| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elqtop | Structured version Visualization version GIF version | ||
| Description: Value of the quotient topology function. (Contributed by Mario Carneiro, 23-Mar-2015.) |
| Ref | Expression |
|---|---|
| qtopval.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| elqtop | ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐹:𝑍–onto→𝑌 ∧ 𝑍 ⊆ 𝑋) → (𝐴 ∈ (𝐽 qTop 𝐹) ↔ (𝐴 ⊆ 𝑌 ∧ (◡𝐹 “ 𝐴) ∈ 𝐽))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qtopval.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | qtopval2 23590 | . . 3 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐹:𝑍–onto→𝑌 ∧ 𝑍 ⊆ 𝑋) → (𝐽 qTop 𝐹) = {𝑠 ∈ 𝒫 𝑌 ∣ (◡𝐹 “ 𝑠) ∈ 𝐽}) |
| 3 | 2 | eleq2d 2815 | . 2 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐹:𝑍–onto→𝑌 ∧ 𝑍 ⊆ 𝑋) → (𝐴 ∈ (𝐽 qTop 𝐹) ↔ 𝐴 ∈ {𝑠 ∈ 𝒫 𝑌 ∣ (◡𝐹 “ 𝑠) ∈ 𝐽})) |
| 4 | imaeq2 6030 | . . . . 5 ⊢ (𝑠 = 𝐴 → (◡𝐹 “ 𝑠) = (◡𝐹 “ 𝐴)) | |
| 5 | 4 | eleq1d 2814 | . . . 4 ⊢ (𝑠 = 𝐴 → ((◡𝐹 “ 𝑠) ∈ 𝐽 ↔ (◡𝐹 “ 𝐴) ∈ 𝐽)) |
| 6 | 5 | elrab 3662 | . . 3 ⊢ (𝐴 ∈ {𝑠 ∈ 𝒫 𝑌 ∣ (◡𝐹 “ 𝑠) ∈ 𝐽} ↔ (𝐴 ∈ 𝒫 𝑌 ∧ (◡𝐹 “ 𝐴) ∈ 𝐽)) |
| 7 | uniexg 7719 | . . . . . . . . 9 ⊢ (𝐽 ∈ 𝑉 → ∪ 𝐽 ∈ V) | |
| 8 | 1, 7 | eqeltrid 2833 | . . . . . . . 8 ⊢ (𝐽 ∈ 𝑉 → 𝑋 ∈ V) |
| 9 | 8 | 3ad2ant1 1133 | . . . . . . 7 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐹:𝑍–onto→𝑌 ∧ 𝑍 ⊆ 𝑋) → 𝑋 ∈ V) |
| 10 | simp3 1138 | . . . . . . 7 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐹:𝑍–onto→𝑌 ∧ 𝑍 ⊆ 𝑋) → 𝑍 ⊆ 𝑋) | |
| 11 | 9, 10 | ssexd 5282 | . . . . . 6 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐹:𝑍–onto→𝑌 ∧ 𝑍 ⊆ 𝑋) → 𝑍 ∈ V) |
| 12 | simp2 1137 | . . . . . 6 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐹:𝑍–onto→𝑌 ∧ 𝑍 ⊆ 𝑋) → 𝐹:𝑍–onto→𝑌) | |
| 13 | focdmex 7937 | . . . . . 6 ⊢ (𝑍 ∈ V → (𝐹:𝑍–onto→𝑌 → 𝑌 ∈ V)) | |
| 14 | 11, 12, 13 | sylc 65 | . . . . 5 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐹:𝑍–onto→𝑌 ∧ 𝑍 ⊆ 𝑋) → 𝑌 ∈ V) |
| 15 | elpw2g 5291 | . . . . 5 ⊢ (𝑌 ∈ V → (𝐴 ∈ 𝒫 𝑌 ↔ 𝐴 ⊆ 𝑌)) | |
| 16 | 14, 15 | syl 17 | . . . 4 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐹:𝑍–onto→𝑌 ∧ 𝑍 ⊆ 𝑋) → (𝐴 ∈ 𝒫 𝑌 ↔ 𝐴 ⊆ 𝑌)) |
| 17 | 16 | anbi1d 631 | . . 3 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐹:𝑍–onto→𝑌 ∧ 𝑍 ⊆ 𝑋) → ((𝐴 ∈ 𝒫 𝑌 ∧ (◡𝐹 “ 𝐴) ∈ 𝐽) ↔ (𝐴 ⊆ 𝑌 ∧ (◡𝐹 “ 𝐴) ∈ 𝐽))) |
| 18 | 6, 17 | bitrid 283 | . 2 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐹:𝑍–onto→𝑌 ∧ 𝑍 ⊆ 𝑋) → (𝐴 ∈ {𝑠 ∈ 𝒫 𝑌 ∣ (◡𝐹 “ 𝑠) ∈ 𝐽} ↔ (𝐴 ⊆ 𝑌 ∧ (◡𝐹 “ 𝐴) ∈ 𝐽))) |
| 19 | 3, 18 | bitrd 279 | 1 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐹:𝑍–onto→𝑌 ∧ 𝑍 ⊆ 𝑋) → (𝐴 ∈ (𝐽 qTop 𝐹) ↔ (𝐴 ⊆ 𝑌 ∧ (◡𝐹 “ 𝐴) ∈ 𝐽))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {crab 3408 Vcvv 3450 ⊆ wss 3917 𝒫 cpw 4566 ∪ cuni 4874 ◡ccnv 5640 “ cima 5644 –onto→wfo 6512 (class class class)co 7390 qTop cqtop 17473 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-qtop 17477 |
| This theorem is referenced by: qtoptop2 23593 elqtop2 23595 elqtop3 23597 |
| Copyright terms: Public domain | W3C validator |