MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elqtop2 Structured version   Visualization version   GIF version

Theorem elqtop2 23598
Description: Value of the quotient topology function. (Contributed by Mario Carneiro, 9-Apr-2015.)
Hypothesis
Ref Expression
qtoptop.1 𝑋 = 𝐽
Assertion
Ref Expression
elqtop2 ((𝐽𝑉𝐹:𝑋onto𝑌) → (𝐴 ∈ (𝐽 qTop 𝐹) ↔ (𝐴𝑌 ∧ (𝐹𝐴) ∈ 𝐽)))

Proof of Theorem elqtop2
StepHypRef Expression
1 ssid 4000 . 2 𝑋𝑋
2 qtoptop.1 . . 3 𝑋 = 𝐽
32elqtop 23594 . 2 ((𝐽𝑉𝐹:𝑋onto𝑌𝑋𝑋) → (𝐴 ∈ (𝐽 qTop 𝐹) ↔ (𝐴𝑌 ∧ (𝐹𝐴) ∈ 𝐽)))
41, 3mp3an3 1447 1 ((𝐽𝑉𝐹:𝑋onto𝑌) → (𝐴 ∈ (𝐽 qTop 𝐹) ↔ (𝐴𝑌 ∧ (𝐹𝐴) ∈ 𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1534  wcel 2099  wss 3945   cuni 4903  ccnv 5671  cima 5675  ontowfo 6540  (class class class)co 7414   qTop cqtop 17478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-ral 3058  df-rex 3067  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7417  df-oprab 7418  df-mpo 7419  df-qtop 17482
This theorem is referenced by:  qtopuni  23599  qtopkgen  23607  basqtop  23608  tgqtop  23609  qtopcmap  23616  imasf1oxms  24391
  Copyright terms: Public domain W3C validator