Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > qtopuni | Structured version Visualization version GIF version |
Description: The base set of the quotient topology. (Contributed by Mario Carneiro, 23-Mar-2015.) |
Ref | Expression |
---|---|
qtoptop.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
qtopuni | ⊢ ((𝐽 ∈ Top ∧ 𝐹:𝑋–onto→𝑌) → 𝑌 = ∪ (𝐽 qTop 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssidd 3940 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐹:𝑋–onto→𝑌) → 𝑌 ⊆ 𝑌) | |
2 | fof 6672 | . . . . . . 7 ⊢ (𝐹:𝑋–onto→𝑌 → 𝐹:𝑋⟶𝑌) | |
3 | 2 | adantl 481 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ 𝐹:𝑋–onto→𝑌) → 𝐹:𝑋⟶𝑌) |
4 | fimacnv 6606 | . . . . . 6 ⊢ (𝐹:𝑋⟶𝑌 → (◡𝐹 “ 𝑌) = 𝑋) | |
5 | 3, 4 | syl 17 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝐹:𝑋–onto→𝑌) → (◡𝐹 “ 𝑌) = 𝑋) |
6 | qtoptop.1 | . . . . . . 7 ⊢ 𝑋 = ∪ 𝐽 | |
7 | 6 | topopn 21963 | . . . . . 6 ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
8 | 7 | adantr 480 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝐹:𝑋–onto→𝑌) → 𝑋 ∈ 𝐽) |
9 | 5, 8 | eqeltrd 2839 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐹:𝑋–onto→𝑌) → (◡𝐹 “ 𝑌) ∈ 𝐽) |
10 | 6 | elqtop2 22760 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐹:𝑋–onto→𝑌) → (𝑌 ∈ (𝐽 qTop 𝐹) ↔ (𝑌 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑌) ∈ 𝐽))) |
11 | 1, 9, 10 | mpbir2and 709 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐹:𝑋–onto→𝑌) → 𝑌 ∈ (𝐽 qTop 𝐹)) |
12 | elssuni 4868 | . . 3 ⊢ (𝑌 ∈ (𝐽 qTop 𝐹) → 𝑌 ⊆ ∪ (𝐽 qTop 𝐹)) | |
13 | 11, 12 | syl 17 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐹:𝑋–onto→𝑌) → 𝑌 ⊆ ∪ (𝐽 qTop 𝐹)) |
14 | 6 | elqtop2 22760 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝐹:𝑋–onto→𝑌) → (𝑥 ∈ (𝐽 qTop 𝐹) ↔ (𝑥 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑥) ∈ 𝐽))) |
15 | simpl 482 | . . . . . 6 ⊢ ((𝑥 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑥) ∈ 𝐽) → 𝑥 ⊆ 𝑌) | |
16 | velpw 4535 | . . . . . 6 ⊢ (𝑥 ∈ 𝒫 𝑌 ↔ 𝑥 ⊆ 𝑌) | |
17 | 15, 16 | sylibr 233 | . . . . 5 ⊢ ((𝑥 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑥) ∈ 𝐽) → 𝑥 ∈ 𝒫 𝑌) |
18 | 14, 17 | syl6bi 252 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐹:𝑋–onto→𝑌) → (𝑥 ∈ (𝐽 qTop 𝐹) → 𝑥 ∈ 𝒫 𝑌)) |
19 | 18 | ssrdv 3923 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐹:𝑋–onto→𝑌) → (𝐽 qTop 𝐹) ⊆ 𝒫 𝑌) |
20 | sspwuni 5025 | . . 3 ⊢ ((𝐽 qTop 𝐹) ⊆ 𝒫 𝑌 ↔ ∪ (𝐽 qTop 𝐹) ⊆ 𝑌) | |
21 | 19, 20 | sylib 217 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐹:𝑋–onto→𝑌) → ∪ (𝐽 qTop 𝐹) ⊆ 𝑌) |
22 | 13, 21 | eqssd 3934 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐹:𝑋–onto→𝑌) → 𝑌 = ∪ (𝐽 qTop 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ⊆ wss 3883 𝒫 cpw 4530 ∪ cuni 4836 ◡ccnv 5579 “ cima 5583 ⟶wf 6414 –onto→wfo 6416 (class class class)co 7255 qTop cqtop 17131 Topctop 21950 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-qtop 17135 df-top 21951 |
This theorem is referenced by: qtoptopon 22763 qtopcmplem 22766 qtopkgen 22769 qtopt1 31687 qtophaus 31688 circtopn 31689 |
Copyright terms: Public domain | W3C validator |