| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > qtopuni | Structured version Visualization version GIF version | ||
| Description: The base set of the quotient topology. (Contributed by Mario Carneiro, 23-Mar-2015.) |
| Ref | Expression |
|---|---|
| qtoptop.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| qtopuni | ⊢ ((𝐽 ∈ Top ∧ 𝐹:𝑋–onto→𝑌) → 𝑌 = ∪ (𝐽 qTop 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssidd 3961 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐹:𝑋–onto→𝑌) → 𝑌 ⊆ 𝑌) | |
| 2 | fof 6740 | . . . . . . 7 ⊢ (𝐹:𝑋–onto→𝑌 → 𝐹:𝑋⟶𝑌) | |
| 3 | 2 | adantl 481 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ 𝐹:𝑋–onto→𝑌) → 𝐹:𝑋⟶𝑌) |
| 4 | fimacnv 6678 | . . . . . 6 ⊢ (𝐹:𝑋⟶𝑌 → (◡𝐹 “ 𝑌) = 𝑋) | |
| 5 | 3, 4 | syl 17 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝐹:𝑋–onto→𝑌) → (◡𝐹 “ 𝑌) = 𝑋) |
| 6 | qtoptop.1 | . . . . . . 7 ⊢ 𝑋 = ∪ 𝐽 | |
| 7 | 6 | topopn 22809 | . . . . . 6 ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
| 8 | 7 | adantr 480 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝐹:𝑋–onto→𝑌) → 𝑋 ∈ 𝐽) |
| 9 | 5, 8 | eqeltrd 2828 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐹:𝑋–onto→𝑌) → (◡𝐹 “ 𝑌) ∈ 𝐽) |
| 10 | 6 | elqtop2 23604 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐹:𝑋–onto→𝑌) → (𝑌 ∈ (𝐽 qTop 𝐹) ↔ (𝑌 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑌) ∈ 𝐽))) |
| 11 | 1, 9, 10 | mpbir2and 713 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐹:𝑋–onto→𝑌) → 𝑌 ∈ (𝐽 qTop 𝐹)) |
| 12 | elssuni 4891 | . . 3 ⊢ (𝑌 ∈ (𝐽 qTop 𝐹) → 𝑌 ⊆ ∪ (𝐽 qTop 𝐹)) | |
| 13 | 11, 12 | syl 17 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐹:𝑋–onto→𝑌) → 𝑌 ⊆ ∪ (𝐽 qTop 𝐹)) |
| 14 | 6 | elqtop2 23604 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝐹:𝑋–onto→𝑌) → (𝑥 ∈ (𝐽 qTop 𝐹) ↔ (𝑥 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑥) ∈ 𝐽))) |
| 15 | simpl 482 | . . . . . 6 ⊢ ((𝑥 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑥) ∈ 𝐽) → 𝑥 ⊆ 𝑌) | |
| 16 | velpw 4558 | . . . . . 6 ⊢ (𝑥 ∈ 𝒫 𝑌 ↔ 𝑥 ⊆ 𝑌) | |
| 17 | 15, 16 | sylibr 234 | . . . . 5 ⊢ ((𝑥 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑥) ∈ 𝐽) → 𝑥 ∈ 𝒫 𝑌) |
| 18 | 14, 17 | biimtrdi 253 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐹:𝑋–onto→𝑌) → (𝑥 ∈ (𝐽 qTop 𝐹) → 𝑥 ∈ 𝒫 𝑌)) |
| 19 | 18 | ssrdv 3943 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐹:𝑋–onto→𝑌) → (𝐽 qTop 𝐹) ⊆ 𝒫 𝑌) |
| 20 | sspwuni 5052 | . . 3 ⊢ ((𝐽 qTop 𝐹) ⊆ 𝒫 𝑌 ↔ ∪ (𝐽 qTop 𝐹) ⊆ 𝑌) | |
| 21 | 19, 20 | sylib 218 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐹:𝑋–onto→𝑌) → ∪ (𝐽 qTop 𝐹) ⊆ 𝑌) |
| 22 | 13, 21 | eqssd 3955 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐹:𝑋–onto→𝑌) → 𝑌 = ∪ (𝐽 qTop 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3905 𝒫 cpw 4553 ∪ cuni 4861 ◡ccnv 5622 “ cima 5626 ⟶wf 6482 –onto→wfo 6484 (class class class)co 7353 qTop cqtop 17425 Topctop 22796 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-qtop 17429 df-top 22797 |
| This theorem is referenced by: qtoptopon 23607 qtopcmplem 23610 qtopkgen 23613 qtopt1 33801 qtophaus 33802 circtopn 33803 |
| Copyright terms: Public domain | W3C validator |