|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > elqtop2 | Structured version Visualization version GIF version | ||
| Description: Value of the quotient topology function. (Contributed by Mario Carneiro, 9-Apr-2015.) | 
| Ref | Expression | 
|---|---|
| qtoptop.1 | ⊢ 𝑋 = ∪ 𝐽 | 
| Ref | Expression | 
|---|---|
| elqtop2 | ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐹:𝑋–onto→𝑌) → (𝐴 ∈ (𝐽 qTop 𝐹) ↔ (𝐴 ⊆ 𝑌 ∧ (◡𝐹 “ 𝐴) ∈ 𝐽))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ssid 4006 | . 2 ⊢ 𝑋 ⊆ 𝑋 | |
| 2 | qtoptop.1 | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
| 3 | 2 | elqtop 23705 | . 2 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐹:𝑋–onto→𝑌 ∧ 𝑋 ⊆ 𝑋) → (𝐴 ∈ (𝐽 qTop 𝐹) ↔ (𝐴 ⊆ 𝑌 ∧ (◡𝐹 “ 𝐴) ∈ 𝐽))) | 
| 4 | 1, 3 | mp3an3 1452 | 1 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐹:𝑋–onto→𝑌) → (𝐴 ∈ (𝐽 qTop 𝐹) ↔ (𝐴 ⊆ 𝑌 ∧ (◡𝐹 “ 𝐴) ∈ 𝐽))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ⊆ wss 3951 ∪ cuni 4907 ◡ccnv 5684 “ cima 5688 –onto→wfo 6559 (class class class)co 7431 qTop cqtop 17548 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-qtop 17552 | 
| This theorem is referenced by: qtopuni 23710 qtopkgen 23718 basqtop 23719 tgqtop 23720 qtopcmap 23727 imasf1oxms 24502 | 
| Copyright terms: Public domain | W3C validator |