MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elqtop Structured version   Visualization version   GIF version

Theorem elqtop 22302
Description: Value of the quotient topology function. (Contributed by Mario Carneiro, 23-Mar-2015.)
Hypothesis
Ref Expression
qtopval.1 𝑋 = 𝐽
Assertion
Ref Expression
elqtop ((𝐽𝑉𝐹:𝑍onto𝑌𝑍𝑋) → (𝐴 ∈ (𝐽 qTop 𝐹) ↔ (𝐴𝑌 ∧ (𝐹𝐴) ∈ 𝐽)))

Proof of Theorem elqtop
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 qtopval.1 . . . 4 𝑋 = 𝐽
21qtopval2 22301 . . 3 ((𝐽𝑉𝐹:𝑍onto𝑌𝑍𝑋) → (𝐽 qTop 𝐹) = {𝑠 ∈ 𝒫 𝑌 ∣ (𝐹𝑠) ∈ 𝐽})
32eleq2d 2875 . 2 ((𝐽𝑉𝐹:𝑍onto𝑌𝑍𝑋) → (𝐴 ∈ (𝐽 qTop 𝐹) ↔ 𝐴 ∈ {𝑠 ∈ 𝒫 𝑌 ∣ (𝐹𝑠) ∈ 𝐽}))
4 imaeq2 5892 . . . . 5 (𝑠 = 𝐴 → (𝐹𝑠) = (𝐹𝐴))
54eleq1d 2874 . . . 4 (𝑠 = 𝐴 → ((𝐹𝑠) ∈ 𝐽 ↔ (𝐹𝐴) ∈ 𝐽))
65elrab 3628 . . 3 (𝐴 ∈ {𝑠 ∈ 𝒫 𝑌 ∣ (𝐹𝑠) ∈ 𝐽} ↔ (𝐴 ∈ 𝒫 𝑌 ∧ (𝐹𝐴) ∈ 𝐽))
7 uniexg 7446 . . . . . . . . 9 (𝐽𝑉 𝐽 ∈ V)
81, 7eqeltrid 2894 . . . . . . . 8 (𝐽𝑉𝑋 ∈ V)
983ad2ant1 1130 . . . . . . 7 ((𝐽𝑉𝐹:𝑍onto𝑌𝑍𝑋) → 𝑋 ∈ V)
10 simp3 1135 . . . . . . 7 ((𝐽𝑉𝐹:𝑍onto𝑌𝑍𝑋) → 𝑍𝑋)
119, 10ssexd 5192 . . . . . 6 ((𝐽𝑉𝐹:𝑍onto𝑌𝑍𝑋) → 𝑍 ∈ V)
12 simp2 1134 . . . . . 6 ((𝐽𝑉𝐹:𝑍onto𝑌𝑍𝑋) → 𝐹:𝑍onto𝑌)
13 fornex 7639 . . . . . 6 (𝑍 ∈ V → (𝐹:𝑍onto𝑌𝑌 ∈ V))
1411, 12, 13sylc 65 . . . . 5 ((𝐽𝑉𝐹:𝑍onto𝑌𝑍𝑋) → 𝑌 ∈ V)
15 elpw2g 5211 . . . . 5 (𝑌 ∈ V → (𝐴 ∈ 𝒫 𝑌𝐴𝑌))
1614, 15syl 17 . . . 4 ((𝐽𝑉𝐹:𝑍onto𝑌𝑍𝑋) → (𝐴 ∈ 𝒫 𝑌𝐴𝑌))
1716anbi1d 632 . . 3 ((𝐽𝑉𝐹:𝑍onto𝑌𝑍𝑋) → ((𝐴 ∈ 𝒫 𝑌 ∧ (𝐹𝐴) ∈ 𝐽) ↔ (𝐴𝑌 ∧ (𝐹𝐴) ∈ 𝐽)))
186, 17syl5bb 286 . 2 ((𝐽𝑉𝐹:𝑍onto𝑌𝑍𝑋) → (𝐴 ∈ {𝑠 ∈ 𝒫 𝑌 ∣ (𝐹𝑠) ∈ 𝐽} ↔ (𝐴𝑌 ∧ (𝐹𝐴) ∈ 𝐽)))
193, 18bitrd 282 1 ((𝐽𝑉𝐹:𝑍onto𝑌𝑍𝑋) → (𝐴 ∈ (𝐽 qTop 𝐹) ↔ (𝐴𝑌 ∧ (𝐹𝐴) ∈ 𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  {crab 3110  Vcvv 3441  wss 3881  𝒫 cpw 4497   cuni 4800  ccnv 5518  cima 5522  ontowfo 6322  (class class class)co 7135   qTop cqtop 16768
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-qtop 16772
This theorem is referenced by:  qtoptop2  22304  elqtop2  22306  elqtop3  22308
  Copyright terms: Public domain W3C validator