Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elqtop | Structured version Visualization version GIF version |
Description: Value of the quotient topology function. (Contributed by Mario Carneiro, 23-Mar-2015.) |
Ref | Expression |
---|---|
qtopval.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
elqtop | ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐹:𝑍–onto→𝑌 ∧ 𝑍 ⊆ 𝑋) → (𝐴 ∈ (𝐽 qTop 𝐹) ↔ (𝐴 ⊆ 𝑌 ∧ (◡𝐹 “ 𝐴) ∈ 𝐽))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qtopval.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
2 | 1 | qtopval2 22755 | . . 3 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐹:𝑍–onto→𝑌 ∧ 𝑍 ⊆ 𝑋) → (𝐽 qTop 𝐹) = {𝑠 ∈ 𝒫 𝑌 ∣ (◡𝐹 “ 𝑠) ∈ 𝐽}) |
3 | 2 | eleq2d 2824 | . 2 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐹:𝑍–onto→𝑌 ∧ 𝑍 ⊆ 𝑋) → (𝐴 ∈ (𝐽 qTop 𝐹) ↔ 𝐴 ∈ {𝑠 ∈ 𝒫 𝑌 ∣ (◡𝐹 “ 𝑠) ∈ 𝐽})) |
4 | imaeq2 5954 | . . . . 5 ⊢ (𝑠 = 𝐴 → (◡𝐹 “ 𝑠) = (◡𝐹 “ 𝐴)) | |
5 | 4 | eleq1d 2823 | . . . 4 ⊢ (𝑠 = 𝐴 → ((◡𝐹 “ 𝑠) ∈ 𝐽 ↔ (◡𝐹 “ 𝐴) ∈ 𝐽)) |
6 | 5 | elrab 3617 | . . 3 ⊢ (𝐴 ∈ {𝑠 ∈ 𝒫 𝑌 ∣ (◡𝐹 “ 𝑠) ∈ 𝐽} ↔ (𝐴 ∈ 𝒫 𝑌 ∧ (◡𝐹 “ 𝐴) ∈ 𝐽)) |
7 | uniexg 7571 | . . . . . . . . 9 ⊢ (𝐽 ∈ 𝑉 → ∪ 𝐽 ∈ V) | |
8 | 1, 7 | eqeltrid 2843 | . . . . . . . 8 ⊢ (𝐽 ∈ 𝑉 → 𝑋 ∈ V) |
9 | 8 | 3ad2ant1 1131 | . . . . . . 7 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐹:𝑍–onto→𝑌 ∧ 𝑍 ⊆ 𝑋) → 𝑋 ∈ V) |
10 | simp3 1136 | . . . . . . 7 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐹:𝑍–onto→𝑌 ∧ 𝑍 ⊆ 𝑋) → 𝑍 ⊆ 𝑋) | |
11 | 9, 10 | ssexd 5243 | . . . . . 6 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐹:𝑍–onto→𝑌 ∧ 𝑍 ⊆ 𝑋) → 𝑍 ∈ V) |
12 | simp2 1135 | . . . . . 6 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐹:𝑍–onto→𝑌 ∧ 𝑍 ⊆ 𝑋) → 𝐹:𝑍–onto→𝑌) | |
13 | fornex 7772 | . . . . . 6 ⊢ (𝑍 ∈ V → (𝐹:𝑍–onto→𝑌 → 𝑌 ∈ V)) | |
14 | 11, 12, 13 | sylc 65 | . . . . 5 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐹:𝑍–onto→𝑌 ∧ 𝑍 ⊆ 𝑋) → 𝑌 ∈ V) |
15 | elpw2g 5263 | . . . . 5 ⊢ (𝑌 ∈ V → (𝐴 ∈ 𝒫 𝑌 ↔ 𝐴 ⊆ 𝑌)) | |
16 | 14, 15 | syl 17 | . . . 4 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐹:𝑍–onto→𝑌 ∧ 𝑍 ⊆ 𝑋) → (𝐴 ∈ 𝒫 𝑌 ↔ 𝐴 ⊆ 𝑌)) |
17 | 16 | anbi1d 629 | . . 3 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐹:𝑍–onto→𝑌 ∧ 𝑍 ⊆ 𝑋) → ((𝐴 ∈ 𝒫 𝑌 ∧ (◡𝐹 “ 𝐴) ∈ 𝐽) ↔ (𝐴 ⊆ 𝑌 ∧ (◡𝐹 “ 𝐴) ∈ 𝐽))) |
18 | 6, 17 | syl5bb 282 | . 2 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐹:𝑍–onto→𝑌 ∧ 𝑍 ⊆ 𝑋) → (𝐴 ∈ {𝑠 ∈ 𝒫 𝑌 ∣ (◡𝐹 “ 𝑠) ∈ 𝐽} ↔ (𝐴 ⊆ 𝑌 ∧ (◡𝐹 “ 𝐴) ∈ 𝐽))) |
19 | 3, 18 | bitrd 278 | 1 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐹:𝑍–onto→𝑌 ∧ 𝑍 ⊆ 𝑋) → (𝐴 ∈ (𝐽 qTop 𝐹) ↔ (𝐴 ⊆ 𝑌 ∧ (◡𝐹 “ 𝐴) ∈ 𝐽))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 {crab 3067 Vcvv 3422 ⊆ wss 3883 𝒫 cpw 4530 ∪ cuni 4836 ◡ccnv 5579 “ cima 5583 –onto→wfo 6416 (class class class)co 7255 qTop cqtop 17131 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-qtop 17135 |
This theorem is referenced by: qtoptop2 22758 elqtop2 22760 elqtop3 22762 |
Copyright terms: Public domain | W3C validator |