 𝑌) ∪ {𝑝 ∈ 𝐴 ∣ ∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑌 𝑝 ≤ (𝑞 ∨ 𝑟)}))) |
| 7 | elun 4112 | . . 3 ⊢ (𝑆 ∈ ((𝑋 ∪ 𝑌) ∪ {𝑝 ∈ 𝐴 ∣ ∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑌 𝑝 ≤ (𝑞 ∨ 𝑟)}) ↔ (𝑆 ∈ (𝑋 ∪ 𝑌) ∨ 𝑆 ∈ {𝑝 ∈ 𝐴 ∣ ∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑌 𝑝 ≤ (𝑞 ∨ 𝑟)})) | |
| 8 | elun 4112 | . . . 4 ⊢ (𝑆 ∈ (𝑋 ∪ 𝑌) ↔ (𝑆 ∈ 𝑋 ∨ 𝑆 ∈ 𝑌)) | |
| 9 | breq1 5105 | . . . . . 6 ⊢ (𝑝 = 𝑆 → (𝑝 ≤ (𝑞 ∨ 𝑟) ↔ 𝑆 ≤ (𝑞 ∨ 𝑟))) | |
| 10 | 9 | 2rexbidv 3200 | . . . . 5 ⊢ (𝑝 = 𝑆 → (∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑌 𝑝 ≤ (𝑞 ∨ 𝑟) ↔ ∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑌 𝑆 ≤ (𝑞 ∨ 𝑟))) |
| 11 | 10 | elrab 3656 | . . . 4 ⊢ (𝑆 ∈ {𝑝 ∈ 𝐴 ∣ ∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑌 𝑝 ≤ (𝑞 ∨ 𝑟)} ↔ (𝑆 ∈ 𝐴 ∧ ∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑌 𝑆 ≤ (𝑞 ∨ 𝑟))) |
| 12 | 8, 11 | orbi12i 914 | . . 3 ⊢ ((𝑆 ∈ (𝑋 ∪ 𝑌) ∨ 𝑆 ∈ {𝑝 ∈ 𝐴 ∣ ∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑌 𝑝 ≤ (𝑞 ∨ 𝑟)}) ↔ ((𝑆 ∈ 𝑋 ∨ 𝑆 ∈ 𝑌) ∨ (𝑆 ∈ 𝐴 ∧ ∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑌 𝑆 ≤ (𝑞 ∨ 𝑟)))) |
| 13 | 7, 12 | bitri 275 | . 2 ⊢ (𝑆 ∈ ((𝑋 ∪ 𝑌) ∪ {𝑝 ∈ 𝐴 ∣ ∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑌 𝑝 ≤ (𝑞 ∨ 𝑟)}) ↔ ((𝑆 ∈ 𝑋 ∨ 𝑆 ∈ 𝑌) ∨ (𝑆 ∈ 𝐴 ∧ ∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑌 𝑆 ≤ (𝑞 ∨ 𝑟)))) |
| 14 | 6, 13 | bitrdi 287 | 1 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → (𝑆 ∈ (𝑋 + 𝑌) ↔ ((𝑆 ∈ 𝑋 ∨ 𝑆 ∈ 𝑌) ∨ (𝑆 ∈ 𝐴 ∧ ∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑌 𝑆 ≤ (𝑞 ∨ 𝑟))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 {crab 3402 ∪ cun 3909 ⊆ wss 3911 class class class wbr 5102 ‘cfv 6499 (class class class)co 7369 lecple 17203 joincjn 18248 Atomscatm 39229 +𝑃cpadd 39762 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-padd 39763 |
| This theorem is referenced by: elpaddn0 39767 elpadd0 39776 paddss1 39784 paddss2 39785 paddidm 39808 paddclN 39809 pmapjoin 39819 |
| Copyright terms: Public domain | W3C validator |