| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elqtop | Structured version Visualization version GIF version | ||
| Description: Value of the quotient topology function. (Contributed by Mario Carneiro, 23-Mar-2015.) |
| Ref | Expression |
|---|---|
| qtopval.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| elqtop | ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐹:𝑍–onto→𝑌 ∧ 𝑍 ⊆ 𝑋) → (𝐴 ∈ (𝐽 qTop 𝐹) ↔ (𝐴 ⊆ 𝑌 ∧ (◡𝐹 “ 𝐴) ∈ 𝐽))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qtopval.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | qtopval2 23583 | . . 3 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐹:𝑍–onto→𝑌 ∧ 𝑍 ⊆ 𝑋) → (𝐽 qTop 𝐹) = {𝑠 ∈ 𝒫 𝑌 ∣ (◡𝐹 “ 𝑠) ∈ 𝐽}) |
| 3 | 2 | eleq2d 2814 | . 2 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐹:𝑍–onto→𝑌 ∧ 𝑍 ⊆ 𝑋) → (𝐴 ∈ (𝐽 qTop 𝐹) ↔ 𝐴 ∈ {𝑠 ∈ 𝒫 𝑌 ∣ (◡𝐹 “ 𝑠) ∈ 𝐽})) |
| 4 | imaeq2 6027 | . . . . 5 ⊢ (𝑠 = 𝐴 → (◡𝐹 “ 𝑠) = (◡𝐹 “ 𝐴)) | |
| 5 | 4 | eleq1d 2813 | . . . 4 ⊢ (𝑠 = 𝐴 → ((◡𝐹 “ 𝑠) ∈ 𝐽 ↔ (◡𝐹 “ 𝐴) ∈ 𝐽)) |
| 6 | 5 | elrab 3659 | . . 3 ⊢ (𝐴 ∈ {𝑠 ∈ 𝒫 𝑌 ∣ (◡𝐹 “ 𝑠) ∈ 𝐽} ↔ (𝐴 ∈ 𝒫 𝑌 ∧ (◡𝐹 “ 𝐴) ∈ 𝐽)) |
| 7 | uniexg 7716 | . . . . . . . . 9 ⊢ (𝐽 ∈ 𝑉 → ∪ 𝐽 ∈ V) | |
| 8 | 1, 7 | eqeltrid 2832 | . . . . . . . 8 ⊢ (𝐽 ∈ 𝑉 → 𝑋 ∈ V) |
| 9 | 8 | 3ad2ant1 1133 | . . . . . . 7 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐹:𝑍–onto→𝑌 ∧ 𝑍 ⊆ 𝑋) → 𝑋 ∈ V) |
| 10 | simp3 1138 | . . . . . . 7 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐹:𝑍–onto→𝑌 ∧ 𝑍 ⊆ 𝑋) → 𝑍 ⊆ 𝑋) | |
| 11 | 9, 10 | ssexd 5279 | . . . . . 6 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐹:𝑍–onto→𝑌 ∧ 𝑍 ⊆ 𝑋) → 𝑍 ∈ V) |
| 12 | simp2 1137 | . . . . . 6 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐹:𝑍–onto→𝑌 ∧ 𝑍 ⊆ 𝑋) → 𝐹:𝑍–onto→𝑌) | |
| 13 | focdmex 7934 | . . . . . 6 ⊢ (𝑍 ∈ V → (𝐹:𝑍–onto→𝑌 → 𝑌 ∈ V)) | |
| 14 | 11, 12, 13 | sylc 65 | . . . . 5 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐹:𝑍–onto→𝑌 ∧ 𝑍 ⊆ 𝑋) → 𝑌 ∈ V) |
| 15 | elpw2g 5288 | . . . . 5 ⊢ (𝑌 ∈ V → (𝐴 ∈ 𝒫 𝑌 ↔ 𝐴 ⊆ 𝑌)) | |
| 16 | 14, 15 | syl 17 | . . . 4 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐹:𝑍–onto→𝑌 ∧ 𝑍 ⊆ 𝑋) → (𝐴 ∈ 𝒫 𝑌 ↔ 𝐴 ⊆ 𝑌)) |
| 17 | 16 | anbi1d 631 | . . 3 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐹:𝑍–onto→𝑌 ∧ 𝑍 ⊆ 𝑋) → ((𝐴 ∈ 𝒫 𝑌 ∧ (◡𝐹 “ 𝐴) ∈ 𝐽) ↔ (𝐴 ⊆ 𝑌 ∧ (◡𝐹 “ 𝐴) ∈ 𝐽))) |
| 18 | 6, 17 | bitrid 283 | . 2 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐹:𝑍–onto→𝑌 ∧ 𝑍 ⊆ 𝑋) → (𝐴 ∈ {𝑠 ∈ 𝒫 𝑌 ∣ (◡𝐹 “ 𝑠) ∈ 𝐽} ↔ (𝐴 ⊆ 𝑌 ∧ (◡𝐹 “ 𝐴) ∈ 𝐽))) |
| 19 | 3, 18 | bitrd 279 | 1 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐹:𝑍–onto→𝑌 ∧ 𝑍 ⊆ 𝑋) → (𝐴 ∈ (𝐽 qTop 𝐹) ↔ (𝐴 ⊆ 𝑌 ∧ (◡𝐹 “ 𝐴) ∈ 𝐽))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {crab 3405 Vcvv 3447 ⊆ wss 3914 𝒫 cpw 4563 ∪ cuni 4871 ◡ccnv 5637 “ cima 5641 –onto→wfo 6509 (class class class)co 7387 qTop cqtop 17466 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-qtop 17470 |
| This theorem is referenced by: qtoptop2 23586 elqtop2 23588 elqtop3 23590 |
| Copyright terms: Public domain | W3C validator |