MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qtopuni Structured version   Visualization version   GIF version

Theorem qtopuni 23710
Description: The base set of the quotient topology. (Contributed by Mario Carneiro, 23-Mar-2015.)
Hypothesis
Ref Expression
qtoptop.1 𝑋 = 𝐽
Assertion
Ref Expression
qtopuni ((𝐽 ∈ Top ∧ 𝐹:𝑋onto𝑌) → 𝑌 = (𝐽 qTop 𝐹))

Proof of Theorem qtopuni
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ssidd 4007 . . . 4 ((𝐽 ∈ Top ∧ 𝐹:𝑋onto𝑌) → 𝑌𝑌)
2 fof 6820 . . . . . . 7 (𝐹:𝑋onto𝑌𝐹:𝑋𝑌)
32adantl 481 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐹:𝑋onto𝑌) → 𝐹:𝑋𝑌)
4 fimacnv 6758 . . . . . 6 (𝐹:𝑋𝑌 → (𝐹𝑌) = 𝑋)
53, 4syl 17 . . . . 5 ((𝐽 ∈ Top ∧ 𝐹:𝑋onto𝑌) → (𝐹𝑌) = 𝑋)
6 qtoptop.1 . . . . . . 7 𝑋 = 𝐽
76topopn 22912 . . . . . 6 (𝐽 ∈ Top → 𝑋𝐽)
87adantr 480 . . . . 5 ((𝐽 ∈ Top ∧ 𝐹:𝑋onto𝑌) → 𝑋𝐽)
95, 8eqeltrd 2841 . . . 4 ((𝐽 ∈ Top ∧ 𝐹:𝑋onto𝑌) → (𝐹𝑌) ∈ 𝐽)
106elqtop2 23709 . . . 4 ((𝐽 ∈ Top ∧ 𝐹:𝑋onto𝑌) → (𝑌 ∈ (𝐽 qTop 𝐹) ↔ (𝑌𝑌 ∧ (𝐹𝑌) ∈ 𝐽)))
111, 9, 10mpbir2and 713 . . 3 ((𝐽 ∈ Top ∧ 𝐹:𝑋onto𝑌) → 𝑌 ∈ (𝐽 qTop 𝐹))
12 elssuni 4937 . . 3 (𝑌 ∈ (𝐽 qTop 𝐹) → 𝑌 (𝐽 qTop 𝐹))
1311, 12syl 17 . 2 ((𝐽 ∈ Top ∧ 𝐹:𝑋onto𝑌) → 𝑌 (𝐽 qTop 𝐹))
146elqtop2 23709 . . . . 5 ((𝐽 ∈ Top ∧ 𝐹:𝑋onto𝑌) → (𝑥 ∈ (𝐽 qTop 𝐹) ↔ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽)))
15 simpl 482 . . . . . 6 ((𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) → 𝑥𝑌)
16 velpw 4605 . . . . . 6 (𝑥 ∈ 𝒫 𝑌𝑥𝑌)
1715, 16sylibr 234 . . . . 5 ((𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) → 𝑥 ∈ 𝒫 𝑌)
1814, 17biimtrdi 253 . . . 4 ((𝐽 ∈ Top ∧ 𝐹:𝑋onto𝑌) → (𝑥 ∈ (𝐽 qTop 𝐹) → 𝑥 ∈ 𝒫 𝑌))
1918ssrdv 3989 . . 3 ((𝐽 ∈ Top ∧ 𝐹:𝑋onto𝑌) → (𝐽 qTop 𝐹) ⊆ 𝒫 𝑌)
20 sspwuni 5100 . . 3 ((𝐽 qTop 𝐹) ⊆ 𝒫 𝑌 (𝐽 qTop 𝐹) ⊆ 𝑌)
2119, 20sylib 218 . 2 ((𝐽 ∈ Top ∧ 𝐹:𝑋onto𝑌) → (𝐽 qTop 𝐹) ⊆ 𝑌)
2213, 21eqssd 4001 1 ((𝐽 ∈ Top ∧ 𝐹:𝑋onto𝑌) → 𝑌 = (𝐽 qTop 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wss 3951  𝒫 cpw 4600   cuni 4907  ccnv 5684  cima 5688  wf 6557  ontowfo 6559  (class class class)co 7431   qTop cqtop 17548  Topctop 22899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-qtop 17552  df-top 22900
This theorem is referenced by:  qtoptopon  23712  qtopcmplem  23715  qtopkgen  23718  qtopt1  33834  qtophaus  33835  circtopn  33836
  Copyright terms: Public domain W3C validator