MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qtopuni Structured version   Visualization version   GIF version

Theorem qtopuni 23076
Description: The base set of the quotient topology. (Contributed by Mario Carneiro, 23-Mar-2015.)
Hypothesis
Ref Expression
qtoptop.1 𝑋 = 𝐽
Assertion
Ref Expression
qtopuni ((𝐽 ∈ Top ∧ 𝐹:𝑋onto𝑌) → 𝑌 = (𝐽 qTop 𝐹))

Proof of Theorem qtopuni
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ssidd 3971 . . . 4 ((𝐽 ∈ Top ∧ 𝐹:𝑋onto𝑌) → 𝑌𝑌)
2 fof 6760 . . . . . . 7 (𝐹:𝑋onto𝑌𝐹:𝑋𝑌)
32adantl 483 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐹:𝑋onto𝑌) → 𝐹:𝑋𝑌)
4 fimacnv 6694 . . . . . 6 (𝐹:𝑋𝑌 → (𝐹𝑌) = 𝑋)
53, 4syl 17 . . . . 5 ((𝐽 ∈ Top ∧ 𝐹:𝑋onto𝑌) → (𝐹𝑌) = 𝑋)
6 qtoptop.1 . . . . . . 7 𝑋 = 𝐽
76topopn 22278 . . . . . 6 (𝐽 ∈ Top → 𝑋𝐽)
87adantr 482 . . . . 5 ((𝐽 ∈ Top ∧ 𝐹:𝑋onto𝑌) → 𝑋𝐽)
95, 8eqeltrd 2834 . . . 4 ((𝐽 ∈ Top ∧ 𝐹:𝑋onto𝑌) → (𝐹𝑌) ∈ 𝐽)
106elqtop2 23075 . . . 4 ((𝐽 ∈ Top ∧ 𝐹:𝑋onto𝑌) → (𝑌 ∈ (𝐽 qTop 𝐹) ↔ (𝑌𝑌 ∧ (𝐹𝑌) ∈ 𝐽)))
111, 9, 10mpbir2and 712 . . 3 ((𝐽 ∈ Top ∧ 𝐹:𝑋onto𝑌) → 𝑌 ∈ (𝐽 qTop 𝐹))
12 elssuni 4902 . . 3 (𝑌 ∈ (𝐽 qTop 𝐹) → 𝑌 (𝐽 qTop 𝐹))
1311, 12syl 17 . 2 ((𝐽 ∈ Top ∧ 𝐹:𝑋onto𝑌) → 𝑌 (𝐽 qTop 𝐹))
146elqtop2 23075 . . . . 5 ((𝐽 ∈ Top ∧ 𝐹:𝑋onto𝑌) → (𝑥 ∈ (𝐽 qTop 𝐹) ↔ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽)))
15 simpl 484 . . . . . 6 ((𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) → 𝑥𝑌)
16 velpw 4569 . . . . . 6 (𝑥 ∈ 𝒫 𝑌𝑥𝑌)
1715, 16sylibr 233 . . . . 5 ((𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) → 𝑥 ∈ 𝒫 𝑌)
1814, 17syl6bi 253 . . . 4 ((𝐽 ∈ Top ∧ 𝐹:𝑋onto𝑌) → (𝑥 ∈ (𝐽 qTop 𝐹) → 𝑥 ∈ 𝒫 𝑌))
1918ssrdv 3954 . . 3 ((𝐽 ∈ Top ∧ 𝐹:𝑋onto𝑌) → (𝐽 qTop 𝐹) ⊆ 𝒫 𝑌)
20 sspwuni 5064 . . 3 ((𝐽 qTop 𝐹) ⊆ 𝒫 𝑌 (𝐽 qTop 𝐹) ⊆ 𝑌)
2119, 20sylib 217 . 2 ((𝐽 ∈ Top ∧ 𝐹:𝑋onto𝑌) → (𝐽 qTop 𝐹) ⊆ 𝑌)
2213, 21eqssd 3965 1 ((𝐽 ∈ Top ∧ 𝐹:𝑋onto𝑌) → 𝑌 = (𝐽 qTop 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  wss 3914  𝒫 cpw 4564   cuni 4869  ccnv 5636  cima 5640  wf 6496  ontowfo 6498  (class class class)co 7361   qTop cqtop 17393  Topctop 22265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5246  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-iun 4960  df-br 5110  df-opab 5172  df-mpt 5193  df-id 5535  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-ov 7364  df-oprab 7365  df-mpo 7366  df-qtop 17397  df-top 22266
This theorem is referenced by:  qtoptopon  23078  qtopcmplem  23081  qtopkgen  23084  qtopt1  32480  qtophaus  32481  circtopn  32482
  Copyright terms: Public domain W3C validator