![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elqtop | Structured version Visualization version GIF version |
Description: Value of the quotient topology function. (Contributed by Mario Carneiro, 23-Mar-2015.) |
Ref | Expression |
---|---|
qtopval.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
elqtop | ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐹:𝑍–onto→𝑌 ∧ 𝑍 ⊆ 𝑋) → (𝐴 ∈ (𝐽 qTop 𝐹) ↔ (𝐴 ⊆ 𝑌 ∧ (◡𝐹 “ 𝐴) ∈ 𝐽))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qtopval.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
2 | 1 | qtopval2 23725 | . . 3 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐹:𝑍–onto→𝑌 ∧ 𝑍 ⊆ 𝑋) → (𝐽 qTop 𝐹) = {𝑠 ∈ 𝒫 𝑌 ∣ (◡𝐹 “ 𝑠) ∈ 𝐽}) |
3 | 2 | eleq2d 2830 | . 2 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐹:𝑍–onto→𝑌 ∧ 𝑍 ⊆ 𝑋) → (𝐴 ∈ (𝐽 qTop 𝐹) ↔ 𝐴 ∈ {𝑠 ∈ 𝒫 𝑌 ∣ (◡𝐹 “ 𝑠) ∈ 𝐽})) |
4 | imaeq2 6085 | . . . . 5 ⊢ (𝑠 = 𝐴 → (◡𝐹 “ 𝑠) = (◡𝐹 “ 𝐴)) | |
5 | 4 | eleq1d 2829 | . . . 4 ⊢ (𝑠 = 𝐴 → ((◡𝐹 “ 𝑠) ∈ 𝐽 ↔ (◡𝐹 “ 𝐴) ∈ 𝐽)) |
6 | 5 | elrab 3708 | . . 3 ⊢ (𝐴 ∈ {𝑠 ∈ 𝒫 𝑌 ∣ (◡𝐹 “ 𝑠) ∈ 𝐽} ↔ (𝐴 ∈ 𝒫 𝑌 ∧ (◡𝐹 “ 𝐴) ∈ 𝐽)) |
7 | uniexg 7775 | . . . . . . . . 9 ⊢ (𝐽 ∈ 𝑉 → ∪ 𝐽 ∈ V) | |
8 | 1, 7 | eqeltrid 2848 | . . . . . . . 8 ⊢ (𝐽 ∈ 𝑉 → 𝑋 ∈ V) |
9 | 8 | 3ad2ant1 1133 | . . . . . . 7 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐹:𝑍–onto→𝑌 ∧ 𝑍 ⊆ 𝑋) → 𝑋 ∈ V) |
10 | simp3 1138 | . . . . . . 7 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐹:𝑍–onto→𝑌 ∧ 𝑍 ⊆ 𝑋) → 𝑍 ⊆ 𝑋) | |
11 | 9, 10 | ssexd 5342 | . . . . . 6 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐹:𝑍–onto→𝑌 ∧ 𝑍 ⊆ 𝑋) → 𝑍 ∈ V) |
12 | simp2 1137 | . . . . . 6 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐹:𝑍–onto→𝑌 ∧ 𝑍 ⊆ 𝑋) → 𝐹:𝑍–onto→𝑌) | |
13 | focdmex 7996 | . . . . . 6 ⊢ (𝑍 ∈ V → (𝐹:𝑍–onto→𝑌 → 𝑌 ∈ V)) | |
14 | 11, 12, 13 | sylc 65 | . . . . 5 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐹:𝑍–onto→𝑌 ∧ 𝑍 ⊆ 𝑋) → 𝑌 ∈ V) |
15 | elpw2g 5351 | . . . . 5 ⊢ (𝑌 ∈ V → (𝐴 ∈ 𝒫 𝑌 ↔ 𝐴 ⊆ 𝑌)) | |
16 | 14, 15 | syl 17 | . . . 4 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐹:𝑍–onto→𝑌 ∧ 𝑍 ⊆ 𝑋) → (𝐴 ∈ 𝒫 𝑌 ↔ 𝐴 ⊆ 𝑌)) |
17 | 16 | anbi1d 630 | . . 3 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐹:𝑍–onto→𝑌 ∧ 𝑍 ⊆ 𝑋) → ((𝐴 ∈ 𝒫 𝑌 ∧ (◡𝐹 “ 𝐴) ∈ 𝐽) ↔ (𝐴 ⊆ 𝑌 ∧ (◡𝐹 “ 𝐴) ∈ 𝐽))) |
18 | 6, 17 | bitrid 283 | . 2 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐹:𝑍–onto→𝑌 ∧ 𝑍 ⊆ 𝑋) → (𝐴 ∈ {𝑠 ∈ 𝒫 𝑌 ∣ (◡𝐹 “ 𝑠) ∈ 𝐽} ↔ (𝐴 ⊆ 𝑌 ∧ (◡𝐹 “ 𝐴) ∈ 𝐽))) |
19 | 3, 18 | bitrd 279 | 1 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐹:𝑍–onto→𝑌 ∧ 𝑍 ⊆ 𝑋) → (𝐴 ∈ (𝐽 qTop 𝐹) ↔ (𝐴 ⊆ 𝑌 ∧ (◡𝐹 “ 𝐴) ∈ 𝐽))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 {crab 3443 Vcvv 3488 ⊆ wss 3976 𝒫 cpw 4622 ∪ cuni 4931 ◡ccnv 5699 “ cima 5703 –onto→wfo 6571 (class class class)co 7448 qTop cqtop 17563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-qtop 17567 |
This theorem is referenced by: qtoptop2 23728 elqtop2 23730 elqtop3 23732 |
Copyright terms: Public domain | W3C validator |