![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > qtopuni | Structured version Visualization version GIF version |
Description: The base set of the quotient topology. (Contributed by Mario Carneiro, 23-Mar-2015.) |
Ref | Expression |
---|---|
qtoptop.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
qtopuni | ⊢ ((𝐽 ∈ Top ∧ 𝐹:𝑋–onto→𝑌) → 𝑌 = ∪ (𝐽 qTop 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssidd 3911 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐹:𝑋–onto→𝑌) → 𝑌 ⊆ 𝑌) | |
2 | fof 6458 | . . . . . . 7 ⊢ (𝐹:𝑋–onto→𝑌 → 𝐹:𝑋⟶𝑌) | |
3 | 2 | adantl 482 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ 𝐹:𝑋–onto→𝑌) → 𝐹:𝑋⟶𝑌) |
4 | fimacnv 6704 | . . . . . 6 ⊢ (𝐹:𝑋⟶𝑌 → (◡𝐹 “ 𝑌) = 𝑋) | |
5 | 3, 4 | syl 17 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝐹:𝑋–onto→𝑌) → (◡𝐹 “ 𝑌) = 𝑋) |
6 | qtoptop.1 | . . . . . . 7 ⊢ 𝑋 = ∪ 𝐽 | |
7 | 6 | topopn 21198 | . . . . . 6 ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
8 | 7 | adantr 481 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝐹:𝑋–onto→𝑌) → 𝑋 ∈ 𝐽) |
9 | 5, 8 | eqeltrd 2883 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐹:𝑋–onto→𝑌) → (◡𝐹 “ 𝑌) ∈ 𝐽) |
10 | 6 | elqtop2 21993 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐹:𝑋–onto→𝑌) → (𝑌 ∈ (𝐽 qTop 𝐹) ↔ (𝑌 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑌) ∈ 𝐽))) |
11 | 1, 9, 10 | mpbir2and 709 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐹:𝑋–onto→𝑌) → 𝑌 ∈ (𝐽 qTop 𝐹)) |
12 | elssuni 4774 | . . 3 ⊢ (𝑌 ∈ (𝐽 qTop 𝐹) → 𝑌 ⊆ ∪ (𝐽 qTop 𝐹)) | |
13 | 11, 12 | syl 17 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐹:𝑋–onto→𝑌) → 𝑌 ⊆ ∪ (𝐽 qTop 𝐹)) |
14 | 6 | elqtop2 21993 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝐹:𝑋–onto→𝑌) → (𝑥 ∈ (𝐽 qTop 𝐹) ↔ (𝑥 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑥) ∈ 𝐽))) |
15 | simpl 483 | . . . . . 6 ⊢ ((𝑥 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑥) ∈ 𝐽) → 𝑥 ⊆ 𝑌) | |
16 | selpw 4460 | . . . . . 6 ⊢ (𝑥 ∈ 𝒫 𝑌 ↔ 𝑥 ⊆ 𝑌) | |
17 | 15, 16 | sylibr 235 | . . . . 5 ⊢ ((𝑥 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑥) ∈ 𝐽) → 𝑥 ∈ 𝒫 𝑌) |
18 | 14, 17 | syl6bi 254 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐹:𝑋–onto→𝑌) → (𝑥 ∈ (𝐽 qTop 𝐹) → 𝑥 ∈ 𝒫 𝑌)) |
19 | 18 | ssrdv 3895 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐹:𝑋–onto→𝑌) → (𝐽 qTop 𝐹) ⊆ 𝒫 𝑌) |
20 | sspwuni 4921 | . . 3 ⊢ ((𝐽 qTop 𝐹) ⊆ 𝒫 𝑌 ↔ ∪ (𝐽 qTop 𝐹) ⊆ 𝑌) | |
21 | 19, 20 | sylib 219 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐹:𝑋–onto→𝑌) → ∪ (𝐽 qTop 𝐹) ⊆ 𝑌) |
22 | 13, 21 | eqssd 3906 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐹:𝑋–onto→𝑌) → 𝑌 = ∪ (𝐽 qTop 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1522 ∈ wcel 2081 ⊆ wss 3859 𝒫 cpw 4453 ∪ cuni 4745 ◡ccnv 5442 “ cima 5446 ⟶wf 6221 –onto→wfo 6223 (class class class)co 7016 qTop cqtop 16605 Topctop 21185 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-rep 5081 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 ax-un 7319 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-ral 3110 df-rex 3111 df-reu 3112 df-rab 3114 df-v 3439 df-sbc 3707 df-csb 3812 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-nul 4212 df-if 4382 df-pw 4455 df-sn 4473 df-pr 4475 df-op 4479 df-uni 4746 df-iun 4827 df-br 4963 df-opab 5025 df-mpt 5042 df-id 5348 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-iota 6189 df-fun 6227 df-fn 6228 df-f 6229 df-f1 6230 df-fo 6231 df-f1o 6232 df-fv 6233 df-ov 7019 df-oprab 7020 df-mpo 7021 df-qtop 16609 df-top 21186 |
This theorem is referenced by: qtoptopon 21996 qtopcmplem 21999 qtopkgen 22002 qtopt1 30716 qtophaus 30717 circtopn 30718 |
Copyright terms: Public domain | W3C validator |