Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > qtopuni | Structured version Visualization version GIF version |
Description: The base set of the quotient topology. (Contributed by Mario Carneiro, 23-Mar-2015.) |
Ref | Expression |
---|---|
qtoptop.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
qtopuni | ⊢ ((𝐽 ∈ Top ∧ 𝐹:𝑋–onto→𝑌) → 𝑌 = ∪ (𝐽 qTop 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssidd 3915 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐹:𝑋–onto→𝑌) → 𝑌 ⊆ 𝑌) | |
2 | fof 6576 | . . . . . . 7 ⊢ (𝐹:𝑋–onto→𝑌 → 𝐹:𝑋⟶𝑌) | |
3 | 2 | adantl 485 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ 𝐹:𝑋–onto→𝑌) → 𝐹:𝑋⟶𝑌) |
4 | fimacnv 6830 | . . . . . 6 ⊢ (𝐹:𝑋⟶𝑌 → (◡𝐹 “ 𝑌) = 𝑋) | |
5 | 3, 4 | syl 17 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝐹:𝑋–onto→𝑌) → (◡𝐹 “ 𝑌) = 𝑋) |
6 | qtoptop.1 | . . . . . . 7 ⊢ 𝑋 = ∪ 𝐽 | |
7 | 6 | topopn 21606 | . . . . . 6 ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
8 | 7 | adantr 484 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝐹:𝑋–onto→𝑌) → 𝑋 ∈ 𝐽) |
9 | 5, 8 | eqeltrd 2852 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐹:𝑋–onto→𝑌) → (◡𝐹 “ 𝑌) ∈ 𝐽) |
10 | 6 | elqtop2 22401 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐹:𝑋–onto→𝑌) → (𝑌 ∈ (𝐽 qTop 𝐹) ↔ (𝑌 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑌) ∈ 𝐽))) |
11 | 1, 9, 10 | mpbir2and 712 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐹:𝑋–onto→𝑌) → 𝑌 ∈ (𝐽 qTop 𝐹)) |
12 | elssuni 4830 | . . 3 ⊢ (𝑌 ∈ (𝐽 qTop 𝐹) → 𝑌 ⊆ ∪ (𝐽 qTop 𝐹)) | |
13 | 11, 12 | syl 17 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐹:𝑋–onto→𝑌) → 𝑌 ⊆ ∪ (𝐽 qTop 𝐹)) |
14 | 6 | elqtop2 22401 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝐹:𝑋–onto→𝑌) → (𝑥 ∈ (𝐽 qTop 𝐹) ↔ (𝑥 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑥) ∈ 𝐽))) |
15 | simpl 486 | . . . . . 6 ⊢ ((𝑥 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑥) ∈ 𝐽) → 𝑥 ⊆ 𝑌) | |
16 | velpw 4499 | . . . . . 6 ⊢ (𝑥 ∈ 𝒫 𝑌 ↔ 𝑥 ⊆ 𝑌) | |
17 | 15, 16 | sylibr 237 | . . . . 5 ⊢ ((𝑥 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑥) ∈ 𝐽) → 𝑥 ∈ 𝒫 𝑌) |
18 | 14, 17 | syl6bi 256 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐹:𝑋–onto→𝑌) → (𝑥 ∈ (𝐽 qTop 𝐹) → 𝑥 ∈ 𝒫 𝑌)) |
19 | 18 | ssrdv 3898 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐹:𝑋–onto→𝑌) → (𝐽 qTop 𝐹) ⊆ 𝒫 𝑌) |
20 | sspwuni 4987 | . . 3 ⊢ ((𝐽 qTop 𝐹) ⊆ 𝒫 𝑌 ↔ ∪ (𝐽 qTop 𝐹) ⊆ 𝑌) | |
21 | 19, 20 | sylib 221 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐹:𝑋–onto→𝑌) → ∪ (𝐽 qTop 𝐹) ⊆ 𝑌) |
22 | 13, 21 | eqssd 3909 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐹:𝑋–onto→𝑌) → 𝑌 = ∪ (𝐽 qTop 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ⊆ wss 3858 𝒫 cpw 4494 ∪ cuni 4798 ◡ccnv 5523 “ cima 5527 ⟶wf 6331 –onto→wfo 6333 (class class class)co 7150 qTop cqtop 16834 Topctop 21593 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-ov 7153 df-oprab 7154 df-mpo 7155 df-qtop 16838 df-top 21594 |
This theorem is referenced by: qtoptopon 22404 qtopcmplem 22407 qtopkgen 22410 qtopt1 31306 qtophaus 31307 circtopn 31308 |
Copyright terms: Public domain | W3C validator |