MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elqtop Structured version   Visualization version   GIF version

Theorem elqtop 23612
Description: Value of the quotient topology function. (Contributed by Mario Carneiro, 23-Mar-2015.)
Hypothesis
Ref Expression
qtopval.1 𝑋 = 𝐽
Assertion
Ref Expression
elqtop ((𝐽𝑉𝐹:𝑍onto𝑌𝑍𝑋) → (𝐴 ∈ (𝐽 qTop 𝐹) ↔ (𝐴𝑌 ∧ (𝐹𝐴) ∈ 𝐽)))

Proof of Theorem elqtop
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 qtopval.1 . . . 4 𝑋 = 𝐽
21qtopval2 23611 . . 3 ((𝐽𝑉𝐹:𝑍onto𝑌𝑍𝑋) → (𝐽 qTop 𝐹) = {𝑠 ∈ 𝒫 𝑌 ∣ (𝐹𝑠) ∈ 𝐽})
32eleq2d 2817 . 2 ((𝐽𝑉𝐹:𝑍onto𝑌𝑍𝑋) → (𝐴 ∈ (𝐽 qTop 𝐹) ↔ 𝐴 ∈ {𝑠 ∈ 𝒫 𝑌 ∣ (𝐹𝑠) ∈ 𝐽}))
4 imaeq2 6004 . . . . 5 (𝑠 = 𝐴 → (𝐹𝑠) = (𝐹𝐴))
54eleq1d 2816 . . . 4 (𝑠 = 𝐴 → ((𝐹𝑠) ∈ 𝐽 ↔ (𝐹𝐴) ∈ 𝐽))
65elrab 3642 . . 3 (𝐴 ∈ {𝑠 ∈ 𝒫 𝑌 ∣ (𝐹𝑠) ∈ 𝐽} ↔ (𝐴 ∈ 𝒫 𝑌 ∧ (𝐹𝐴) ∈ 𝐽))
7 uniexg 7673 . . . . . . . . 9 (𝐽𝑉 𝐽 ∈ V)
81, 7eqeltrid 2835 . . . . . . . 8 (𝐽𝑉𝑋 ∈ V)
983ad2ant1 1133 . . . . . . 7 ((𝐽𝑉𝐹:𝑍onto𝑌𝑍𝑋) → 𝑋 ∈ V)
10 simp3 1138 . . . . . . 7 ((𝐽𝑉𝐹:𝑍onto𝑌𝑍𝑋) → 𝑍𝑋)
119, 10ssexd 5260 . . . . . 6 ((𝐽𝑉𝐹:𝑍onto𝑌𝑍𝑋) → 𝑍 ∈ V)
12 simp2 1137 . . . . . 6 ((𝐽𝑉𝐹:𝑍onto𝑌𝑍𝑋) → 𝐹:𝑍onto𝑌)
13 focdmex 7888 . . . . . 6 (𝑍 ∈ V → (𝐹:𝑍onto𝑌𝑌 ∈ V))
1411, 12, 13sylc 65 . . . . 5 ((𝐽𝑉𝐹:𝑍onto𝑌𝑍𝑋) → 𝑌 ∈ V)
15 elpw2g 5269 . . . . 5 (𝑌 ∈ V → (𝐴 ∈ 𝒫 𝑌𝐴𝑌))
1614, 15syl 17 . . . 4 ((𝐽𝑉𝐹:𝑍onto𝑌𝑍𝑋) → (𝐴 ∈ 𝒫 𝑌𝐴𝑌))
1716anbi1d 631 . . 3 ((𝐽𝑉𝐹:𝑍onto𝑌𝑍𝑋) → ((𝐴 ∈ 𝒫 𝑌 ∧ (𝐹𝐴) ∈ 𝐽) ↔ (𝐴𝑌 ∧ (𝐹𝐴) ∈ 𝐽)))
186, 17bitrid 283 . 2 ((𝐽𝑉𝐹:𝑍onto𝑌𝑍𝑋) → (𝐴 ∈ {𝑠 ∈ 𝒫 𝑌 ∣ (𝐹𝑠) ∈ 𝐽} ↔ (𝐴𝑌 ∧ (𝐹𝐴) ∈ 𝐽)))
193, 18bitrd 279 1 ((𝐽𝑉𝐹:𝑍onto𝑌𝑍𝑋) → (𝐴 ∈ (𝐽 qTop 𝐹) ↔ (𝐴𝑌 ∧ (𝐹𝐴) ∈ 𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  {crab 3395  Vcvv 3436  wss 3897  𝒫 cpw 4547   cuni 4856  ccnv 5613  cima 5617  ontowfo 6479  (class class class)co 7346   qTop cqtop 17407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-qtop 17411
This theorem is referenced by:  qtoptop2  23614  elqtop2  23616  elqtop3  23618
  Copyright terms: Public domain W3C validator