MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qtopuni Structured version   Visualization version   GIF version

Theorem qtopuni 23731
Description: The base set of the quotient topology. (Contributed by Mario Carneiro, 23-Mar-2015.)
Hypothesis
Ref Expression
qtoptop.1 𝑋 = 𝐽
Assertion
Ref Expression
qtopuni ((𝐽 ∈ Top ∧ 𝐹:𝑋onto𝑌) → 𝑌 = (𝐽 qTop 𝐹))

Proof of Theorem qtopuni
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ssidd 4032 . . . 4 ((𝐽 ∈ Top ∧ 𝐹:𝑋onto𝑌) → 𝑌𝑌)
2 fof 6834 . . . . . . 7 (𝐹:𝑋onto𝑌𝐹:𝑋𝑌)
32adantl 481 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐹:𝑋onto𝑌) → 𝐹:𝑋𝑌)
4 fimacnv 6769 . . . . . 6 (𝐹:𝑋𝑌 → (𝐹𝑌) = 𝑋)
53, 4syl 17 . . . . 5 ((𝐽 ∈ Top ∧ 𝐹:𝑋onto𝑌) → (𝐹𝑌) = 𝑋)
6 qtoptop.1 . . . . . . 7 𝑋 = 𝐽
76topopn 22933 . . . . . 6 (𝐽 ∈ Top → 𝑋𝐽)
87adantr 480 . . . . 5 ((𝐽 ∈ Top ∧ 𝐹:𝑋onto𝑌) → 𝑋𝐽)
95, 8eqeltrd 2844 . . . 4 ((𝐽 ∈ Top ∧ 𝐹:𝑋onto𝑌) → (𝐹𝑌) ∈ 𝐽)
106elqtop2 23730 . . . 4 ((𝐽 ∈ Top ∧ 𝐹:𝑋onto𝑌) → (𝑌 ∈ (𝐽 qTop 𝐹) ↔ (𝑌𝑌 ∧ (𝐹𝑌) ∈ 𝐽)))
111, 9, 10mpbir2and 712 . . 3 ((𝐽 ∈ Top ∧ 𝐹:𝑋onto𝑌) → 𝑌 ∈ (𝐽 qTop 𝐹))
12 elssuni 4961 . . 3 (𝑌 ∈ (𝐽 qTop 𝐹) → 𝑌 (𝐽 qTop 𝐹))
1311, 12syl 17 . 2 ((𝐽 ∈ Top ∧ 𝐹:𝑋onto𝑌) → 𝑌 (𝐽 qTop 𝐹))
146elqtop2 23730 . . . . 5 ((𝐽 ∈ Top ∧ 𝐹:𝑋onto𝑌) → (𝑥 ∈ (𝐽 qTop 𝐹) ↔ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽)))
15 simpl 482 . . . . . 6 ((𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) → 𝑥𝑌)
16 velpw 4627 . . . . . 6 (𝑥 ∈ 𝒫 𝑌𝑥𝑌)
1715, 16sylibr 234 . . . . 5 ((𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) → 𝑥 ∈ 𝒫 𝑌)
1814, 17biimtrdi 253 . . . 4 ((𝐽 ∈ Top ∧ 𝐹:𝑋onto𝑌) → (𝑥 ∈ (𝐽 qTop 𝐹) → 𝑥 ∈ 𝒫 𝑌))
1918ssrdv 4014 . . 3 ((𝐽 ∈ Top ∧ 𝐹:𝑋onto𝑌) → (𝐽 qTop 𝐹) ⊆ 𝒫 𝑌)
20 sspwuni 5123 . . 3 ((𝐽 qTop 𝐹) ⊆ 𝒫 𝑌 (𝐽 qTop 𝐹) ⊆ 𝑌)
2119, 20sylib 218 . 2 ((𝐽 ∈ Top ∧ 𝐹:𝑋onto𝑌) → (𝐽 qTop 𝐹) ⊆ 𝑌)
2213, 21eqssd 4026 1 ((𝐽 ∈ Top ∧ 𝐹:𝑋onto𝑌) → 𝑌 = (𝐽 qTop 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wss 3976  𝒫 cpw 4622   cuni 4931  ccnv 5699  cima 5703  wf 6569  ontowfo 6571  (class class class)co 7448   qTop cqtop 17563  Topctop 22920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-qtop 17567  df-top 22921
This theorem is referenced by:  qtoptopon  23733  qtopcmplem  23736  qtopkgen  23739  qtopt1  33781  qtophaus  33782  circtopn  33783
  Copyright terms: Public domain W3C validator