![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elqtop3 | Structured version Visualization version GIF version |
Description: Value of the quotient topology function. (Contributed by Mario Carneiro, 9-Apr-2015.) |
Ref | Expression |
---|---|
elqtop3 | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋–onto→𝑌) → (𝐴 ∈ (𝐽 qTop 𝐹) ↔ (𝐴 ⊆ 𝑌 ∧ (◡𝐹 “ 𝐴) ∈ 𝐽))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | toponuni 21137 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) | |
2 | eqimss 3876 | . . . 4 ⊢ (𝑋 = ∪ 𝐽 → 𝑋 ⊆ ∪ 𝐽) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ⊆ ∪ 𝐽) |
4 | 3 | adantr 474 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋–onto→𝑌) → 𝑋 ⊆ ∪ 𝐽) |
5 | eqid 2778 | . . 3 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
6 | 5 | elqtop 21920 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋–onto→𝑌 ∧ 𝑋 ⊆ ∪ 𝐽) → (𝐴 ∈ (𝐽 qTop 𝐹) ↔ (𝐴 ⊆ 𝑌 ∧ (◡𝐹 “ 𝐴) ∈ 𝐽))) |
7 | 4, 6 | mpd3an3 1535 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋–onto→𝑌) → (𝐴 ∈ (𝐽 qTop 𝐹) ↔ (𝐴 ⊆ 𝑌 ∧ (◡𝐹 “ 𝐴) ∈ 𝐽))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1601 ∈ wcel 2107 ⊆ wss 3792 ∪ cuni 4673 ◡ccnv 5356 “ cima 5360 –onto→wfo 6135 ‘cfv 6137 (class class class)co 6924 qTop cqtop 16560 TopOnctopon 21133 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5008 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4674 df-iun 4757 df-br 4889 df-opab 4951 df-mpt 4968 df-id 5263 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-qtop 16564 df-topon 21134 |
This theorem is referenced by: qtopid 21928 idqtop 21929 tgqtop 21935 qtopcld 21936 qtopcn 21937 qtopss 21938 qtoprest 21940 qtopomap 21941 kqopn 21957 qtopf1 22039 qustgpopn 22342 |
Copyright terms: Public domain | W3C validator |