MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elqtop3 Structured version   Visualization version   GIF version

Theorem elqtop3 22315
Description: Value of the quotient topology function. (Contributed by Mario Carneiro, 9-Apr-2015.)
Assertion
Ref Expression
elqtop3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) → (𝐴 ∈ (𝐽 qTop 𝐹) ↔ (𝐴𝑌 ∧ (𝐹𝐴) ∈ 𝐽)))

Proof of Theorem elqtop3
StepHypRef Expression
1 toponuni 21526 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
2 eqimss 4009 . . . 4 (𝑋 = 𝐽𝑋 𝐽)
31, 2syl 17 . . 3 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 𝐽)
43adantr 484 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) → 𝑋 𝐽)
5 eqid 2824 . . 3 𝐽 = 𝐽
65elqtop 22309 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌𝑋 𝐽) → (𝐴 ∈ (𝐽 qTop 𝐹) ↔ (𝐴𝑌 ∧ (𝐹𝐴) ∈ 𝐽)))
74, 6mpd3an3 1459 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) → (𝐴 ∈ (𝐽 qTop 𝐹) ↔ (𝐴𝑌 ∧ (𝐹𝐴) ∈ 𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2115  wss 3919   cuni 4824  ccnv 5541  cima 5545  ontowfo 6341  cfv 6343  (class class class)co 7149   qTop cqtop 16776  TopOnctopon 21522
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-id 5447  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-ov 7152  df-oprab 7153  df-mpo 7154  df-qtop 16780  df-topon 21523
This theorem is referenced by:  qtopid  22317  idqtop  22318  tgqtop  22324  qtopcld  22325  qtopcn  22326  qtopss  22327  qtoprest  22329  qtopomap  22330  kqopn  22346  qtopf1  22428  qustgpopn  22732
  Copyright terms: Public domain W3C validator